
Dig Into the Attack Surface of PDF and 
Gain 100+ CVEs in 1 Year 

March 2017 

Ke Liu (@klotxl) 

Tencent’s Xuanwu Lab 

Abstract 

Portable Document Format (a.k.a. PDF) is one of the most widely used file 

formats in the world, this complex file format also exposes a large potential 

attack surface which is important for us to understand. During last year, by 

digging into the attack surface of PDF deeply and fuzzing the popular PDF 

readers efficiently, I discovered nearly 150 vulnerabilities independently in the 

world’s most popular PDF readers including Adobe Acrobat and Reader, Foxit 

Reader, Google Chrome, Windows PDF Library, OS X Preview, and Adobe 

Digital Editions. More than 100 of the vulnerabilities have been fixed by vendors 

and assigned with CVEs. 

The following section summarizes the outline of this paper: 

 Introduction 

 Attack Surface 

 Test cases 

 Fuzzing Tricks 

 Results 

 References 

 

 



1. Introduction 

PDF has become a de facto global standard for more secure and dependable 

information exchange since Adobe published the complete PDF specification 

in 1993 [1]. However, this complex file format also exposes a large potential 

attack surface which is important for us to understand. There are some 

researches about PDF security already, some of them are listed as follows: 

 Nicolas Grégoire: Dumb fuzzing XSLT engines in a smart way [2] 

 Zero Day Initiative: Abusing Adobe Reader’s JavaScript APIs [3] 

 Sebastian Apelt: Abusing the Reader’s embedded XFA engine for reliable 

Exploitation [4] 

However, each of these researches only covers a single attack surface of PDF. 

What’s more, the basic but most frequently used PDF characteristics, such as 

images and fonts, are never mentioned. Since PDF is a complex format, a lot 

of work can be done here. By digging into the attack surface of PDF, I 

discovered nearly 150 vulnerabilities in various PDF readers.  

My work mainly focus on Adobe Acrobat and Reader and most of the 

vulnerabilities were found in the products. However, this does not mean that the 

products are more vulnerable than other PDF readers. 

2. Attack Surface 

If you want to know what the attack surface is, the question you have to ask 

yourself first is how to find the attack surface. Here I summarized four possible 

methods to find the attack surface.  

2.1 The Standard Documents 

The ISO standard for PDF is ISO 32000-1:2008 [5] and the copy of the 

document can be downloaded freely from Adobe’s web site [1]. This document 

has 756 pages and almost describes everything of the Portable Document 



Format itself. However, some features are not described in detail in this 

document, such as JavaScript, XFA (XML Forms Architecture), FormCalc, etc. 

The following documents are some useful materials for reference. 

 JavaScript for Acrobat API Reference [6] 

 XML Forms Architecture (XFA) Specification [7] 

 FormCalc User Reference [8] 

Also, PDF supports embedding external files such as fonts (TrueType, Type0, 

Type1, Type3, etc.), Images (Jpeg2000, Jpeg, Png, Bmp, Tiff, Gif, Jbig2, etc.), 

XMLs (XSLT, etc.). The standard documents for these files will not be discussed 

in this paper. 

2.2 Security Advisories 

Keep an eye on security advisories is a good way to observe the status of 

security trends. Most importantly, we can know the flaw exists within which 

component. The following advisories are the ones that worth reading. 

 Zero Day Initiative’s Advisory [9] 

 Chromium Issue Tracker [10] 

 Adobe Security Bulletins and Advisories [11] 

2.3 Installation Files 

For closed source software, a good way to find the attack surface is to 

investigate the files under the installation directory, especially the executable 

files. To figure out the functionality of a specific executable file, we can focus on 

the following information. 

 File name 

 Properties 

 Internal strings, including both ASCII and Unicode strings 

 Function names, including internal symbols and export functions 



 Copyrights information 

For example, by analyzing the properties of a file, we can conclude that the file 

JP2KLib.dll in Adobe Reader’s installation directory is responsible for parsing 

JPEG2000 images. The following figure shows the property page of the file. 

 

The following table shows the roles of part of the files in Adobe Acrobat and 

Reader’s installation directory. 

File Name Description 

AcroRd32.dll Core Library 

ACE.dll Color Engine 

AGM.dll Graphics Manager 

AXSLE.dll XSLT Engine 

CoolType.dll Font Engine 

JP2KLib.dll JPEG2000 Codec Library 

JSByteCodeWin.bin JavaScript Functions 

AcroForm.api Acrobat Forms Plugin (XFA) 



Annots.api Annotation Plugin 

EScript.api JavaScript Engine 

ImageConversion.api Image Convertor (Acrobat only) 

Multimedia.api Multimedia Plugin 

PPKLite.api Public-Key Security Plugin 

weblink.api WebLink Plugin 

2.4 Open Source Projects 

Another way to find the attack surface is to investigate similar open source 

projects. PDFium is a famous open source PDF rendering engine which is 

based on Foxit Reader’s technology and maintained by Chromium’s developers. 

