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Motivation
• Private	communication

• Anonymous	messaging

• Secret	communities

• Location-based	messaging

• Privacy	preserving	IoT applications



Messaging	Applications

After	School



Yak	Server	knows everything	about	the	users



Secret	communities

• Members	want	identify	each	other
• Do	not	want	to	be	discovered	by	anyone	not	in	the	community
• Geo-location	privacy
• Anonymous	messaging	and	notifications	dissemination



“Trusted”	Central	Server

• The	server	becomes	a	target	for	attacks
• Communicating	with	the	server	can	reveal	affiliation



“Trusted”	Central	Server

Internet	connectivity	is	not	always	available



“Trusted”	Central	Server

Also…	GPS	and	cellular	consume	a	lot	of	energy

Suspended	state Idle	state

GPS



We	want	to…

• Avoid	interaction	with	a	server
• Use	physical	proximity
• Minimize	energy	consumption

Bluetooth	Low-Energy	(LE)	sounds	like	a	promising	solution



Bluetooth	LE

But	first,	the	devices	need	to	trust	each	other…



The	problem	with	negotiating	trust

• Alice	is	willing	to	reveal	its	credentials	only	to	another	
party	with	certain	clearance	(needs	to	verify	Bob’s	
identity	first)
• Bob	is	also	willing	to	reveal	its	credentials	only	to	another	
party	with	certain	clearance	(needs	to	verify	Alice’s	
identity	first)
• No	party	is	willing	to	reveal	its	credentials	and	provide	a	
proof	of	their	authenticity	first



Properties	of	a	Secret	Handshake
• Parties	do	no	know	each	other
• They	perform	a	procedure	that	establishes	trust
• If	it	fails	– no	information	is	gained	by	either	party
• If	it	succeeds	– parties	reveal	membership	in	a	group
• In	addition,	they	can	establish	respective	roles	in	that	group
(cryptographic	secret	handshakes)



More	applications	of	secret	handshakes

• Using	iBeacon	for	headcounting
• Like
• Currently	exposes	users	and	event	to	tracking



Headcounting

• Exposes	users	to	tracking

• Reveals	information	about	
the	event/gathering

• How	do	we	support	
private/secret	events	and	
provide	privacy	to	
attendants?



Secret	handshake	from	pairings
• Based	on	Balfanz	et	al.	[1]
• If	handshake	succeeds	– both	parties	have	established	an	
authenticated	and	encrypted	communication	channel
• If	handshake	fails	– no	information	is	disclosed
• Collusion	resistant
• Corrupted	group	members	cannot	collude	to	perform	a	handshake	of	a	
non-corrupted	member

• Compact	credentials	– important	for	embedding	into	small	packets



Pairings

We	have	elements	𝑋 ∈ G$ and	𝑌 ∈ G& where	G$, G& are	groups over	
Elliptic	Curves

A	pairing	𝑒 has	the	following	property

𝑒 𝑎𝑋, 𝑏𝑌 = 𝑒 𝑋, 𝑌 ,-

Where	e 𝑋, 𝑌 ∈ 𝐺0



Secret	handshake	from	pairings

Master	secret	
𝑡 ∈ 𝑍:

𝑃< = "p93849", 𝑇<

𝑇< = 𝑡 ⋅ 𝐻(𝑃<)

𝑃C = "p12465", 𝑇C

𝑇C = 𝑡 ⋅ 𝐻(𝑃C)



𝑃C = "p12465"

𝑃< = "p93849"

𝐾< = 𝑒 𝐻 𝑃C , 𝑇< = 𝑒 𝐻 𝑃C , 𝐻(𝑃<) F 𝐾C = 𝑒 𝑇C, 𝐻 𝑃< = 𝑒	(𝐻(𝑃C), 𝐻 𝑃< )F

𝐸𝑛𝑐JK(𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒<)

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒<, 𝐸𝑛𝑐JS 𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒C

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒C

Secret	handshake	from	pairings



Unlinkable Handshakes
• By	tracking	the	pseudonym	an	attacker	can	track	the	user
• Naïve	solution:	
• Obtain	multiple	pseudonyms	from	master	party
• Use	a	different	pseudonym	for	each	handshake



Unlinkable Secret	Handshake

Master	secret	
𝑡 ∈ 𝑍:

𝑃< ∈ 𝐺, 𝑇< = 𝑡 ⋅ 𝑃< 𝑃C ∈ 𝐺, 𝑇C = 𝑡 ⋅ 𝑃C



𝑠 ⋅ 𝑃C

𝑟 ⋅ 𝑃<

𝐾< = 𝑒 𝑠 ⋅ 𝑃C, 𝑟 ⋅ 𝑇< = 𝑒	 𝑃C, 𝑃< TUF 𝐾C = 𝑒 𝑠 ⋅ 𝑇C, 𝑟 ⋅ 𝑃< = 𝑒	 𝑃C, 𝑃< TUF

𝐸𝑛𝑐JK(𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒<)

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒<, 𝐸𝑛𝑐JS 𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒C

