
MASHaBLE:
Mobile	Applications	of	
Secret	Handshakes	over	
Bluetooth	Low-Energy

Yan	Michalevsky,	Suman Nath,	Jie Liu



Motivation
• Private	communication

• Anonymous	messaging

• Secret	communities

• Location-based	messaging

• Privacy	preserving	IoT applications



Messaging	Applications

After	School



Yak	Server	knows everything	about	the	users



Secret	communities

• Members	want	identify	each	other
• Do	not	want	to	be	discovered	by	anyone	not	in	the	community
• Geo-location	privacy
• Anonymous	messaging	and	notifications	dissemination



“Trusted”	Central	Server

• The	server	becomes	a	target	for	attacks
• Communicating	with	the	server	can	reveal	affiliation



“Trusted”	Central	Server

Internet	connectivity	is	not	always	available



“Trusted”	Central	Server

Also…	GPS	and	cellular	consume	a	lot	of	energy

Suspended	state Idle	state

GPS



We	want	to…

• Avoid	interaction	with	a	server
• Use	physical	proximity
• Minimize	energy	consumption

Bluetooth	Low-Energy	(LE)	sounds	like	a	promising	solution



Bluetooth	LE

But	first,	the	devices	need	to	trust	each	other…



The	problem	with	negotiating	trust

• Alice	is	willing	to	reveal	its	credentials	only	to	another	
party	with	certain	clearance	(needs	to	verify	Bob’s	
identity	first)
• Bob	is	also	willing	to	reveal	its	credentials	only	to	another	
party	with	certain	clearance	(needs	to	verify	Alice’s	
identity	first)
• No	party	is	willing	to	reveal	its	credentials	and	provide	a	
proof	of	their	authenticity	first



Properties	of	a	Secret	Handshake
• Parties	do	no	know	each	other
• They	perform	a	procedure	that	establishes	trust
• If	it	fails	– no	information	is	gained	by	either	party
• If	it	succeeds	– parties	reveal	membership	in	a	group
• In	addition,	they	can	establish	respective	roles	in	that	group
(cryptographic	secret	handshakes)



More	applications	of	secret	handshakes

• Using	iBeacon	for	headcounting
• Like
• Currently	exposes	users	and	event	to	tracking



Headcounting

• Exposes	users	to	tracking

• Reveals	information	about	
the	event/gathering

• How	do	we	support	
private/secret	events	and	
provide	privacy	to	
attendants?



Secret	handshake	from	pairings
• Based	on	Balfanz	et	al.	[1]
• If	handshake	succeeds	– both	parties	have	established	an	
authenticated	and	encrypted	communication	channel
• If	handshake	fails	– no	information	is	disclosed
• Collusion	resistant
• Corrupted	group	members	cannot	collude	to	perform	a	handshake	of	a	
non-corrupted	member

• Compact	credentials	– important	for	embedding	into	small	packets



Pairings

We	have	elements	𝑋 ∈ G$ and	𝑌 ∈ G& where	G$, G& are	groups over	
Elliptic	Curves

A	pairing	𝑒 has	the	following	property

𝑒 𝑎𝑋, 𝑏𝑌 = 𝑒 𝑋, 𝑌 ,-

Where	e 𝑋, 𝑌 ∈ 𝐺0



Secret	handshake	from	pairings

Master	secret	
𝑡 ∈ 𝑍:

𝑃< = "p93849", 𝑇<

𝑇< = 𝑡 ⋅ 𝐻(𝑃<)

𝑃C = "p12465", 𝑇C

𝑇C = 𝑡 ⋅ 𝐻(𝑃C)



𝑃C = "p12465"

𝑃< = "p93849"

𝐾< = 𝑒 𝐻 𝑃C , 𝑇< = 𝑒 𝐻 𝑃C , 𝐻(𝑃<) F 𝐾C = 𝑒 𝑇C, 𝐻 𝑃< = 𝑒	(𝐻(𝑃C), 𝐻 𝑃< )F

𝐸𝑛𝑐JK(𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒<)

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒<, 𝐸𝑛𝑐JS 𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒C

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒C

Secret	handshake	from	pairings



Unlinkable Handshakes
• By	tracking	the	pseudonym	an	attacker	can	track	the	user
• Naïve	solution:	
• Obtain	multiple	pseudonyms	from	master	party
• Use	a	different	pseudonym	for	each	handshake



Unlinkable Secret	Handshake

Master	secret	
𝑡 ∈ 𝑍:

𝑃< ∈ 𝐺, 𝑇< = 𝑡 ⋅ 𝑃< 𝑃C ∈ 𝐺, 𝑇C = 𝑡 ⋅ 𝑃C



𝑠 ⋅ 𝑃C

𝑟 ⋅ 𝑃<

𝐾< = 𝑒 𝑠 ⋅ 𝑃C, 𝑟 ⋅ 𝑇< = 𝑒	 𝑃C, 𝑃< TUF 𝐾C = 𝑒 𝑠 ⋅ 𝑇C, 𝑟 ⋅ 𝑃< = 𝑒	 𝑃C, 𝑃< TUF

𝐸𝑛𝑐JK(𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒<)

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒<, 𝐸𝑛𝑐JS 𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒C

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒C

Unlinkable Secret	Handshake



Some	details
• Need	to	hash	arbitrary	strings	onto	𝐺&
• Supported	by	Type	1	or	Type	3	pairings

• Group	element	sizes
• 128-bit	security:	256-bit	group	element	size	=	32	bytes
• 80-bit	security:	160-bit	element	size	=	20	bytes



Tracking	prevention
• Random	device	address for	Bluetooth	source	address	field
• Set	dynamically	and	changed	across	different	connections