In fact, we can find lots of similar code between PDFium and Foxit Reader by 

comparing the source code of PDFium and the disassembly code of Foxit 

Reader. 

We can try to find the attack surface by analyzing PDFium’s source code. But 

for PDFium, an alternative way is to analyze the libFuzzer components. 

Currently, PDFium has 19 official fuzzers in the “testing/libfuzzer” directory [12]. 

The following table shows the detailed information of these fuzzers. 

Fuzzer Name Description 

pdf_cfx_saxreader_fuzzer.cc SAX reader fuzzer 

pdf_cmap_fuzzer.cc Font cmap fuzzer 

pdf_codec_a85_fuzzer.cc ASCII85 decode fuzzer 

pdf_codec_bmp_fuzzer.cc XFA BMP fuzzer 

pdf_codec_fax_fuzzer.cc CCITTFax fuzzer 

pdf_codec_gif_fuzzer.cc XFA GIF fuzzer 

pdf_codec_icc_fuzzer.cc ICC profile fuzzer 

pdf_codec_jbig2_fuzzer.cc JBig2 fuzzer 

pdf_codec_jpeg_fuzzer.cc JPEG fuzzer (XFA & raw JPEG) 

pdf_codec_png_fuzzer.cc XFA PNG fuzzer 

pdf_codec_rle_fuzzer.cc Run length decode fuzzer 

pdf_codec_tiff_fuzzer.cc XFA TIFF fuzzer 

pdf_css_fuzzer.cc XFA CSS fuzzer 

pdf_fm2js_fuzzer.cc Unknown 

pdf_hint_table_fuzzer.cc Hint table fuzzer 

pdf_jpx_fuzzer.cc JPEG2000 fuzzer 

pdf_psengine_fuzzer.cc PostScript fuzzer 

pdf_streamparser_fuzzer.cc Stream parser fuzzer 

pdf_xml_fuzzer.cc XML fuzzer 



3. Test cases 

Test case, or seed file, plays an important role in the fuzzing process. For 

traditional mutation based fuzzer, more test cases mean more possible code 

coverages which eventually mean more possible crashes. To collect more test 

cases, writing a crawler is acceptable in most cases, but there are some 

alternative ways. Here I summarized two possible methods to collect test cases. 

3.1 Test cases of code coverage based fuzzers 

American fuzzy lop (a.k.a AFL) and libFuzzer are two famous code coverage 

based fuzzers. For AFL fuzzer, a single and small test case is enough to drive 

the fuzzing process. For libFuzzer, it usually consumes a minimized set of test 

cases as the input data, but it still could work even without any initial test cases. 

The common feature of these two fuzzers is that they will generate lots of test 

cases to get higher code coverage rate. So why not reuse the test cases 

generated by AFL or libFuzzer? To achieve this goal, we have to fuzz an open 

source library, or a similar one, with AFL or libFuzzer. The following figure 

shows the process of this method. 

 

3.2 Test suites of open source projects 

Another way to collect test cases is to reuse open source project’s test suites. 

Generally speaking, popular open source project also maintains a test suites 

repository which contains lots of valid and invalid files. Some of the test cases 

can crash the old version binaries directly. It’s a good idea to use the test suites 



as the seed files for the fuzzer. For not frequently used file formats, it’s even 

hard to crawl some from the search engines. For example, it’s hard to collect 

some JPEG2000 images from Google, but you can get hundreds of files from 

OpenJPEG [13]. The following table shows some of the available test suits. 

Project Format Test Case Repository 

PDFium PDF 
https://pdfium.googlesource.com/pdfium_tests/ 

https://pdfium.googlesource.com/pdfium/testing/resources/ 

PDF.js PDF https://github.com/mozilla/pdf.js/tree/master/test/pdfs 

OpenJPEG JPEG2000 https://github.com/uclouvain/openjpeg-data 

LibTIFF TIFF ftp://download.osgeo.org/libtiff 

Google Noto 

Fonts 
TTF https://www.google.com/get/noto/ 

4. Fuzzing Tricks 

Efficiency is an important metrics for fuzzers, especially when the computing 

resource is limited. Here I summarized two fuzzing tricks for improving efficiency. 

4.1 Write PDF makers 

Generally speaking, a PDF file is composed of plain texts and binary data. It’s 

not a good idea to fuzz PDF directly if you already have a concrete target, such 

as images, fonts, etc. We can write PDF makers so that we’ll only mutate the 

data that we’re interested. 

There are some third-party PDF makers that could convert files, such as images 

and fonts, to PDF files. But it’s not a recommended solution because the error 

checking functionality in the tools may lead to lose lots of malformed test cases. 

