blackhat® ASIA 2017

MARCH28-31,2017

MARINA BAY SANDS / SINGAPORE

MASHaBLE:

Mobile Applications of Secret Handshakes over Bluetooth Low-Energy

Yan Michalevsky, Suman Nath, Jie Liu

Motivation

- Private communication
- Anonymous messaging
- Secret communities
- Location-based messaging
- Privacy preserving IoT applications

Messaging Applications

After School

Yak Server knows everything about the users

Secret communities

- Members want identify each other
- Do not want to be discovered by anyone not in the community
- Geo-location privacy
- Anonymous messaging and notifications dissemination

"Trusted" Central Server

- The server becomes a target for attacks
- Communicating with the server can reveal affiliation

"Trusted" Central Server

Internet connectivity is not always available

"Trusted" Central Server

Also... GPS and cellular consume a lot of energy

We want to...

- Avoid interaction with a server
- Use physical proximity
- Minimize energy consumption

Bluetooth Low-Energy (LE) sounds like a promising solution

Bluetooth LE

But first, the devices need to trust each other...

The problem with negotiating trust

- Alice is willing to reveal its credentials only to another party with certain clearance (needs to verify Bob's identity first)
- Bob is also willing to reveal its credentials only to another party with certain clearance (needs to verify Alice's identity first)
- No party is willing to reveal its credentials and provide a proof of their authenticity first

Properties of a Secret Handshake

- Parties do no know each other
- They perform a procedure that establishes trust
- If it fails no information is gained by either party
- If it succeeds parties reveal membership in a group
 - In addition, they can establish respective roles in that group (cryptographic secret handshakes)

More applications of secret handshakes

- Using iBeacon for headcounting
 - Like doubledutch
 - Currently exposes users and event to tracking

Headcounting

- Exposes users to tracking
- Reveals information about the event/gathering
- How do we support private/secret events and provide privacy to attendants?

Secret handshake from pairings

- Based on Balfanz et al. [1]
- If handshake succeeds both parties have established an authenticated and encrypted communication channel
- If handshake fails no information is disclosed
- Collusion resistant
 - Corrupted group members cannot collude to perform a handshake of a non-corrupted member
- Compact credentials important for embedding into small packets

Pairings

We have elements $X \in G_1$ and $Y \in G_2$ where G_1, G_2 are groups over Elliptic Curves

A pairing *e* has the following property

$$e(aX, bY) = e(X, Y)^{ab}$$

Where $e(X, Y) \in G_T$

Secret handshake from pairings

 $\overline{}$

 $K_A = e(H(P_B), T_A) = e(H(P_B), H(P_A))^t$

 $K_B = e(T_B, H(P_A)) = e(H(P_B), H(P_A))^t$

Unlinkable Handshakes

- By tracking the pseudonym an attacker can track the user
- Naïve solution:
 - Obtain multiple pseudonyms from master party
 - Use a different pseudonym for each handshake

Unlinkable Secret Handshake

ckhat

ASIA 2017

 $\overline{}$

Unlinkable Secret Handshake

$$K_A = e(s \cdot P_B, r \cdot T_A) = e(P_B, P_A)^{rst}$$

 $K_B = e(s \cdot T_B, r \cdot P_A) = e(P_B, P_A)^{rst}$

Some details

- Need to hash arbitrary strings onto G_2
 - Supported by Type 1 or Type 3 pairings
- Group element sizes
 - 128-bit security: 256-bit group element size = 32 bytes
 - 80-bit security: 160-bit element size = 20 bytes

Tracking prevention

- Random device address for Bluetooth source address field
 - Set dynamically and changed across different connections

Pairing methods

- Just Works
 - Basically no MITM protection during pairing phase
- Passkey entry
 - Proven to be quite weak [7]
- Out-of-Band (OOB) credentials provided by some other method

Proposal: New pairing mode

Bluetooth LE Advertisements

- Scanning is supported by
 - Windows phone
 - Android
 - iOS
- Publishing advertisements is supported on
 - Windows phone 10
 - Android: Google Nexus 5x and on
 - Kits such as Cypress and Dialog

