
ANTI-PLUGIN: DON’T LET YOUR APP PLAY AS AN
ANDROID PLUGIN

Tongbo Luo, Cong Zheng, Zhi Xu, Xin Ouyang
Email: {tluo,cozheng,zxu,xouyang}@paloaltonetworks.com

Palo Alto Networks Inc.

ABSTRACT
The Android plugin technology is an innovative application-
level virtualization framework that allows a mobile applica-
tion to dynamically load and launch another app without
installing the app. This technology was originally developed
for purposes of hot patching and reducing the released APK
size. The primary application of this technology is to sat-
isfy the growing demand for launching multiple instances of
a same app on the same device, such as log in two Twit-
ter accounts for the personal and business simultaneously.
The most popular app powered by this technology, Parallel
Space, has been installed 50 million times in Google Play.

However, as we know, it never takes malware authors long
to catch on to new mobile trends. In the wild, by applying
the plugin technology, a newly discovered Android malware
“Dual-instance” dynamically loads and launches the original
Twitter app’s APK file within itself and also hijacks user’s
inputs (e.g. password) to launch the phishing attack. Be-
sides, after we have comprehensively analyzed security risks
of the Android plugin technology, we find that the data
stored by the plugin app can be stolen by the malicious
host app or other plugin apps. In our Wildfire product, we
have captured 119, 898 samples using the Android plugin
technology, among which 114, 630 samples are malicious or
grey. Thus, the Android plugin technology is becoming a
new security threat to normal Android apps.

Our proposal demystifies the Android plugin technology in
depth, explains the underlying attack vector and investigates
fundamental security problems. We propose a lightweight
defense mechanism and release a library, named Plugin-

Killer, which prevents an Android app from being launched
by the host app using the Android plugin technology. Once a
benign Android app embeds the library, the app can detect
the potential threats from virtual environment and termi-
nates itself when it is launched.

1. INTRODUCTION
The Android plugin technology is an innovative application-

level virtualization/proxy, which was originally developed

for purposes of hot patching, reducing the released APK size,
and solving the 65535 methods limitation. Technically, the
Android plugin technology is very different with the widely
known dynamic code loading (e.g. loading a dex or jar file),
since it can load/launch a whole app (e.g. an APK file) and
the host app does not need to declare any specific interfaces
or components for loaded apps. The primary application
of the Android plugin technology is to launch multiple in-
stances of any apps on the same device without installing
apps. Based on our observations, two incentives of applying
the Android plugin technology to the app development are:
using multi-accounts in social apps and instantly launching
apps in the app store app. Both application scenarios are
derived by from user requirements. For example, one user
has two Twitter accounts for the personal and business re-
spectively, and doesn’t want to switch accounts by login and
logout repeatedly or simply use two smartphones. The most
popular app powered by this technology, “Parallel Space” [2],
has been installed 50 million times in Google Play. Figure 1
shows all of the popular mobile apps and libraries powered
by plugin technology.

Figure 1: List of All Popular Virtual Environment.

However, as we know, it never takes malware authors long
to catch on to new trends, so cybercriminals have recently
taken it upon themselves to create malicious apps based on
the Android plugin technology. A newly discovered Android
malware“Dual-instance malware”, reported by AVAST Soft-
ware [14], adopted the plugin technology. In this malware,
the malware writer developed a fake Twitter app (host app),
which can dynamically load and launch the real Twitter app
from the Twitter’s APK file (plugin app) without installing
Twitter App in devices. Thus, by nature, it is a good way
to launch the phishing attack as users interact with the real
Twitter App indeed. The plugin technology allows the mali-
cious host app to fully control and hook the process of plugin
apps, so the host app can steal the Twitter account creden-
tials through hijacking related functions of the EditText in

1



the Twitter login window.
The Android plugin technology is a double-edged sword.

Even though it brings users and developers more conve-
nience and less development and maintenance cost, it also
have many security issues and concerns. The discovered
dual-instance malware is just a drop in the ocean compared
to the millions of suspicious apps utilized this technology. It
is confident to predict that plugin technology would be used
by attackers as the new attack vector in the future. This new
attack vector completely bypass all of the existing malware
detection systems since the attacker did not compromise the
integrity of the victim app’s APK file.

The most serious security concern is that the trust com-
puting environment in the Android system has changed be-
cause of the plugin technology. Previously, the trusted com-
puting base relies on the assumption of secure Android sys-
tem, which means that the Android system is free of vulnera-
bilities. But, even if this assumption still holds, the trusted
computing environment cannot be guaranteed as the An-
droid app may run in the Android plugin environment in-
stead of the real Android system. Once an app is loaded
and launched in the plugin environment, it is completely
controlled by the host app. The potential security risks of
legitimate apps running in the the plugin environment in-
clude: 1) All data stored in the file system by the app can
be stolen by the host app or other apps running as plugin
instances. 2) User inputs, such as login credentials, can be
stolen by the host app. Therefore, legitimate apps are facing
a new security threat from the Android plugin technology.