Pairing	methods
• Just	Works

• Basically	no	MITM	protection	during	pairing	phase

• Passkey	entry
• Proven	to	be	quite	weak	[7]

• Out-of-Band	(OOB)	– credentials	provided	by	some	other	method



Proposal:	New	pairing	mode
A B

Selection	of	pairing	method

Pairing	Confirm	(Mconfirm)	- 𝑃V

Pairing	Confirm	(Sconfirm)	- 𝑃W, 𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒W

Pairing	Random	(Mrand)	– 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒W, 𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒V

Pairing	Random	(Srand)	𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒V

Parties	calculate	shared	key	using	pairings	– serves	as	STK



Bluetooth	LE	Advertisements
• Scanning	is	supported	by
• Windows	phone
• Android
• iOS

• Publishing	advertisements	is	supported	on
• Windows	phone	10
• Android:	Google	Nexus	5x	and	on
• Kits	such	as	Cypress	and	Dialog



Bluetooth	LE	advertisements
• Bluetooth	LE	supports	broadcasting	advertisements
• Clients	can	scan	and	filter	advertisements	of	specific	types
• A	little	custom	data	can	be	squeezed	in	– 32	bytes

• On	Windows	BTLE	stack	we	currently	can	only	control	the	
Manufacturer	Specific	Data	(AD	type	0xFF)	– 20	bytes



Choice	of	platform
• Easy	implementation	of	pairings
• JPBC	– Java	port	of	Stanford	PBC	library

• Support	for	BLE	advertisement	publishing
• Android	exposed	the	API	but	did	not	support	advertising	in	
practice	at	the	time	(but	Nexus	5S	and	on	do)

• Windows	Phone
• Supports	scanning	and	advertising
• Possible	to	scan	and	advertise	at	the	same	time



Implementation
• Windows	Phone	OS	10
• Failed	attempt:	porting	JPBC	to	.NET
• Pairings	and	group	operations	using	Stanford	PBC	library
• Ported	to	ARM	+ .NET	wrapper	(PbcProxy)
• Used	MPIR	library (Multi-Precision	Integers	and	Rationals,	compatible	with	
GMP)
• Adapted	random	number	generation

• Communication	between	two	phones	is	based	on	alternation	
between	advertising	and	scanning





Evaluation:	Functionality

• Two	mobile	phones	running	our	app	and	performing	handshakes
• Experiment	duration:	8296	sec	= 2	hours	18	sec
• 1	handshakes	every	8	seconds
• Total	1068	handshakes
• 1025	succeeded,	43	failed.	Success	rate:	96%



Evaluation:	Energy	Consumption
• Nokia	Lumia	920	running	Windows	Phone	OS
• Starting	with	100%	charge,	Wi-Fi	and	GPS	off
• Modes:
• Baseline
• Advertising
• Scanning
• Advertising	+	handshake
• Scanning	+	handshake

• Experiment	duration:	3	hours



Evaluation:	energy	consumption

Percentage	of	battery	drain/hour.	Enables	>12	hours	of	operation.



Communication	overhead
• Advertisement	packet:	47	bytes
• Each	party	sends	2	packets:	94	bytes



Future	work
• Implementation	for	Android
• New	Nexus	devices	have	sufficient	BLE	support

• Pairing	preprocessing
• For	each	handshake	using	the	same	credentials	preprocessing	can	be	applied
• Supported	by	PBC	library

• Use	BLE	specific	identifiers	as	handshake	pseudonyms
• Set	a	custom	source	device	address
• Would	provide	additional	usable	space	for	longer	pseudonyms

• More	Windows	Universal	applications	using	PbcProxy



Black	Hat	Sound	Bytes

• Secret	Handshakes	– a	provably	secure	primitive	with	useful	
applications
• We	can	easily	achieve	better	security	and	privacy	for	mobile	and	IoT
• Evaluation	shows	the	application	is	fit	for	practical	use	in	mobile	
devices



Thanks	for	attending!

Questions?



Related	work
• Automatic	Trust	Negotiation	(ATN)
• Attribute-Based	Encryption	(ABE)

• Decryption	is	possible	if	party	is	certified	as	possessing	certain	attributes	by	an	authority
• Secret	handshakes	[1]

• Each	party	receives	a	certificate	from	a	central	authority
• Hidden	credentials	[2]

• Protect	the	messages	using	policies	that	require	possession	of	multiple	credentials
• Oblivious	Signature-Based	Envelope	(OSBE)	[8]

• Allows	certificates	issued	by	different	authorities
• Secret	handshakes	from	CA-oblivious	encryption	[9]
• Unlinkable	secret	handshakes	and	key-private	group	key	management	schemes	
[10]



References
1. Secret	handshakes	from	pairing-based	key	agreements	[Balfanz	et	al.	2003]
2. Hidden	credentials	[Holt	et	al.	2003]
3. Authenticated	Identity-Based	Encryption	[Lynn	2002]
4. How	tracking	customers	in	stores	will	soon	be	norm
5. How	retail	stores	track	you	using	your	smartphone	(and	how	to	stop	it)
6. Apple	is	quietly	making	its	move	to	own	in-store	digital	tracking
7. Bluetooth:	With	Low	Energy	comes	Low	Security	[Ryan	2013]
8. Oblivious	Signature-Based	Envelope	[Li	et	al.	2003]
9. Secret	handshakes	from	CA-oblivious	encryption	[Casteluccia	et	al.	2004]
10. Unlinkable	secret	handshakes	and	key-private	group	key	management	schemes	[Jarecki	et	al.	

2007]


