
ANTI-PLUGIN:
DON’T LET YOUR APP

PLAY AS AN ANDROID PLUGIN

Tongbo Luo
Cong Zheng

Zhi Xu
Xin Ouyang

Bio
• Black	Hat	Veteran.
• Principle	Security	Researcher	@	PANW.

Mobile	Security
- Discover	Malware
- Android	Security

Web	Security
- Exploit	Kit	Detection.
- Browser	Security.

Explore	&	Exploit
- Fuzzing	&	CVEs.
- Attacks.

Agenda

• Plugin	Technology	Background
• Demystify	Plugin	Technology
• Abuse	by	Malwares
• Solution

Background	of	Plugin	Technology

Why	Plugin	Technology	is	Popular?

Want	to	log	in	
Multiple	Accounts	
Simultaneously?

What	is	Android	Plugin	Technology?

• Launch	an	APK	file	within	an	Android	app.
• In	the	unrooted	device.
• “Host	App”	=	Android	app
• “Plugin”	=	APK	file.
• No	need	to	install	the	plugin.	

What	is	Android	Plugin	Technology?

Host
App

Plugin	

Launch
APK	w/o

installation

vs	Dynamic	Code	Loading	(DCL)

• Load	+	Execute	code	at	runtime.
• Not	part	of	its	initial	static	code	base	
• Use	API	like	Java	Class	loader,	Runtime.exec.
• Plugin	technology	is	more	advanced.

Parallel	Space
The	Most	

popular	Plugin	
App

DroidPlugin

• The	most	popular	SDK	implemented	Plugin	technology.
• Open-Sourced.
• developed	by	Qihoo 360.

Demystify	Plugin	Technology

Droidplugin	Overview

How	to	create	a	virtual	environment?	

• Hooking.
• How	to	hook	API?

• Java	Dynamic	Proxy	API.
• Java	Reflection.

• What	API	to	hook?

What	API	to	hook?

• Load	and	launch	plugin	(APK)	without	installation.
• Manage	the	lifecycle	of	app	components		(activity,	service,	

content-provide,	broadcast-receiver.)
• Inter-plugin	communication.
• Plugin	management	(download,	update)

• Launch	APK	file	without	installation.

BaseDexClassLoader

DexPathList

Element	[]

Dex
File

Dex
File

Plugin

Host	App

loadClass(“plugin.class”)

findClass(“plugin.class”)

Load

“/data/app/”	

Manage	the	lifecycle	of	App	components

• App	Components
• Activity
• Service
• Broadcast	Receiver
• Content	Provider

• System	maintain	the	lifecycle

Current
Activity	

Activity
Manager
Service
(AMS)

Plugin
Activity	

startActivity	

Handle
Launch
Activity

onCreate

Activity
Thread

Notify	Activity	to	
Pause	Status
ActivityPaused	 Create	New	Activity

Launch	ActivityThread
attachApplication

bindApplication
Start	New	Activity	

in	Android

Current
Activity	

ActivityManager
Service	(AMS)

Plugin
Activity	

startActivity
(intent)

Handle
LaunchActivity

(intent)

onCreate(…)

API	Calls

Activity
Thread

Intent	to	AMS

PluginActivity.class

Intent

Intent

Current
Activity	

ActivityManager
Service	(AMS)

Plugin
Activity	

startActivity
(intent)

Handle
LaunchActivity
(…, intent)

onCreate(…)

Activity
Thread

Pre-defined	Stub	Components
<activity	android:name=														

"$$StubActivity01”	/>
…

PluginActivity
Not	Defined

Intent
StubActivity.class

Intent
StubActivity.class

Intent

Intent

Current
Activity	

ActivityManager
Service	(AMS)

Plugin
Activity	

startActivity

onCreate(…)

API	Calls

Activity
Thread

ActivityManagerNative.getDefault() {
gDefault.get();

}
Singleton<IActivityManager> gDefault;
// ServiceManager.getService(“activity”);
// IActivityManager am = asInterface();

Hook	Proxy

handleLaunchActivity

ActivityThread.mH.mCallback

Hook	Proxy

Hook	to	Start	
New	Service.

startService

Plugin
Activity	

Activity
Manager
Service

New
Service

Start	New	Service

main

handleCreate
Service

onCreate

ActivityThread

attachApplication

ScheduleStartService

Hook	Proxy
Hook	Proxy

Abusing	Plugin	Technology	by	Malware

Abusing	of	DroidPlugin

Malicious
114630

Benign
5268

Android	 App	Powered	by	DroidPlugin

2 4
338

35286

52797

55578

61197
80476

105782
114630

0

20000

40000

60000

80000

100000

120000

2015/07 2015/10 2016/01 2016/04 2016/07 2016/10 2016/11 2016/12 2017/01 2017/02

Trend	of	Malicious	
DroidPlugin	 app

#	of	Apps

Benefit	of	Abusing	DroidPlugin

Update/Install	New	Malware	
Without	Rooting	the	Phone Evade	Static	Detection Phish	on	Authenticated	App