In this paper, we demystify the Android plugin technology
in depth, explain the underlying attack vector and investi-
gate fundamental security problems. We propose a lightweight
defense mechanism and release a library, named “Plugin-
Killer”, which prevents an Android app from being launched
by the host app using the Android plugin technology. Once
a normal Android app embeds the library, the app can de-
tect the Android plugin environment and terminates itself
when it is launched. 1

2. PLUGIN TECHNOLOGY DEMYSTIFY
There are many ways to implement plugin technology

(e.g. DroidPlugin, VirtualApp and DynamicAPK), but all
of them share the similar design. In this paper, we will use
DroidPlugin as the example to explain. Figure 2 depicts
the high-level picture of how DroidPlugin works. It involves
three major parts: the Android framework, the host app
with DroidPlugin SDK embedded, and the plugin as each
individual APK file. The essential component in the Droid-
Plugin library is called Proxy Hook. It locates between plu-
gin and Android framework, and intercepts invocations of
the Android APIs from plugin app. The intercepted invoca-
tion will be modified by the DroidPlugin, such as changing
the passed parameters, before sending to the Android frame-
work, and this is magic of DroidPlugin to launch an APK
file without installation.

2.1 Virtual Environment
The essential mechanism of plugin technology to launch

multiple instances of an app is to create a virtual environ-
ment on the top of the Android framework. This virtual en-
vironment is transparent to the Android framework so that

1https://github.com/irobert-tluo/AntiPluginLib

plugin can bypass system’s restriction. The magic of Droid-
Plugin is to leverage the Proxy Hook component to intercept
certain invocations of the Android APIs from the plugin app,
and modify the parameters of them.

Figure 2: DroidPlugin Overview

Usually, hooking system [6, 19, 23] is a standard way to
play this man-in-the-middle game. When we talk about the
design of a hooking system, we actually needs to answer the
following two questions: ‘How to Hook API’? and ‘What
API to Hook’? The first question is easy to answer because
hooking an API in Java is pretty standard. Java provides
the “Dynamic Proxy API ” for creating dynamic proxy of a
class or instance using proxy design pattern. Some of the
APIs is defined inside Android framework, we also need to
use reflection to hook them. The second question is more
complicated and involving the knowledge of how Android
framework works. Basically, DroidPlugin hooked the APIs
to perform the following tasks:

• Load and launch plugin (APK) without installation.

• Manage the lifecycle of app components.

• Inter-plugin communication.

• Plugin management (download, update).

This technology sounds similar to the DCL [7, 9, 12, 13],
Dynamic Code Loading, a technique allows an app to load
and execute code that is not part of its initial static code
base at runtime. Both of them are used to run additional
piece of code that may not necessarily be presented in the
app package at installation time. DCL can only load a small
piece of code that tightly depended on the base app’s con-
text, but Plugin technology is more advanced since it can
launch a whole APK file, containing the code to perform
more complicated functionalities and more interactions with
the system.

Hook ClassLoader - Launch plugin without instal-
lation. In Android system, APK or dex files are loaded
by ClassLoader. The loaded files and classes are stored in
a list defined in the ClassLoader object called DexElement.
Whenever the ClassLoader needs to load a class, it will scan
through this list to match the given classname. If failed to
locate in the current ClassLoader, it may trace back to the
parent ClassLoader iteratively. There are several types of
ClassLoader in Android: BootClassLoader is used to load
the system class; PathClassLoader is used to load app class.
But all of them are derived from the base class BaseDex-

ClassLoader.

2



Originally, system goes to a specific path, usually is ‘data/app’
folder, to find the installed app’s APK file and related re-
sources. At the launching step, only the APK file of the
host app is parsed and saved in DexElement list. Since the
plugin APK file is not under that specific path, it cannot be
automatically loaded by the system. Android system relies
on this ClassLoader object in Activity Thread to load and
launch new activity as the following code shows [1].

java.lang.ClassLoader cl =
r.packageInfo.getClassLoader();

activity = mInstrumentation.newActivity(cl,
component.getClassName(), r.intent);

StrictMode.incrementExpectedActivityCount(activity.getClass());
r.intent.setExtrasClassLoader(cl);

Therefore, if system attempts to use current ClassLoader
to load a class defined in plugin file, nothing can be located
and the plugin cannot be launched. DroidPlugin will hook
this ClassLoader and insert a parsed plugin APK file to the
DexElemement list of it. It can be done to invoke the function
loadDex with the path to the plugin file as the parameter
(Figure 3). Once this hooking step is done, the classes de-
fined in the plugin are available to search and launch in the
normal way. This trick is similar to the one used int hot
patching in Android.

