blackhat ASIA 2017

MARCH28-31,2017

MARINA BAY SANDS / SINGAPORE

"MAN-IN-THE-SCADA":

Anatomy of Data Integrity Attacks in Industrial Control Systems

Marina Krotofil & Chris Sistrunk

Specialization: Process Control

Mostly on offence side

- 7 years in process control security research
- On and Off 13 years in security

Mostly on defense
 >10 years experience in power engineering
 8 years in security

Setting Context

Industrial Control Systems and Cyber-Physical Hacking

Industrial Control Systems

Challenging assumptions Man-in-the-SCADA

blackhat ASIA 2017 Most frequently assumed scenario

- □ Insecurity by design of majority of industrial protocols
- Mechanics of MITM attack is well understood and tons of tools are readily available (almost Plug&Play)
- □ We simply DON'T KNOW BETTER (yet)

blackhat Let's lo

Let's look into the packet (2)

	1 0.000000	192.168.101.14	192.168.101 EGD	75 Data Msg: ExchangeID=0x00000002, RequestID=00141
Г	2 0.000000	192.168.101.14	192.168.101 EGD	94 Data Msg: ExchangeID=0x00000001, RequestID=00141
ł	3 0.999977	192.168.101.14	192.168.101 EGD	75 Data Msg: ExchangeID=0x00000002, RequestID=00142
	4 0.999977	192.168.101.14	192.168.101 EGD	94 Data Msg: ExchangeID=0x00000001, RequestID=00142
Τ	5 1.999952	192.168.101.14	192.168.101 EGD	94 Data Msg: ExchangeID=0x00000001, RequestID=00143
1	6 1.999952	192.168.101.14	192.168.101 EGD	75 Data Msg: ExchangeID=0x00000002, RequestID=00143
	7 2 999917	192 168 101 14	192 168 101 EGD	94 Data Msg. <u>FychangeTD</u> =0y00000001 RequestID=00144

Let's look into the packet (3)

black hat ASIA 2017

Let's look into the packet (4)

Let's look into the packet (5)

15:15:13.170324 172.21.21.1	172.21.21.77	Modbus/TC	P 66	5487	Query:	Trans:	6685;	Unit:	1,	Func:	3: Re	ad Holding	Registers	
15:15:13.171773 172.21.21.77	172.21.21.1	Modbus/TC	P 239		Response:	Trans:	6685;	Unit:	1,	Func:	3: Re	ad Holding	Registers	
15:15:13.185097 172.21.21.1	172.21.21.77	Modbus/TC	P 66	6000	Query:	Trans:	6686;	Unit:	1,	Func:	3: Re	ad Holding	Registers	
15:15:13.186750 172.21.21.77	172.21.21.1	Modbus/TC	P 179		Response:	Trans:	6686;	Unit:	1,	Func:	3: Re	d Holding	Registers	
Register 5511 (Modicon Register 5513 (Modicon Register 5515 (Modicon Register 5517 (Modicon Register 5519 (Modicon Register 5521 (Modicon	Float): 0.000000 Float): 0.000000 Float): 71185.000000 Float): 71185.000000 Float): 8.525818 Float): 8.694681													_
Register 5523 (Modicon Register 5525 (Modicon Register 5527 (Modicon	Float): 1234.900635 Float): 3.696970 Float): 0.000000													
0000 b8 ca 3a d5 a6 ff 00 5 0010 00 e1 9f fe 00 00 ff 0 0020 15 01 01 f6 f2 35 00 b 0030 1c ac 11 88 00 00 1a 1 0040 ad 00 00 00 00 07 00 2 0050 d1 01 59 00 00 06 00 2 0060 af 01 59 00 00 09 00 0	50 c2 fe 50 42 08 00 42 08 00 42 08 00 42 08 00 43 43 43 44 43 51 15 44 43 51 15 44 43 51 16 40 <td< td=""><td>15 00 16 15 18 18 18 00 11 10 81 10 61 10 58 10 58 10 58 10 58 10 00 10 00 10 00 10 00 </td><td>:PPBE. M 5 {*P. YaYa YaYa YaYX (GG.i jA.\D&@1. ,C'.</td><td></td><td></td><td></td><td>\sim</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	15 00 16 15 18 18 18 00 11 10 81 10 61 10 58 10 58 10 58 10 58 10 00 10 00 10 00 10 00	:PPBE. M 5 {*P. YaYa YaYa YaYX (GG.i jA.\D&@1. ,C'.				\sim							

