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Bio
• Black	Hat	Veteran.
• Principle	Security	Researcher	@	PANW.

Mobile	Security
- Discover	Malware
- Android	Security

Web	Security
- Exploit	Kit	Detection.
- Browser	Security.

Explore	&	Exploit
- Fuzzing	&	CVEs.
- Attacks.
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Background	of	Plugin	Technology



Why	Plugin	Technology	is	Popular?

Want	to	log	in	
Multiple	Accounts	
Simultaneously?



What	is	Android	Plugin	Technology?

• Launch	an	APK	file	within	an	Android	app.
• In	the	unrooted	device.
• “Host	App”	=	Android	app
• “Plugin”	=	APK	file.
• No	need	to	install	the	plugin.	



What	is	Android	Plugin	Technology?

Host
App

Plugin	

Launch
APK	w/o

installation



vs	Dynamic	Code	Loading	(DCL)

• Load	+	Execute	code	at	runtime.
• Not	part	of	its	initial	static	code	base	
• Use	API	like	Java	Class	loader,	Runtime.exec.
• Plugin	technology	is	more	advanced.



Parallel	Space
The	Most	

popular	Plugin	
App



DroidPlugin

• The	most	popular	SDK	implemented	Plugin	technology.
• Open-Sourced.
• developed	by	Qihoo 360.



Demystify	Plugin	Technology



Droidplugin	Overview



How	to	create	a	virtual	environment?	

• Hooking.
• How	to	hook	API?

• Java	Dynamic	Proxy	API.
• Java	Reflection.

• What	API	to	hook?



What	API	to	hook?

• Load	and	launch	plugin	(APK)	without	installation.
• Manage	the	lifecycle	of	app	components		(activity,	service,	

content-provide,	broadcast-receiver.	)
• Inter-plugin	communication.
• Plugin	management	(download,	update)



• Launch	APK	file	without	installation.
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Manage	the	lifecycle	of	App	components

• App	Components
• Activity
• Service
• Broadcast	Receiver
• Content	Provider

• System	maintain	the	lifecycle
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Current
Activity	
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ActivityManagerNative.getDefault() {
gDefault.get();

}
Singleton<IActivityManager> gDefault;
// ServiceManager.getService(“activity”);
// IActivityManager am = asInterface();
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ActivityThread.mH.mCallback

Hook	Proxy



Hook	to	Start	
New	Service.
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Abusing	Plugin	Technology	by	Malware



Abusing	of	DroidPlugin
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Benefit	of	Abusing	DroidPlugin

Update/Install	New	Malware	
Without	Rooting	the	Phone Evade	Static	Detection Phish	on	Authenticated	App

Without	Repackaging



A	new	class	of	Trojan	as	it	is	the	first	to	abuse	Android	Plugin	 technology	



Modularized
Malware	

Functionality	



Malware
DualTwitter

Malicious	Host	App



Our	Solution:	Plugin-Killer



Potential	Solutions

• Block	Plugin	Technology.
• Support	plugin	by	Android	system.
• Improving	Detection	Technique.
• Opt-out	options	for	APK	file	=>	PluginKiller.



Plugin	Killer

•Protect	legitimate	app	from	running	in	malicious	host	
app.

•App	fails	to	be	aware	of	being	launched	as	a	plugin.
•Our	Solution:	PluginKiller.

• Lightweight	Library.
•Compatible	to	all	Android	versions.

•Mechanisms	to	detect	the	virtual	environment.



Use	PluginKiller

=> Condition Statement

=> Counter Action

Similar to FrameBuster JavaScript code used in browser.

public	class	MainActivity extends	Activity	{
@Override
protected	void	onCreate(Bundle	savedInstanceState)	{
if(	isLoadedAsPlugin()	)	{
TerminatesApp();

}
…	...	...

}
}



Detect	Virtual	Environment
• Mismatch	in	the	Manifest	Info

• Service/Activity	Name.
• Permissions.

• Detect	from	Runtime	Info
• Process	with	same	UID.
• Working	Directory.
• Process	Name.

• Runtime	Change	component	Features.
• Enable	a	broadcast	Receiver	declared	as	Disabled	in	manifest.

• Broadcast	Receiver
• unregister	all	dynamic	receivers	and	try	to	trigger	static	receivers.



Mismatch	in	the	Manifest	Info

<manifest	xmlns:android="http://schemas.android.com/apk/res/android"
package="com.panw.lab.blackhatdemo">
<service	android:name="com.panw.lab.BlackHatDemo"	/>

</manifest>

com.morgoo.droidplugin.
stub.ServiceStub
$StubP08$P00

Undeclared
But	granted
Permissions

125

Plugin’s	Manifest	File



Detect	from	Runtime	Info

com.droidplugin.demo
com.droidplugin.demo:Plugin

P02

com.panw.lab.blackhatdemo

Process	Name
With	Same	UID

DataDir:	Directory	assigned	 to	the	
package	for its	persistent	data

/data/data/com.droidplugin.demo
/Plugin/com.panw.lab.blackhatde
mo/data/com.panw.lab.blackhatde
mo

/data/data/com.panw.lab.blackhatdemo



Detect	from	App	Component	Behavior

•Number	of	launched	Activity	and	Service.
• DroidPlugin	defined	10	stub	activities	and	10	stub	services.
• Launch	more	than	10	services.

• Static	Broadcast	Receiver.
• DroidPlugin	converts	Static	Receiver	to	Dynamic.
• Define	a	Static	Receiver,	Unregister	all	Dynamic.
• In	DroidPlugin,	no	receiver	is	alive.



Runtime	Change	component	Property
• Enable	Broadcast	Receiver	with	static	intent-filter.

<receiver android:name=”.AntiReceiver"
android:enabled	=	”	false	”>
<intent-filter>
<action	android:name="ANTI_STATIC"	/>

</intent-filter>
</receiver>

ctx.getPackageManager().setComponentEnabledSetting(
ComponentName,	COMPONENT_ENABLED_STATE_ENABLED,	…

)

Whether or not the broadcast receiver 
can be instantiated by the system

Fail to Enable it at Runtime



Test	Environments

Go-Multiple
By	GO	Dev	Team	X

Parallel Space
by	LBE	Tech

Parallel	Accounts
By	ImaTech
Innovations

Parallel	Box
By	ParallelBoxTeam

VirtualApp

Gemini
Multi	Accounts
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Three	Takeaways

•Android	Plugin	Technology.
•Abusing	of	Plugin	Technology	by	malware.
• Lightweight	Solution	to	protect	your	app.



Q	&	A

• Looking	for	collaboration	on	New	detection	mechanism.