Figure 3: Hook ClassLoader to Launch Plugin with-
out Installation

Share the UID. Android’s package manager creates a
unique user id (UID) and group (GID) when it installs an
application and these are retained until the application is
un-installed. For the plugin app, although it is been dy-
namically loaded and launched by the hooked classloader,
it is not treated as a new app from system’s perspective.
Therefore, all plugin apps share the same UID with the host
app, but different PIDs. Since all apps use the same UID,
the Android permission model and the data isolation model
in the Android system cannot be enforced to ensure the se-
curity of plugin apps.

Figure 4: Flow to start new Activity in Android

Pre-defined Stub Components. Launching plugin
APK file without installation is just the first step. Droid-
Plugin also needs to maintain the lifecycle of the app compo-
nents used in plugin app. App components, such as Activity,
Service, Broadcast Receiver, Content Receiver, are the basic
blocks to build the essential functionalities of a mobile app.
Unlike the UI components (e.g. button, view), app com-
ponents is special because only the system can manage the
lifecycle of them. It means the using these components in-
volves lots of interaction with the Android framework. Due
to the way the plugin is launched, DroidPlugin has to apply
more tricks.

I will use starting a new activity in the plugin as an ex-
ample to explain the tricks of DroidPlugin. Activities are
served as the entry point for a user’s interaction with an
app, and are also central to how a user navigates within an
app or between apps. It is commonly used in apps. Figure 4
illustrates the whole flow to start a new activity in Android
platform. Android apps cannot create a new activity by it-
self, they need to use the service called Activity Manager

Service or AMS provided by the system. AMS handles the
management of the lifecycle for each activity, such as creat-
ing new activity or destroying closed activity.

The standard way to create an activity is to invoke the
API called startActivity either explicitly or implicitly. Then,
the AMS will perform some tasks, such as pausing the cur-
rent activity, creating new activity, and maintaining the ac-
tivities in a stack. After AMS finished those tasks, it will
return the control back to the new activity and notify the
Activity Thread to load and execute the new activity code,
like the callback in the onCreate function of the activity
class.

Figure 5: Intents to AMS when creating new Activ-
ity

For our paper, we only focused on the three steps: startAc-
tivity, AMS, and handleLaunchActivity. These functions are
the places where the activity communicates with the AMS.
As the simplified Figure 5 shows, function startActivity will
send an intent to the AMS with the content as the class of
new activity to be created. This is how the currently activ-
ity tells AMS which is the new activity. Once AMS set up
the context of new activity, it will forward this intent to the
Activity Thread in the app and invoke the callback function
handleLaunchActivity to handle the intent. This function
will extract the class of the new activity from the intent,
load the class and begin to execute the code. That is how
the system starts a new activity.

However, if we want to start an activity defined in the
plugin app, it leads to a failure in the AMS. This is because
the plugin activity is not defined in the host app’s manifest
file. Users may launch any plugin app, and the DroidPlugin

3



Figure 6: Replace the Intent content with Stub Ac-
tivity Class

library cannot predict the name of them. Therefore, it is not
possible to copy the definition of each plugin activity to the
host app before installation. DroidPlugin solve the problem
by pre-defining several stub components in host app’s mani-
fest file, such as stub activity with name like stubActivity01,
which is same for all of the host apps. The host app work-
ing as a proxy has already pre-defined all components (e.g.
service, activity, receiver and content provider) and permis-
sions in its manifest. Generally, the host app pre-defines 10
stub components for each type of component separately, and
all permissions in its AndroidManifest.xml. Thus, both the
host app and plugin apps use these pre-defined stub compo-
nents.

Hook AMS - App Component Without Definition.
During the runtime, DroidPlugin will intercept the intent
sending to the AMS from current activity, and wrap it into
a new intent with the class of the stub activity (Figure 6).
With the modified intent, DroidPlugin can fool the AMS
to create the activity for the stub one, and this time won’t
have any failure. But it is not done since the AMS will also
forward the intent to the new activity, activity thread will
load the class of the stub activity based on the content in
the wrapped new intent. Therefore, DroidPlugin also need
to unwrap the replaced intent and feed the original one to
the activity thread.

Figure 7: Intents to AMS when creating new Activ-
ity

To wrap the intent to the AMS, DroidPlugin hooked the
function startActivity as we just mentioned. The core part
of the code in this function is to get the binder of AMS in
order to send intent to it. As the code in Figure 7 shows,

activity does not need to get the binder of AMS from the
system for each time. Since the communication to AMS
is quite frequently, system saved a cope to the local object
called gDefault as a cache. All of the framework will get the
binder of AMS from this object. Once DroidPlugin hooked
this cache object, it can serve the hooked binder instance
to every invocation of startActivity API and intercept the
intent before sending to the AMS. The same trick can be
used to hook the function handleLaunchActivity to unwrap
the forwarded intent.

If we look into the procedure for the system to create other
type of app components, such as service, content provide,
and broadcast receiver, we can find a similar flow since they
also need to use the same mechanism to contact AMS. The
only difference is the API invoked by current activity. For
example, Figure 8 shows the flow to start a new service
by invoking the API startService. DroidPlugin applied the
same hooking point to intercept the intent, and replaced the
class of the target service in the intent to the class of stub
service.