Let's look into the packet (6)

						-
434 1.070135	10.85.64.50	10.21.81.252	DNP 3.0	162 from 16 to 1024, len=255, Unconfirmed User Data, TL fragment 23 [TCP segment of a reassembled PDU]	1024, len=255, Unconfirmed User Data, TL fragment 23 [TCP segm	<u>1</u>
553 1.131345	10.85.64.50	10.21.81.252	DNP 3.0	112 from 16 to 1024, Response	1024, Response	
740 1.447104	10.21.81.252	10.85.64.50	DNP 3.0	78 from 1024 to 16, Read, Internal Indications	o 16, Read, Internal Indications	
749 1.510921	10.85.64.50	10.21.81.252	DNP 3.0	75 from 16 to 1024, Response	1024, Response	
777 1.844267	10.21.81.252	10.85.64.50	DNP 3.0	78 from 1024 to 16, Read, Internal Indications	o 16, Read, Internal Indications	
785 1.908871	10.85.64.50	10.21.81.252	DNP 3.0	75 from 16 to 1024, Response	1024, Response	
1199 2.219736	10.21.81.252	10.85.64.50	DNP 3.0	78 from 1024 to 16, Read, Internal Indications	o 16, Read, Internal Indications	
1211 2.283874	10.85.64.50	10.21.81.252	DNP 3.0	75 from 16 to 1024, Response	1024, Response	
1269 2.594731	10.21.81.252	10.85.64.50	DNP 3.0	76 from 1024 to 16, Read, Class 0	o 16, Read, Class Ø	
1560 2.961068	10.85.64.50	10.21.81.252	DNP 3.0	162 from 16 to 1024, len=255, Unconfirmed User Data, TL fragment 28 [TCP segment of a reassembled PDU]	1024, len=255, Unconfirmed User Data, TL fragment 28 [TCP segn	J]
1571 3 022307	10 85 64 50	10 21 81 252	DNP 3 0	112 from 16 to 1024 Response	1024 Response	

> Object(s): Binary Input With Status (Obj:01, Var:02) (0x0102), 40 points

▲ Object(s): 16-Bit Analog Input (Obj:30, Var:02) (0x1e02), 70 points

blackhat

0030

0040

0050

0060

0090

ASIA 2017

> Qualifier Field, Prefix: None, Range: 8-bit Start and Stop Indices

Point Number 0 (Quality: Online), Value: 1678
[Point Index: 0]
> Quality: Online
Value (16 bit): 1678
Point Number 1 (Quality: Online), Value: 1358
Point Number 2 (Quality: Online), Value: 1760
Point Number 3 (Quality: Online), Value: 1677
Point Number 4 (Quality: Online), Value: 1629
Point Number 5 (Quality: Online), Value: 1803
Point Number 6 (Quality: Online), Value: 74
Point Number 7 (Quality: Online), Value: 103
Point Number 8 (Quality: Online), Value: 25
81 1e 02 00 00 45 01 8e 06 01 4e 05 01 e0 06 01EN
8d 06 01 5d 06 01 0b 07 01 4a 00 01 67 00 01 19]Jg
00 01 0f 00 01 f1 00 01 74 00 01 da 00 01 05 01 t
01 f3 00 01 fb 00 01 b7 00 01 b6 00 01 b6 00 01
b7 00 01 b9 00 01 b6 00 01 01 80 01 01 80 01 01

01 0f 0e 01 11 0e 01 0f 0e 01 0f 0e 21 5b 12 21![.!

