

Domo arigato, Mr. Roboto:
Security Robots a la Unit-Testing

Seth Law
seth@nvisium.com
Twitter: @sethlaw

Introduction

Who am I?

Who am I?

Seth Not Seth

Who am I?

•From Salt Lake City, UT
•Chief Security Officer at nVisium
•Focused on Application Security
•Previously presented at Black Hat on Mobile
Application Security (SiRATool) and Response
Analysis and Further Testing (RAFT)
•Soccer Hooligan

Security Unit-Testing

Why are we here?

I ALREADY RUN SECURITY TESTS

LEAVE ME ALONE

Why are we here?

•Security goals != Development goals
•Existing security tools don’t always fit into the
development pipeline
•Business goals are at odds with full-coverage
security testing
•Solve these problems with Test Driven
Development (TDD) tools.

Flaws
not

Exploits

Agenda

•Current Security Testing Tools
•Unit-Testing Frameworks
•Security Unit-Testing Requirements
•Security Unit-Testing Approach
•Security Payload Unit-Testing
Repository/Runner (SPUTR)

Current Security Testing Tools

Current Security Testing Tools

•Target specific needs in the SDLC
•Vulnerability identification and false positive
reduction
•Easy(ish) to use, hard to absorb
•Typically driven by compliance needs
•Divided into static and dynamic tools

Current Security Testing Tools

Analysis

Design

Implementation

Testing

Maintenance

Static Tools

Dynamic Tools

Dynamic Tools

• Interact with running
application to identify
vulnerabilities
•Usually implemented by
security engineers
•Happen later in the SDLC
after successful application
builds
•Glorified quality assurance
integration test

Static Tools

• Inspects and instruments application
source to identify vulnerabilities
• Implemented into SDLC by
developers or build engineers
• Introduced early in the SDLC during
development with developer IDE
integration
•Cross between functional and
integration test

Tool Strengths

•Speed of setup/configuration
•Meet compliance needs
• Identify vulnerabilities with known
exploits/payloads
•Started out as regular-expression engines
with vulnerability-specific payloads

Tool Weaknesses

•False negatives due to generic identification of
vulnerabilities through exploitation payloads
•Lack of human component means full classes of
vulnerabilities are ignored (business logic,
authorization, …)
•Edge cases are ignored because of timing needs.
•Cost

Unit-Testing Frameworks

Unit-Testing Frameworks

•Frameworks & languages have built-in
scaffolding for testing
• Include mock controllers, third party libraries,
and test runners
•Cover low-level unit testing to complete
integration testing.

Java Spring Unit-Testing

•Allows testing without full Spring or other
containers
•Framework provides mock objects for
environment, jndi, servlets, and portlets
•Also includes basic reflection test objects and
MVC to access Model and View objects.

Java Spring Integration-Testing

•Allows testing with full Spring environment,
data access via JDBC or ORM
•Provides context and transaction
management, dependency injection, and
support classes
•Means you can interact with any piece of the
application without using application server

ASP.NET MVC Testing

•Allows testing of an MVC application
•Built-in unit test framework directly calls
MVC controllers methods
•Not available in all versions of Visual Studio
($$$)
•Ability to mock different components using
built-in and 3rd party frameworks

ASP.NET MVC Testing

•Whoops!
•No access to HTML
•Limited access to full HTTP Request/Response

Django Testing

•Uses python standard unit-test library
•Hybrid of unit/integration test framework
•Auto-creates model database for tests
•Test client acts as dummy web browser with
low-level access to HTTP Request/Response

Testing Frameworks Summary

•Unit-test frameworks focus on low level
functionality (ASP.NET, Java Spring Unit
Tests, etc)
• Integration-test framework provide more of a
full-stack approach to testing components

Security Unit-Testing
Requirements

Security Unit Testing Requirements

Functional Application

•Application should run in a production-like
state, including:
•Mock and/or test data
•Full HTTP Request/Response
•Rendered HTML