Figure 8: Hook to Start the Plugin Service

3. ABUSING OF PLUGIN TECHNOLOGY
BY MALWARE

Plugin technology is powerful and useful, which makes the
user experience of Android apps more convenience. How-
ever, we want to pose a fact that this new technology had
been abused by malware. In this section, we will show some
statistics and the real malware samples to prove it.

Statistics We searched the number of apps in our internal
APK database, and we have found around 1 hundred and
20 thousands apps contain the DroidPlugin library/SDK or
customized version of it. 5268 of them are benign but 114630
of them are malicious. (In our database, we marked them
as malicious based on the suspicious behaviors discovered by
our dynamic analysis module)

We measure the trend of new malware samples powered
by DroidPlugin from July of 2015 to last month. As you
can see from this figure, until Jan of 2016, the number of
malicious samples is quite small; But there is a big jump
at the first quarter of 2016 and followed by another hike in
the second quarter. For the last several months of 2016, the
number of new samples in increate by around 1000 to 2000.

Why Plugin Technology is abused? Based on the
samples we have analyzed, we believe there are 3 reasons:

• Updating Malware without rooting the phone. With
plugin technology, once the attackers can trick users
to install one of its malware app to the device, they

4



Figure 9: Trend of Abusing DroidPlugin SDK

can install new malware or update existing malware
without rooting the phone. Because malware will put
the core malicious code into the plugin as an individual
APK file, to update it, malware only needs to down-
load the new APK file from the remote server and re-
place the old one. By doing it, attackers significantly
reduced the chance to be detected by users, since no
user interaction is involving in the whole process.

• Evading Static Detection. Since the malware code is
in the plugin which is dynamically fetched at runtime
from remote server, and the host app doesn’t contains
the code to invoke any suspicious APIs, it can help
attackers to evade some static detections. Without
dynamically inspect the malware, it is hard to find
evidence of malicious behavior only from the host app.

• Phishing without repackaging. Along with the de-
velopment of detection technique [8], the chance of
repackaging a popular app becomes smaller and smaller,
which is used to be the most pervasive way for phish-
ing. However, plugin technology can be used as an al-
ternative way to launch phishing attack without repack-
aging the app. Attackers can load the authenticated
APK as a plugin without modifying it, and put the
malicious code in another plugin or in the host app to
steal user’s input or other credential information.

Malware Case Study: PluginPlathom. The first dis-
covered malware family that utilized DroidPlugin library is
named as PluginPhathom by us [5]. The blog we published
at research center of Palo Alto Networks on November of
2016 shows our analysis on the samples of PluginPhathom,
and it has been reprinted in mediums like SC Media [3],
SecurityWeek [11] and BleepingComputer [4]. The behav-
iors of PluginPhathom is quite common, including taking
pictures, capturing screenshots, recording audios, and inter-
cepting and sending SMS messages. The uniqueness of it is
that PluginPhathom modularized each malicious functional-
ities as a plugin, and it leverages the host app to dynamically
launch each plugins at runtime to perform attacks.

PluginPhathom malware family was upgraded from its
earlier version called Trojan.Ihide (first discovered at July
of 2016 [14]), and attackers integrated the DroidPlugin li-
brary by completely refactoring the code to modularized
each malicious functionalities to an individual APK file. It

Figure 10: Medium Coverage of PluginPhathom
Malware.

contains 9 plugins. For example, the contact plugin con-
tains the malicious code to steal user’s contact information;
and the file plugin contains the code to steal the local files.
It also has a plugin called update which will update each
module by downloading the new APK file form the remote
server.

Malware Case Study: Dual Instance. Another sce-
nario to abuse plugin technology is to launch multiple in-
stance of an official and authentic victim app (Figure 11).
Dual Instance is a malware family targeting the authenti-
cated Twitter App which first discovered by Avast Threat
Intelligence Team [15]. One of the samples, DualTwitter, is
downloaded by users who want to login multiple twitter ac-
counts in the same device simultaneously, but definitely at
price. Once the user log into twitter using this app, the mal-
ware will log the keyboard input and steal user’s credential
information. DualTwitter is powered by the library Virtu-

alApp, a different implementation of plugin technology, to
load multiple instances of twitter app at the same time with-
out repackaging the original twitter app. We have also find
the similar malware targeting on authenticated Instagram
app.

Figure 11: Dual Instance Malware: DualTwitter

4. SOLUTION
The trend in abusing of plugin technology is in massive

scale, to prevent benign apps being the victim of this new
type of attack, we propose a lightweight defense mechanism,
Plugin-Killer. It is a Android SDK that helps benign apps
detect whether its APK file is running in the virtual envi-
ronment created by the plugin technology. We have also
open-source our SDK that is available to be downloaded
from GitHub.

4.1 Potential Solutions

5



Since we are the first to notice that plugin technology is
abused, there is no existing solutions to mitigate the prob-
lem. We will share our thinking on the potential solutions
and explain why we choose Plugin-Killer as our best solu-
tion.