80 01 01 80 01 01 80 01 01 80 01 0e 0e 01 0f 0e

.....

Let's look into the packet (7)

	42 22.216012	192.168.0.100	192.168.0.2	Modbus/TCP	66 Query: Trans: 2; Unit: 1, Func: 6: Write Single Register
	43 22.223304	192.168.0.2	192.168.0.100	ТСР	60 502 → 15425 [ACK] Seq=90 Ack=85 Win=11680 Len=0
	44 22.230517	192.168.0.2	192.168.0.100	Modbus/TCP	66 Response: Trans: 2; Unit: 1, Func: 6: Write Single Register
	45 22.431041	192.168.0.100	192.168.0.2	ТСР	54 15425 → 502 [ACK] Seq=85 Ack=102 Win=65419 Len=0
ł	46 28.010511	192.168.0.100	192.168.0.2	Modbus/TCP	66 Query: Trans: 2; Unit: 1, Func: 3: Read Holding Registers
	47 28.013147	192.168.0.2	192.168.0.100	ТСР	60 502 → 15425 [ACK] Seq=102 Ack=97 Win=11668 Len=0
	48 28.025390	192.168.0.2	192.168.0.100	Modbus/TCP	83 Response: Trans: 2; Unit: 1, Func: 3: Read Holding Registers
L	49 28.230019	192.168.0.100	192.168.0.2	ТСР	54 15425 → 502 [ACK] Seq=97 Ack=131 Win=65390 Len=0

> Frame 48: 83 bytes on wire (664 bits), 83 bytes captured (664 bits)

Ethernet II, Src: PhoenixC_8c:36:75 (00:a0:45:8c:36:75), Dst: WistronI_a4:f5:3a (3c:97:0e:a4:f5:3a)

Internet Protocol Version 4, Src: 192.168.0.2, Dst: 192.168.0.100

> Transmission Control Protocol, Src Port: 502, Dst Port: 15425, Seq: 102, Ack: 97, Len: 29

Modbus/TCP

Modbus

blackhat

ASIA 2017

.000 0011 = Function Code: Read Holding Registers (3)

Request Frame: 461 Byte Count: 20 Register 0 (UINT16): 104 Register 1 (UINT16): 97 Register 2 (UINT16): 97 Register 3 (UINT16): 107 Register 4 (UINT16): 107 Register 5 (UINT16): 101 Register 6 (UINT16): 100 Register 7 (UINT16): 0 Register 8 (UINT16): 0 Register 9 (UINT16): 0	
0000 3c 97 0e a4 f5 3a 00 a0 45 8c 36 75 08 00 45 00 0010 00 45 00 11 00 00 40 06 f8 eb c0 a8 00 02 c0 a8 0020 00 64 01 f6 3c 41 00 44 7e da e2 88 bc c9 50 18 0030 2d a0 2e 92 00 00 00 02 00 00 00 17 01 03 14 00 0040 68 00 61 00 63 00 6b 00 65 00 64 00 00 00 00	<:. E.6uE. .E@ .d <a.d ~p.<br=""> h.a.c.k. e.d</a.d>

black hat ASIA 2017 Let's look into the packet (8)