Bluetooth LE advertisements

- Bluetooth LE supports broadcasting advertisements
- Clients can scan and filter advertisements of specific types
- A little custom data can be squeezed in 32 bytes
 - On Windows BTLE stack we currently can only control the Manufacturer Specific Data (AD type 0xFF) – 20 bytes

Choice of platform

- Easy implementation of pairings
 - JPBC Java port of Stanford PBC library
- Support for BLE advertisement publishing
 - Android exposed the API but did not support advertising in practice at the time (but Nexus 5S and on do)
- Windows Phone
 - Supports scanning and advertising
 - Possible to scan and advertise at the same time

Implementation

- Windows Phone OS 10
- Failed attempt: porting JPBC to .NET
- Pairings and group operations using <u>Stanford PBC library</u>
 - Ported to ARM + .NET wrapper (*PbcProxy*)
 - Used <u>MPIR library</u> (Multi-Precision Integers and Rationals, compatible with GMP)
 - Adapted random number generation
- Communication between two phones is based on alternation between advertising and scanning

Evaluation: Functionality

- Two mobile phones running our app and performing handshakes
- Experiment duration: 8296 sec = 2 hours 18 sec
- 1 handshakes every 8 seconds
- Total 1068 handshakes
- 1025 succeeded, 43 failed. Success rate: 96%

Evaluation: Energy Consumption

- Nokia Lumia 920 running Windows Phone OS
- Starting with 100% charge, Wi-Fi and GPS off
- Modes:
 - Baseline
 - Advertising
 - Scanning
 - Advertising + handshake
 - Scanning + handshake
- Experiment duration: 3 hours

Evaluation: energy consumption

Percentage of battery drain/hour. Enables >12 hours of operation.

Communication overhead

- Advertisement packet: 47 bytes
- Each party sends 2 packets: 94 bytes

Future work

- Implementation for Android
 - New Nexus devices have sufficient BLE support
- Pairing preprocessing
 - For each handshake using the same credentials preprocessing can be applied
 - Supported by PBC library
- Use BLE specific identifiers as handshake pseudonyms
 - Set a custom *source device address*
 - Would provide additional usable space for longer pseudonyms
- More Windows Universal applications using *PbcProxy*

Black Hat Sound Bytes

- Secret Handshakes a provably secure primitive with useful applications
- We can easily achieve better security and privacy for mobile and IoT
- Evaluation shows the application is fit for practical use in mobile devices

Thanks for attending!

Questions?

Related work

- Automatic Trust Negotiation (ATN)
- Attribute-Based Encryption (ABE)
 - Decryption is possible if party is certified as possessing certain attributes by an authority
- Secret handshakes [1]
 - Each party receives a certificate from a central authority
- Hidden credentials [2]
 - Protect the messages using policies that require possession of multiple credentials
- Oblivious Signature-Based Envelope (OSBE) [8]
 - Allows certificates issued by different authorities
- Secret handshakes from CA-oblivious encryption [9]
- Unlinkable secret handshakes and key-private group key management schemes
 [10]

References

- 1. Secret handshakes from pairing-based key agreements [Balfanz et al. 2003]
- 2. Hidden credentials [Holt et al. 2003]
- 3. Authenticated Identity-Based Encryption [Lynn 2002]
- 4. <u>How tracking customers in stores will soon be norm</u>
- 5. <u>How retail stores track you using your smartphone (and how to stop it)</u>
- 6. <u>Apple is quietly making its move to own in-store digital tracking</u>
- 7. Bluetooth: With Low Energy comes Low Security [Ryan 2013]
- 8. Oblivious Signature-Based Envelope [Li et al. 2003]
- 9. Secret handshakes from CA-oblivious encryption [Casteluccia et al. 2004]
- Unlinkable secret handshakes and key-private group key management schemes [Jarecki et al. 2007]