• Blocking Plugin Technology. Obviously, Android plu-
gin technology completely violates the security assump-
tion of mobile platform and leads to multiple severe
threats. Blocking this feature is a straightforward so-
lution so that we can make the ecosystem [18] back to
secure again. However, this solution is not practical
due to the huge demanding from users who use be-
nign apps powered by plugin technology in their daily
life. In addition, it is not feasible to block every imple-
mentation of plugin technology since there is no strict
standard.

• Detecting Malware powered by Plugin Technology. Se-
curity product such as firewall or antivirus software
could warn users when they install this kind of mal-
ware. However, it is hard to distinguish between the
malware and legal Android plugin app. It is because
malware even use the same dual instance SDK as in
the benign app. As the result, they both have a similar
behavior. It will leads to a high false positive rate in
the detection system.

• Providing Plugin Technology by Android platform. The
best solution is for the Android system to support a
secure mechanism to launch multiple instances of an
app, and we believe it is the ultimate solution to this
new type of attack. In this solution, Android system
can extend the existing Android security system to iso-
late the multiple instances of the same app, and design
a interaction protocol for users to configure the apps
that they want to launch multiple instances. By doing
so, users won’t need to reply on third-party apps as
the host app, and the Android system is playing the
role as host app. This solution is quite similar to what
AFrame [21] proposed for isolating 3rd-party advertis-
ing libraries from the host app. However, it requires
relatively longer period of time to design, release and
update the new mechanism to all of the mobile de-
vices (e.g. such as the compatibility issue to different
Android versions). A lightweight and faster deployed
solution is needed soon.

4.2 Our Solution: Plugin-Killer
The rational behind our solution is based on the funda-

mental problem we formulated: the authentic app does not
aware of being launching as a plugin. In other words, the
reason why the malware like DualTwitter can phishing the
twitter app is because the original twitter APK file cannot
distinguish whether it is launched as a plugin or not. There-
fore, we would like to propose a method that allows Android
apps to detect whether they are running in the virtual envi-
ronment created by the plugin technology, and support an
option for them decide whether stop running. Based on our
analysis on the potential solutions, our solution cannot block
the plugin technology and cannot involve any modification
of the system.

Plugin-Killer Usage Scenario. Our solution, Plugin-
Killer, is a defense mechanism that provides multiple ways

to detect the virtual environment to prevent the potential
threats. It is implemented as a library or SDK, and for
benign apps that do not want to be a victim on this new
type of phishing attack, they can embed our library in there
app. As we just explained, it is very dangerous for a benign
app to be launched as a plugin in a third-party app. Our
library, PluginKiller, provides a way for the developers of
benign apps to prevent being launched as a plugin.

Benign apps are the customers to use our library, which
want to detect the potential threats when launched as a
plugin. For example, Twitter’s authentic app can embed
PluginKiller library in their APK file, and they will gain the
power to detect the potential threats when it was launched
as a plugin by the DualTwitter malware. As figure 12 shows,
the Twitter app just needs to add 3 lines of code at the
beginning of its code, such as in the main activity’s onCreate
function.

Figure 12: How to use Plugin-Killer

The two functions (marked in red) are implemented by
our PluginKiller library: the purpose of isLoadedAsPlugin

function is to return a boolean value to tell the benign app
whether running environment is virtual or not; the function
TerminatesApp is another API implemented in our library
to terminate the app or try to alert users to launch the app
from launcher in the traditional way.

For people who are familiar with cyber security, it is easy
to draw an analogy between clickjacking attack with Dual
Instance attack. In clickjacking attack, the victim webpage
can be loaded inside the iframe of malicious page. To defeat
the attack, when the victim server generate the web page,
it usually add a piece JavaScript code to detect whether the
page is loaded inside the main frame or sub-frame. This
technique, called FrameBusting, is utilized by majority of
popular websites. We believe the Duel Instance malware
shares the similar fundamental problem as the clickjacking
attack. If mobile apps can bust from the virtual environment
created by the malicious host app, they can successfully pre-
vent them from this new type of attack.

Advantages of Plugin-Killer. Our solution and library
is the only one to provide the opt-out option for users and
app developers. Moreover, our solution has the following
advantages:

• Only Solution. Our work is the first one to notice the
massive abusing of plugin technology by malware, and
PluginKiller is the best solution so far to help benign
apps to not be a victim of this new type of attacks.

• Lightweight. Our approach does not requires any mo-
bile system changes, and it works on any version of

6



Android system. Mobile apps does not need to make
any changes to their code but adding the 3 lines of
code we explained above.

• Compatibility. Plugin technology is supported by all
the Android versions, and our solution should support
all of them. Due to the method we designed to de-
tect virtual environment is only rely on the common
features supported by all of the Android versions, our
solution is compatible to all of the Android versions

• Easy to Use. Plugin-Killer library is quite small since
it only contains few function calls and few detection
logics.