No,	Time Source	Destina	tion Protocol	ol Length Info
+	7 28.475 192.168	.224.1 192.1	58.224.90 DNP 3.0	3.0 334 from 36541 to 65432, len=255, Unconfirmed User Data, TL fragment 1
+	8 28.574 192.168	.224.1 192.1	58.224.90 DNP 3.0	3.0 122 from 36541 to 65432, Response
	9 37.322 192.168	.224.90 192.1	58.224.1 DNP 3.0	3.0 69 from 65432 to 65532, Read, Class 0123
	Point Numb	er 20, Value: 1		
	Point Numb	er 21. Value: 1		
	Point Numb	er 22. Value: 0		
	4 Object(s): 16	-Bit Analog Input Without	t Elag (Obi:30.). Vur:04) (0x1e04), 6 points
	Dualifier	Field Prefix: None Bar	ge: 8-hit Start	t ad Ston
	ENumber of	Ttems: 61	Bei o bie beare	
	> Point Numb	an A Value: A		
	> Point Numb	en 1 Value: 56		
	Point Numb	en 2 Value, 17		
	Point Numb	er 2, value: 17		
	P Point Numb	er 5, Value: 0		
01	a0 14 81 d0 23 4a 48	3a 01 14 01 e9 46 4a 4	3 3a 01#JH:	JH:FJH:.
01	b0 14 81 bd 4e 4a 48	3a 01 14 01 9a 56 4a 4	3 a 01NJH:	JH:VJH:.
01	CO 14 81 6d 62 4a 48	3a 01 14 01 35 07 4b 4	3 3a 01mbJH:	JH:5.KH:.
01	d0 14 81 17 0b 4b 48	3a 01 14 01 55 36 4b 4	3 3a 01KH:	KH:U6KH:.
01	e0 14 81 30 3a 4b 48	3a 01 14 01 a8 b9 4e 4	3 3a 010:KH:	KH:NH:.
01	10 14 81 87 bd 4e 48	3a 01 01 81 d9 23 50 4	3 3a 01NH:	NH:#PH:.
02	10 10 01 00 T4 /0 48		о 45 56рн: Хаа аа	o
02	20 00 03 02 00 03 00		01	

Who can guess it best?

C o Donuts? (Ok, it was a joke)

- o Can be
 - Direct measurement
 - Result of computation

Expression	Result =	NaN		
(03FC2001	.PIDA.PV	+ 03FC2014.PIDA.PV)*	03VAPORS.AUXCALCA.C[3]	A
	PV	PV	aux calc	
T				<u> </u>

Khat

ASIA 21

- Bit counts/%/EU EU -> Engineering Units
- Celsius/Fahrenheit
- Centimeters/meters/miles/light years
- o Pa/kPa/mPa/Psia/Psig/Atm/Bar
- Kgh/m³h/nm³h/scmh/kscmh
- Keep guessing....

New Information to Build New Assumptions

Configuration of a Single point

blackhat ASIA 2017 Purdue reference architecture

black hat ASIA 2017 Raw measurement

- Raw sensory data rarely can be used directly. The electrical output of a sensing element is usually small in value and has non-idealities such as offset, sensitivity errors, nonlinearities, noise, etc.
- Raw transducer output is subjected to signal conditioning such as amplification, filtering, range matching, etc.

12 bit ADC resolution (defines the quality of data translation)

Point configuration

12 bit ADC resolution (defines the quality of data translation)

Black hat ASIA 2017 Scaling of data into useful units

Raw counts are scaled into useful units, which could be different to different data users

Raw data

Engineering Units

Conversion of raw data into EU

Current	EU values
3 mA	-6,25%
4mA	0%
12mA	50%
20mA	100%
21mA	106,25%

Data scaling is case-specific

black hat ASIA 2017

Getting point config right

I am working at a pump station

trying to get it going, I am a civil engineer not electrical so here's my question - The PLC guy is taking all the analog signals, take for example a pressure transmitter (0 to 150 psi range) and in his program uses some 0 to 4095 range to display the signal where as the telemetry guy uses 819 to 4095 to figure his signal so when the PLC get zero pressure he gets 0 but when the RTU gets zero pressure he gets 819 in some field in his program. Anyway you can see where this could lead to a problem if the signal goes to the RTU first and then the PLC or vice versa. SCADA reads everything from the RTU whereas the HMI at the site take everything from the PLC and things are not matching up. Someone gotta give but who's right? Where did they come up with 819 to 4095? That's my main question. Any help is appreciated. Thanks.