Without	Repackaging

A	new	class	of	Trojan	as	it	is	the	first	to	abuse	Android	Plugin	 technology	

Modularized
Malware	

Functionality	

Malware
DualTwitter

Malicious	Host	App

Our	Solution:	Plugin-Killer

Potential	Solutions

• Block	Plugin	Technology.
• Support	plugin	by	Android	system.
• Improving	Detection	Technique.
• Opt-out	options	for	APK	file	=>	PluginKiller.

Plugin	Killer

•Protect	legitimate	app	from	running	in	malicious	host	
app.

•App	fails	to	be	aware	of	being	launched	as	a	plugin.
•Our	Solution:	PluginKiller.

• Lightweight	Library.
•Compatible	to	all	Android	versions.

•Mechanisms	to	detect	the	virtual	environment.

Use	PluginKiller

=> Condition Statement

=> Counter Action

Similar to FrameBuster JavaScript code used in browser.

public	class	MainActivity extends	Activity	{
@Override
protected	void	onCreate(Bundle	savedInstanceState)	{
if(isLoadedAsPlugin())	{
TerminatesApp();

}
…

}
}

Detect	Virtual	Environment
• Mismatch	in	the	Manifest	Info

• Service/Activity	Name.
• Permissions.

• Detect	from	Runtime	Info
• Process	with	same	UID.
• Working	Directory.
• Process	Name.

• Runtime	Change	component	Features.
• Enable	a	broadcast	Receiver	declared	as	Disabled	in	manifest.

• Broadcast	Receiver
• unregister	all	dynamic	receivers	and	try	to	trigger	static	receivers.

Mismatch	in	the	Manifest	Info

<manifest	xmlns:android="http://schemas.android.com/apk/res/android"
package="com.panw.lab.blackhatdemo">
<service	android:name="com.panw.lab.BlackHatDemo"	/>

</manifest>

com.morgoo.droidplugin.
stub.ServiceStub
$StubP08$P00

Undeclared
But	granted
Permissions

125

Plugin’s	Manifest	File

Detect	from	Runtime	Info

com.droidplugin.demo
com.droidplugin.demo:Plugin

P02

com.panw.lab.blackhatdemo

Process	Name
With	Same	UID

DataDir:	Directory	assigned	 to	the	
package	for its	persistent	data

/data/data/com.droidplugin.demo
/Plugin/com.panw.lab.blackhatde
mo/data/com.panw.lab.blackhatde
mo

/data/data/com.panw.lab.blackhatdemo

Detect	from	App	Component	Behavior

•Number	of	launched	Activity	and	Service.
• DroidPlugin	defined	10	stub	activities	and	10	stub	services.
• Launch	more	than	10	services.

• Static	Broadcast	Receiver.
• DroidPlugin	converts	Static	Receiver	to	Dynamic.
• Define	a	Static	Receiver,	Unregister	all	Dynamic.
• In	DroidPlugin,	no	receiver	is	alive.

Runtime	Change	component	Property
• Enable	Broadcast	Receiver	with	static	intent-filter.

<receiver android:name=”.AntiReceiver"
android:enabled	=	”	false	”>
<intent-filter>
<action	android:name="ANTI_STATIC"	/>

</intent-filter>
</receiver>

ctx.getPackageManager().setComponentEnabledSetting(
ComponentName,	COMPONENT_ENABLED_STATE_ENABLED,	…

)

Whether or not the broadcast receiver
can be instantiated by the system

Fail to Enable it at Runtime

Test	Environments

Go-Multiple
By	GO	Dev	Team	X

Parallel Space
by	LBE	Tech

Parallel	Accounts
By	ImaTech
Innovations

Parallel	Box
By	ParallelBoxTeam

VirtualApp

Gemini
Multi	Accounts

Anti	Plugin	SDK	Evaluation
Droid
Plugin

Go
Multiple

Multiple
Accounts

Parallel
Space

Parallel
Accounts

Parallel
Box

Gemini

ServiceName
Check

Undeclared
Permission

SharedUID
ProcessCheck

AppRuntimeDir
Check

ReceiverFilter
Check

EnabledComp
Check

Three	Takeaways

•Android	Plugin	Technology.
•Abusing	of	Plugin	Technology	by	malware.
• Lightweight	Solution	to	protect	your	app.

Q	&	A

• Looking	for	collaboration	on	New	detection	mechanism.