4.3 How to Detect Virtual Environment?
To defeat against being dynamically loaded as a plugin to

an untrusted host app, we have to figure out a way for a
mobile app to detect whether it is being loaded as a plugin.
Our observation is that, although Android plugin technology
creates a virtual environment to load and launch plugin, the
virtual environment still has lots of behavior differences with
the one created by the system in the traditional way.

In our library, we systematically enumerates all of the
potential methods to distinguish the behavior differences,
including:

Detecting Mismatch in the Manifest. Every mobile
app must have an AndroidManifest.xml file in its root direc-
tory. The manifest file provides essential information about
the app to the Android system, which the system must have
before it can run any of the app’s code. During installa-
tion phase, system will parse the this file and record the
information defined in it (e.g. declared permissions, com-
ponents like activities or service). However, the plugin app
has never been installed and it is launched dynamically by
the host app. The manifest of plugin app and host app has
many mismatched information. Our library will try to de-
tect the virtual environment from finding the difference of
plugin app and host app. We have listed some potential
items defined in the manifest file that we can used to detect
the behavior differences (Figure 13):

• Permission. Since users may launch any APK file
as plugin, the host app usually declared most of the
Android permissions (e.g. DroidPlugin declared 125
Android permissions). However, nearly for all of the
host apps and libraries did not drop permissions that
did not declared by plugin. Therefore, plugin will be
granted more permissions then they declared in the
manifest file. We can either leverage PackageManager
to get the granted permission from the PackageInfo
of the host app or try to access certain restricted re-
sources that requires the permission not declared by
plugin.

• Package Name. All Android apps installed to the sys-
tem have a package name which uniquely identifies the
app on the device. Since the guest app has never been
installed, it can check whether its package name is reg-
istered to the system.

• App component Name. As we explained, DroidPlugin
utilized the stub component to fool the AMS in order
to create a component that not defined in the man-
ifest file. Therefore, AMS records information of the

stub component, not the actual plugin component. For
example, if we use the API getRunningServices of Ac-
tivityManager to get the information of the running
service, we will get the name of the stub service, such
as stub.ServiceStubStubP08P00 if using DroidPlugin.

Figure 13: Mismatch of host and plugin’s manifest
file.

Detecting Host App’s Runtime Info. Due to the
special way the plugin app is launched by the host app, some
runtime information of the plugin will have slight difference
with one launched by the system. Therefore, we can try to
distinguish the virtual environment by checking the runtime
information.

• Process Info. Unlike PID (Process ID) which is tran-
sient and keeps changing all the time, UID is assigned
for each application at install time, stays constant as
long as the application is not reinstalled. The UID
should be unique to each application, except when the
application explicitly requests to share a userid with
another application. Since the plugin APK file has
never been installed to the system, plugin package does
not have an unique UID. Even though the host app can
fork a new process to launch it, like what DroidPlugin
did, the plugin process shared the different PID but
same UID with the host app’s process.

To retrieve the running app’s process information, we
can declare the permission GET TASKS (deprecated
after Lollipop), use the API getRunningAppProcesses
of ActivityManager class to get all of process informa-
tion in a list, and iterate the list to read the process info
from the RunningAppProcessInfo structure. For exam-
ple, the process name to launch plugin in DroidPlugin
library will be like {host app pkg name}:PluginP02.

• Internal Storage Info. Android system supports
an app to save files to internal storage, which direc-
tory is specified by the app’s package name in a spe-
cial location of the Android file system. The direc-
tory of the dynamically launched app is not speci-
fied by its package name but the host app’s package
name. For example, we can get the dataDir of the
app from the packageManager, which is a directory as-
signed to the package for its persistent data. Usually,
the path is ‘/data/data/{pkg name}’. However, Droid-
Plugin needs to separate the data saved by different
plugins, and each plugin will be assign the subdirec-
tory of the host app’s data directory as their dataDir.
For example, the dataDir of the plugin in DroidPlu-
gin is /data/data/{host app pkg name}/Plugin/ {plu-
gin pkg name}/data/.

7



Detecting App Components. App components are the
essential building blocks of an Android app. A unique aspect
of these app components is that any app can start another
app’s component. Android system supports asynchronous
message mechanism, called intent, which binds individual
components to each other at runtime. However, the dynam-
ically launched guest app is transparent to android platform
and other apps running in the same device. To support the
interaction between the components between guest app and
other apps, host app needs to customize the Intent mecha-
nism. Due to the limitation of the customization, it leads to
the behavior difference.

• Number of Launched App Activity and Service. App
must declare its activity and service in the manifest file
in order for it to be accessible to the system. However,
since the guest app has never been installed, host app
declared some stub activities and services as a dummy
ones to fool the AMS. However, host app will only pre-
define certain number of stub components. In Droid-
Plugin, it pre-defined 10 stub activities and 10 stub
services. If the plugin launched more than 10 services,
it leads to a behavior difference.