Maintain Authentication State

•Unit-Test framework must perform
authentication and authorization functions
•Working client AND application
•Full vulnerability classes depend on this
functionality.
• Include login, logout, and registration
functions

Consistent Responses

•Application should maintain state during
the duration of a test
•Still part of a functional application
•Allow for multiple calls in one test

Java Spring Example

@RunWith(SpringJUnit4ClassRunner.class)
@SpringBootTest(classes =

{MvcConfig.class,MoneyxApplication.class},
webEnvironment =
SprintBootTest.WebEnvironment.RANDOM_PORT)

public class InjectionTest extends MoneyXTestTemplate {
@LocalServerPort
private int port;

ASP.NET MVC Example

private void StartIIS() {
var appPath = GetApplicationPath(_appName);
var pf = Environment.GetFolderPath(

Environment.SpecialFolder.ProgramFiles
);
_iis = new Process();
_iis.StartInfo.FileName = pf +

@”\IIS Express\iisexpress.exe”
_iis.StartInfo.Arguments = string.Format(“/path:\”{0}\” /port:{1}”,

appPath, 2020);
_iis.Start();

}

Python Django Example

class TestSecurity(TestCase):
“Security Tests”
fixtures = [‘users’,’userProfiles’,’groups’]

def setUp(self):
self.client = Client()

def test_caching(self):
vuln = False
req = self.client.login(username=‘test’,

password=‘pass’)
…

Security Unit-Testing Lessons
Learned

•Requires unique setup for each language
and framework
•Spend as much time meeting
requirements as writing tests
•Combination of dynamic and static
security testing

Security Unit-Testing
Approach

Security Unit-Testing Approach

•Building one security unit-test !=
impenetrable application
•Must test each endpoint
•AND each parameter
•AND each vulnerability
•AND possible vulnerability payload

Math is hard

•10 endpoints
•10 parameters on each endpoint
•10 vulnerabilities for each parameter
•5 payloads per vulnerability
•10x10x10x5 = 5000 tests

Security Unit-Testing Approach

Identify Endpoints,
Parameters, Flaws

Create Test for each
variation

Run the Tests

Identify

Create

Test

Security Payload Unit-Testing
Repository/Runner

SPUTR

•Building intentionally-vulnerable
applications
•Test known vulnerable endpoints and
parameters
•Security payloads are exploit focused,
redundant and produce false-positives
•Speed up security integration into SDLC

#

Current Security Payloads

•Developed to uncover exploitable flaws
for false positive reduction
•Use generic escape sequences and
payloads
•Focused on application output more than
input

XSS Payloads from fuzzdb

SPUTR Payloads

•Focus on characters and strings that
expose application errors, not exploitation
•Eliminate redundant testing of the same
escape sequences

“

XSS Payload from SPUTR

4j0kh"4j0kh

Payload Generation

Demo

SPUTR Test Generation

•Identify as many endpoints as possible
from the code of different frameworks
•Starting point for unit-test creation
•Map which parameters and tests apply to
the endpoints

Generation

Demo

SPUTR Testing

•Consistent way to test multiple
application built on different languages
and frameworks
•Callable from CodePipeline or Jenkins
•Decrease cost of building unit tests

Testing

Demo

SPUTRing the future

•Payloads
• Further payload options + refinement
•Additional vulnerabilities (IDOR/Redirects/etc)

•Testing
• Speed

•Generation
•Automated analysis
•More languages and frameworks
•Burp Suite Pro plugin

Summary

•Current security testing tools are great at finding
some vulnerabilities, but not all
•Creation of simple security bots for unit testing
specific functionality reveal additional flaws.
•Use SPUTR (https://github.com/sethlaw/sputr) in
a DevOps pipeline to speed up security bot
creation.

Questions

• Seth Law
• seth@nvisium.com
• Twitter: @sethlaw