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒C

Unlinkable Secret	Handshake



Some	details
• Need	to	hash	arbitrary	strings	onto	𝐺&
• Supported	by	Type	1	or	Type	3	pairings

• Group	element	sizes
• 128-bit	security:	256-bit	group	element	size	=	32	bytes
• 80-bit	security:	160-bit	element	size	=	20	bytes



Tracking	prevention
• Random	device	address for	Bluetooth	source	address	field
• Set	dynamically	and	changed	across	different	connections



Pairing	methods
• Just	Works

• Basically	no	MITM	protection	during	pairing	phase

• Passkey	entry
• Proven	to	be	quite	weak	[7]

• Out-of-Band	(OOB)	– credentials	provided	by	some	other	method



Proposal:	New	pairing	mode
A B

Selection	of	pairing	method

Pairing	Confirm	(Mconfirm)	- 𝑃V

Pairing	Confirm	(Sconfirm)	- 𝑃W, 𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒W

Pairing	Random	(Mrand)	– 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒W, 𝐶ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒V

Pairing	Random	(Srand)	𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒V

Parties	calculate	shared	key	using	pairings	– serves	as	STK



Bluetooth	LE	Advertisements
• Scanning	is	supported	by
• Windows	phone
• Android
• iOS

• Publishing	advertisements	is	supported	on
• Windows	phone	10
• Android:	Google	Nexus	5x	and	on
• Kits	such	as	Cypress	and	Dialog



Bluetooth	LE	advertisements
• Bluetooth	LE	supports	broadcasting	advertisements
• Clients	can	scan	and	filter	advertisements	of	specific	types
• A	little	custom	data	can	be	squeezed	in	– 32	bytes

• On	Windows	BTLE	stack	we	currently	can	only	control	the	
Manufacturer	Specific	Data	(AD	type	0xFF)	– 20	bytes



Choice	of	platform
• Easy	implementation	of	pairings
• JPBC	– Java	port	of	Stanford	PBC	library

• Support	for	BLE	advertisement	publishing
• Android	exposed	the	API	but	did	not	support	advertising	in	
practice	at	the	time	(but	Nexus	5S	and	on	do)

• Windows	Phone
• Supports	scanning	and	advertising
• Possible	to	scan	and	advertise	at	the	same	time



Implementation
• Windows	Phone	OS	10
• Failed	attempt:	porting	JPBC	to	.NET
• Pairings	and	group	operations	using	Stanford	PBC	library
• Ported	to	ARM	+ .NET	wrapper	(PbcProxy)
• Used	MPIR	library (Multi-Precision	Integers	and	Rationals,	compatible	with	
GMP)
• Adapted	random	number	generation

• Communication	between	two	phones	is	based	on	alternation	
between	advertising	and	scanning





Evaluation:	Functionality

• Two	mobile	phones	running	our	app	and	performing	handshakes
• Experiment	duration:	8296	sec	= 2	hours	18	sec
• 1	handshakes	every	8	seconds
• Total	1068	handshakes
• 1025	succeeded,	43	failed.	Success	rate:	96%



Evaluation:	Energy	Consumption
• Nokia	Lumia	920	running	Windows	Phone	OS
• Starting	with	100%	charge,	Wi-Fi	and	GPS	off
• Modes:
• Baseline
• Advertising
• Scanning
• Advertising	+	handshake
• Scanning	+	handshake

• Experiment	duration:	3	hours



Evaluation:	energy	consumption

Percentage	of	battery	drain/hour.	Enables	>12	hours	of	operation.



Communication	overhead
• Advertisement	packet:	47	bytes
• Each	party	sends	2	packets:	94	bytes



Future	work
• Implementation	for	Android
• New	Nexus	devices	have	sufficient	BLE	support

• Pairing	preprocessing
• For	each	handshake	using	the	same	credentials	preprocessing	can	be	applied
• Supported	by	PBC	library

• Use	BLE	specific	identifiers	as	handshake	pseudonyms
• Set	a	custom	source	device	address
• Would	provide	additional	usable	space	for	longer	pseudonyms

• More	Windows	Universal	applications	using	PbcProxy



Black	Hat	Sound	Bytes

• Secret	Handshakes	– a	provably	secure	primitive	with	useful	
applications
• We	can	easily	achieve	better	security	and	privacy	for	mobile	and	IoT
• Evaluation	shows	the	application	is	fit	for	practical	use	in	mobile	
devices



Thanks	for	attending!

Questions?



Related	work
• Automatic	Trust	Negotiation	(ATN)
• Attribute-Based	Encryption	(ABE)

• Decryption	is	possible	if	party	is	certified	as	possessing	certain	attributes	by	an	authority
• Secret	handshakes	[1]

• Each	party	receives	a	certificate	from	a	central	authority
• Hidden	credentials	[2]

• Protect	the	messages	using	policies	that	require	possession	of	multiple	credentials
• Oblivious	Signature-Based	Envelope	(OSBE)	[8]

• Allows	certificates	issued	by	different	authorities
• Secret	handshakes	from	CA-oblivious	encryption	[9]
• Unlinkable	secret	handshakes	and	key-private	group	key	management	schemes	
[10]
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