• Static Broadcast Receiver. Android apps can send
or receive broadcast messages from the Android sys-
tem and other Android apps, similar to the publish-
subscribe design pattern. Apps can register to receive
specific broadcasts. When a broadcast is sent, the sys-
tem automatically routes broadcasts to apps that have
subscribed to receive that particular type of broadcast.
App can register broadcast receiver statically or dy-
namically. In static way, app uses receiver and intent-
filter to define a receiver in the manifest file. When
the app is installed, system parsed the manifest and
create the receiver for the app. App also can invoke
the function registerReceiver to dynamically register
an receiver instance, and the dynamic registration will
be associated with lifecycle of the app.

Since the plugin app has never been installed, the
static receivers defined in the manifest file will not
be parsed by the system. Therefore, DroidPlugin will
parse the manifest file to retrieve the broadcast re-
ceivers defined by the plugin, and generate the code
to dynamically register them at runtime. Since the
static and dynamic registered receives are equivalent
in terms of intercepting broadcasts. Plugin won’t dis-
tinguish the different. However, if we manipulate the
receiver at runtime, we can detect the change.

For example, we can define a static broadcast receiver
in plugin’s manifest file, and unregister all of the dy-
namic receivers at runtime (use API unregisterReceiver).
In the real Android environment, the static receiver is
still effective; but in the virtual environment created
by DroidPlugin, all of the static and dynamic receivers
are gone. Later on, if we send a broadcast that should
be intercepted by the static receiver, we can detect the
whether current environment is virtual or not.

• Change App Component Property at Runtime. Another
technique we can use is to change the property of an
app component at runtime. When the app defined app
components in the manifest file, it can also define the
property of the components, such as component name,

default status or labels. One of the special properties
is enable, which tell the system whether to instantiate
the component when launching the app. In normal
launching procedure, the app have a change to enable
the component at runtime by calling the API setCom-
ponentEnabledSetting with the component name. Af-
ter enabling, the component will be alive and well-
functioned.

The tricky part is that, in the virtual environment,
DroidPlugin cannot instantiate a disabled component.
As figure 14 shows, we defined broadcast receiver in
the plugin’s manifest file, and set the enabled prop-
erty of it as false by default. Then, we user the API
setComponentEnabledSetting to enable this receiver at
runtime. If it is running as a plugin, this runtime en-
abling will not take any effect, and the receiver is still
in disable status. We can easily send a broadcast that
matching this receiver to check whether it is enabled
or not, and find evidence of whether the app is running
as a plugin.

Figure 14: Enable a Disabled Broadcast Receiver at
Runtime.

Detecting Residues of Other Guest App.

• Shared Native Components. Some native components
share the internal information among the instances
within a same app. Even if the plugin is not running,
the host app keeps the shared information anyway,
leading to another form of data residue instance [20,
22]. For example, WebView [10, 16, 17], a web con-
tainer implemented as a native C++ library, shares the
browser states (e.g. cookies, saved form info) in a local
database among the WebView instances within a same
app. In dual instance case, the host app and guest apps
are treated as a same app since they shared the same
UID. Therefore, if user’s login to a website in a We-
bView instance embedded in a guest app, other guest
apps can embed a WebView instance to detect the lo-
gin status and further determine if itself are launched
in the virtual environment.

4.4 Evaluation of PluginKiller.
To check whether PluginKiller can detect different vir-

tual environments cased by various of implementation, we
takes several popular host apps and open-sourced libraries
to evaluate it. It does not mean the popular host apps, such
as Parallel Space, Gemini and etc, listed in Figure 1, are un-
trusted or malicious. The reason why we test it is because
there is no such a standard of how to implement plugin tech-
nology. Attackers may reverse-engineering their code and

8



use a similar way to implement their own malware, or even
come up a new ways to implement plugin technology. Al-
though we only detected the malware that utilize the plugin
library DroidPlugin and VirtualCore at this time, we would
like to show that it is highly possible that PluginKiller could
detect every potential virtual environment to be created by
malwares.

Figure 15 shows the evaluation result. Each row repre-
sents the detection result for a test case as we discussed
earlier, and each column is one of the different virtual envi-
ronments. We build a dummy APK file that only embeds
PluginKiller library, and launch it as a plugin using different
types of host apps to get detection result. The evaluation
shows that PluginKiller can detect all of the current virtual
environments.

Figure 15: Evaluation of Plugin Killer for all virtual
environment.

5. REFERENCES
[1] Android plugin technology analysis (in chinese).

http://weishu.me/2016/04/05/understand-plugin-
framework-classloader/.

[2] How parallel space helps you run multiple accounts on
android.
http://www.geekwire.com/sponsor-post/parallel-
space-helps-run-multiple-accounts-android/.

[3] Rebert Abel. Pluginphantom trojan expoits android
plugins to snoop. SC Magazine, Nov 2016.

[4] Catalin Cimpanu. Pluginphantom android malware
uses novel approach to hide malicious behavior. Nov
2016.