In such cases, read the standard documents and write a temporary PDF maker 

is recommended. The technique details of PDF makers will not be discussed in 

this paper since it’s not a tough task. 

4.2 Fuzz third-party libraries 

It’s not strange for large software to use open source libraries. It’s worth a try to 

fuzz third-party libraries to reveal security flaws. The following list shows the 



advantages of fuzzing third-party libraries. 

 Fuzz open source library with AFL or libFuzzer is more efficient 

 Target software may affected by known vulnerabilities 

 Zero day vulnerabilities affect all target software that use the library 

The following table shows some of the open source projects that used by Adobe 

Acrobat and Reader. 

Module Description Open source project 

AXSLE.dll XSLT engine Sablotron 

AcroForm.api XFA Form libpng, libtiff 

EScript.api JavaScript engine Spidermonkey 

ImageConversion.api PDF converter 
libpng, libtiff, libjpeg(may be 

libjpeg-turbo) 

Last year I discovered an Out-of-Bounds write vulnerability in libtiff’s 

PixarLogDecode function and reported to Chromium. The posts indicate that 

this vulnerability was also discovered by Mathias Svensson of Google [14] and 

Tyler Bohan of Cisco Talos [15]. The CVE identifier of this vulnerability is CVE-

2016-5875. The following table shows the PDF readers that affected by this 

vulnerability. 

Product Affected Remark 

Adobe Acrobat Pro DC Yes 
ImageConversion Plugin 

(Rendering engine not affected) 

Google Chrome Yes 
Chrome Canary, Dev, and Beta with XFA 

enabled 

Foxit Reader Yes 
Rendering engine 

ConvertToPDF Plugin 

Adobe Reader DC No Rendering engine not affected 

For Adobe Acrobat and Reader, the rendering engine was not affected because 

that PixarLog compression support was not configured in AcroForm.api. For 

Google Chrome, the Canary, Dev, and Beta versions with XFA enabled were 

affected (XFA was enabled in Chrome Canary, Dev, and Beta versions shortly 

and disabled soon). For Foxit Reader, both the rendering engine and the 

ConvertToPDF plugin were affected. 



4.3 Write wrappers 

PDF readers or web browsers are large software, creating an instance of these 

products is time consuming, especially creating the instance again and again 

in the fuzzing process. To avoid loading unnecessary modules and initializing 

unnecessary data, writing wrappers is a good choice. 

For open source projects, it’s very easy to write a wrapper. For products that 

supplies APIs, such as Foxit Reader and Windows PDF Library, it’s also not 

hard to write a wrapper. But for products that do not meet the mentioned 

conditions, we may need to do some reverse engineering work to write a 

wrapper. 

The Windows.Data.PDF.dll is responsible for rendering PDF in Edge browser 

and is shipped within the operating system since Windows 8.1. This library can 

be interacted through Windows Runtime APIs. The post [16] shows how to use 

C++ to write a wrapper for rendering PDF. 

5. Results 

The research started since December 2015. It mainly focus on Adobe Acrobat 

and Reader and most of the vulnerabilities were found in the products. However, 

this does not mean that the products are more vulnerable than other PDF 

readers. During last year, 122 vulnerabilities have been patched by vendors 

and assigned with CVEs. It should be noted that a vulnerability will be excluded 

if it meets one of the following conditions. 

 Vulnerabilities that do not affect stable versions of PDF readers 

 Vulnerabilities that have not been fixed by vendors 

 Vulnerabilities that have been reported by other researchers 

 

 

 



The following figure shows the vulnerability distribution sorted by vendor. 

 

The following figure shows the vulnerability distribution sorted by attack surface. 

 

Once again, it should be noted that the vulnerability data in this paper is only 

for reference, it does not mean which product is more vulnerable than others. 

 

 

 

 



6. References 

[1]. Document management - Portable document format - Part 1: PDF 1.