[5] Zheng Cong and Luo Tongbo. Pluginphantom: New
android trojan abuses “droidplugin” framework. Blog
of Palo Alto Networks Research Center, Nov 2016.

[6] Valerio Costamagna and Cong Zheng. Artdroid: A
virtual-method hooking framework on android ART
runtime. In Proceedings of the 1st International
Workshop on Innovations in Mobile Privacy and
Security, IMPS 2016, co-located with the International
Symposium on Engineering Secure Software and
Systems (ESSoS 2016), London, UK, April 6, 2016.,
pages 20–28, 2016.

[7] Wenjun Hu, Xiaobo Ma, and Xiapu Luo. Protecting
android apps against reverse engineering. Protecting
Mobile Networks and Devices: Challenges and
Solutions, page 155, 2016.

[8] Wenjun Hu, Jing Tao, Xiaobo Ma, Wenyu Zhou,
Shuang Zhao, and Ting Han. Migdroid: Detecting

app-repackaging android malware via method
invocation graph. In Computer Communication and
Networks (ICCCN), 2014 23rd International
Conference on, pages 1–7. IEEE, 2014.

[9] Yajin Zhou Xuxian Jiang. Detecting passive content
leaks and pollution in android applications. In
Proceedings of the 20th Network and Distributed
System Security Symposium (NDSS), 2013.

[10] Xing Jin, Lusha Wang, Tongbo Luo, and Wenliang
Du. Fine-grained access control for html5-based
mobile applications in android. In Proceedings of the
16th Information Security Conference (ISC), 2013.

[11] Eduard Kovacs. Pluginphantom android trojan uses
plugins to evade detection. Nov 2016.

[12] Sebastian Poeplau, Yanick Fratantonio, Antonio
Bianchi, Christopher Kruegel, and Giovanni Vigna.
Execute this! analyzing unsafe and malicious dynamic
code loading in android applications. In NDSS,
volume 14, pages 23–26, 2014.

[13] Vaibhav Rastogi, Yan Chen, and Xuxian Jiang.
Droidchameleon: evaluating android anti-malware
against transformation attacks. In Proceedings of the
8th ACM SIGSAC symposium on Information,
computer and communications security, pages
329–334. ACM, 2013.

[14] Trustlook Research. Trojan attempts to replace system
launcher and collects confidential information. 7 2016.

[15] Threat Intelligence Team. Malware posing as dual
instance app steals users’ twitter credentials. October
2016.

[16] Luo Tongbo. ATTACKS AND
COUNTERMEASURES FOR WEBVIEW ON
MOBILE SYSTEMS. PhD thesis, Syracuse University,
2014.

[17] Luo Tongbo, Hao Hao, Du Wenliang, Wang Yifei, and
Yin Heng. Attacks on webview in the android system.
In Annual Computer Security Applications Conference.

[18] Meng Xu, Chengyu Song, Yang Ji, Ming-Wei Shih,
Kangjie Lu, Cong Zheng, Ruian Duan, Yeongjin Jang,
Byoungyoung Lee, Chenxiong Qian, Sangho Lee, and
Taesoo Kim. Toward engineering a secure android
ecosystem: A survey of existing techniques. ACM
Comput. Surv., 49(2):38:1–38:47, August 2016.

[19] Wenbo Yang, Yuanyuan Zhang, Juanru Li, Junliang
Shu, Bodong Li, Wenjun Hu, and Dawu Gu.
Appspear: Bytecode decrypting and dex reassembling
for packed android malware. In Proceedings of the 18th
International Symposium on Research in Attacks,
Intrusions, and Defenses - Volume 9404, RAID 2015,
pages 359–381, New York, NY, USA, 2015.
Springer-Verlag New York, Inc.

[20] Xiao Zhang, Yousra Aafer, Kailiang Ying, and
Wenliang Du. Hey, You, Get Off of My Image:
Detecting Data Residue in Android Images, pages
401–421. Springer International Publishing, Cham,
2016.

[21] Xiao Zhang, Amit Ahlawat, and Wenliang Du.
Aframe: Isolating advertisements from mobile
applications in android. In Proceedings of the 29th
Annual Computer Security Applications Conference,
ACSAC ’13, pages 9–18, New York, NY, USA, 2013.
ACM.

9



[22] Xiao Zhang, Kailiang Ying, Yousra Aafer, Zhenshen
Qiu, and Wenliang Du. Life after app uninstallation:
Are the data still alive? data residue attacks on
android. In NDSS, 2016.

[23] Cong Zheng, Shixiong Zhu, Shuaifu Dai, Guofei Gu,
Xiaorui Gong, Xinhui Han, and Wei Zou. Smartdroid:
An automatic system for revealing ui-based trigger
conditions in android applications. In Proceedings of
the Second ACM Workshop on Security and Privacy
in Smartphones and Mobile Devices, SPSM ’12, pages
93–104, New York, NY, USA, 2012. ACM.

10