7, http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/PDF

32000_2008.pdf 

[2]. Dumb fuzzing XSLT engines in a smart way, http://www.nosuchcon.or

g/talks/2013/D1_04_Nicolas_Gregoire_XSLT_Fuzzing.pdf 

[3]. Abusing Adobe Reader’s JavaScript APIs, https://media.defcon.org/DE

F%20CON%2023/DEF%20CON%2023%20presentations/DEFCON-23-H

ariri-Spelman-Gorenc-Abusing-Adobe-Readers-JavaScript-APIs.pdf 

[4]. Abusing the Reader’s embedded XFA engine for reliable Exploitation, 

https://www.syscan360.org/slides/2016_SG_Sebastian_Apelt_Pwning_Ad

obe_Reader-Abusing_the_readers_embedded_XFA_engine_for_reliable_

Exploitation.pdf 

[5]. ISO 32000-1:2008, https://www.iso.org/standard/51502.html 

[6]. JavaScript for Acrobat API Reference, http://www.adobe.com/content/d

am/Adobe/en/devnet/acrobat/pdfs/js_api_reference.pdf 

[7]. XML Forms Architecture (XFA) Specification, http://citeseerx.ist.psu.edu

/viewdoc/download?doi=10.1.1.364.2157&rep=rep1&type=pdf 

[8]. FormCalc User Reference, http://help.adobe.com/en_US/livecycle/es/Fo

rmCalc.pdf 

[9]. Zero Day Initiative’s published advisories, http://www.zerodayinitiative.c

om/advisories/published/ 

[10]. Chromium issue tracker, https://bugs.chromium.org/p/chromium/issues/

list?can=1&q=Type=%22Bug-Security%22 

[11]. Adobe Security Bulletins and Advisories, https://helpx.adobe.com/secu

rity.html#acrobat 

[12]. Official fuzzers for PDFium, https://pdfium.googlesource.com/pdfium/+/

refs/heads/master/testing/libfuzzer/ 

http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/PDF32000_2008.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/PDF32000_2008.pdf
http://www.nosuchcon.org/talks/2013/D1_04_Nicolas_Gregoire_XSLT_Fuzzing.pdf
http://www.nosuchcon.org/talks/2013/D1_04_Nicolas_Gregoire_XSLT_Fuzzing.pdf
https://media.defcon.org/DEF%20CON%2023/DEF%20CON%2023%20presentations/DEFCON-23-Hariri-Spelman-Gorenc-Abusing-Adobe-Readers-JavaScript-APIs.pdf
https://media.defcon.org/DEF%20CON%2023/DEF%20CON%2023%20presentations/DEFCON-23-Hariri-Spelman-Gorenc-Abusing-Adobe-Readers-JavaScript-APIs.pdf
https://media.defcon.org/DEF%20CON%2023/DEF%20CON%2023%20presentations/DEFCON-23-Hariri-Spelman-Gorenc-Abusing-Adobe-Readers-JavaScript-APIs.pdf
https://www.syscan360.org/slides/2016_SG_Sebastian_Apelt_Pwning_Adobe_Reader-Abusing_the_readers_embedded_XFA_engine_for_reliable_Exploitation.pdf
https://www.syscan360.org/slides/2016_SG_Sebastian_Apelt_Pwning_Adobe_Reader-Abusing_the_readers_embedded_XFA_engine_for_reliable_Exploitation.pdf
https://www.syscan360.org/slides/2016_SG_Sebastian_Apelt_Pwning_Adobe_Reader-Abusing_the_readers_embedded_XFA_engine_for_reliable_Exploitation.pdf
https://www.iso.org/standard/51502.html
http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/js_api_reference.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/js_api_reference.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.364.2157&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.364.2157&rep=rep1&type=pdf
http://help.adobe.com/en_US/livecycle/es/FormCalc.pdf
http://help.adobe.com/en_US/livecycle/es/FormCalc.pdf
http://www.zerodayinitiative.com/advisories/published/
http://www.zerodayinitiative.com/advisories/published/
https://bugs.chromium.org/p/chromium/issues/list?can=1&q=Type=%22Bug-Security%22
https://bugs.chromium.org/p/chromium/issues/list?can=1&q=Type=%22Bug-Security%22
https://helpx.adobe.com/security.html#acrobat
https://helpx.adobe.com/security.html#acrobat
https://pdfium.googlesource.com/pdfium/+/refs/heads/master/testing/libfuzzer/
https://pdfium.googlesource.com/pdfium/+/refs/heads/master/testing/libfuzzer/


[13]. OpenJPEG data, https://github.com/uclouvain/openjpeg-data 

[14]. Seclists, http://seclists.org/oss-sec/2016/q2/623 

[15]. LibTIFF Issues Lead To Code Execution, http://blog.talosintelligence.c

om/2016/10/LibTIFF-Code-Execution.html 

[16]. Using WinRT API to render PDF, http://dev.activebasic.com/egtra/201

5/12/24/853/ 

 

https://github.com/uclouvain/openjpeg-data
http://seclists.org/oss-sec/2016/q2/623
http://blog.talosintelligence.com/2016/10/LibTIFF-Code-Execution.html
http://blog.talosintelligence.com/2016/10/LibTIFF-Code-Execution.html
http://dev.activebasic.com/egtra/2015/12/24/853/
http://dev.activebasic.com/egtra/2015/12/24/853/

	Abstract
	1. Introduction
	2. Attack Surface
	2.1 The Standard Documents
	2.2 Security Advisories
	2.3 Installation Files
	2.4 Open Source Projects

	3. Test cases
	3.1 Test cases of code coverage based fuzzers
	3.2 Test suites of open source projects

	4. Fuzzing Tricks
	4.1 Write PDF makers
	4.2 Fuzz third-party libraries
	4.3 Write wrappers

	5. Results
	6. References