0-150 psi range -> **4-20 mA** 12 bit ADC (0-4095)

0-4095 819-4095

- One engineer uses 819 counts offset to detect under-range, another does not
- Leads to inconsistencies in data readings across data path

Learning More from Use Cases Use Case1: Power Substation

Measuring power line

Chris Sistrunk at Power Substation

ASIA 2017 Measuring power line

Properly select <u>PT and CT ratio</u> to allow <u>some % of overload</u> on the circuit, so the measurements will not top out at 100% when the actual values are higher.

Measuring power line

Power substation equipment

Typically <u>multivendor</u>

Non-homogeneous configuration requirements

- Decentralized configuration
- □ Requires careful integration
- Often (still) old equipment and networks with limited resources and bandwidth

 $y_{SCADA} = m^* x_{LINE} + b$

x_{LINE} – initial (measured) value
 m, b – scaling factor and offset
 for each time the data moves
 from one device to another

Transducers may be: **0 – 1mA** or **4 – 20mA** (which require an offset **b**)

MW Engineering Limit = (PT ratio) * (CT ratio) * (Transducer Multiplier) * (Line Connection Type) = (1200/5)(1000)(1500)(1)/1000000 = 300MW

□ Transducer Output Range = 0 to +/-1mA \rightarrow 0 – +/-300MW/mA scale If transducer output = <u>0.25mA</u>, then 0.25*300 = <u>90 MW</u>

RTU Analog input card (16-bit Analog to Digital Converter) 15 bits plus +/- sign bit
 -32768 to +32767 counts = -1mA to 1mA = 300MW/mA
 +90 MW = .25*32767 = +8192 counts

□ RTU Database = same size \rightarrow 90MW is stored as <u>+8192 bits</u> (+25% of db)

SCADA Protocol has 12-bit bipolar analogs (-2048 to 2047 counts)
SCADA protocol value MW = .25*2047 = 512 counts

+512 bipolar counts from RTU to Front End Processor on a 12-bit protocol (0 – 4095)
 1 count = 300MW/2047 = 0.073242 MW per count unipolar
 (remember MW is a bipolar value)

The FEP has to shift the bipolar value to a unipolar value to store it in the database!

- FEP database value = 512 incoming counts + <u>offset of 2048</u> = <u>2560 counts</u>
 <u>FEP database</u> = 16 bits = 0 32767 counts
 2560 counts / 65535 counts = 0.039063 = <u>3.906309%</u>
- SCADA database = 32 bits = 0 4294967295 counts
 3.906309% * 4294967295 = <u>167774307 counts</u>

AND SO ON....

Interpreting power data

D a t a F I o w

Reverse engineering process data

Exploitation: traditional IT hacking tools

Post-Exploitation: engineering attack tools

Obtaining point configuration

□ From the individual devices (e.g. RTU, FEP, DB, etc.)

- May or may not be easy/rational thing to do

From servers

From individual config files on workstations

27th Chaos Communication Congress *We come in peace*

Building Custom Disassemblers

Instruction Set Reverse Engineering

http://data.proidea.org.pl/confidence/ 9edycja/materialy/prezentacje/FX.pdf

With engineering applications

irt Page	Project: SOUTH_RTUS 🛞										
in Page											
	Application List										
	🛛 🎯 Open Application(s) 🚺 Add Applicatio	n 🔼 Change Appli	cation 🗖 R	emove Applica	ation(s)	🖉 Enable A	pplication(s	s) 🔕 Disal	ole Applica	tion(s)	
	🗿 Application Properties 🛛 🖄 Export App	lication 📲 Import	Application	🥜 Verify & Fix	Applicatio	on Show D	isabled App	olications	📄 Repo	orts	
	Please use the Ctrl and Shift keys to select multiple a	applications									
	Applications on the D20MX	Enabled	Applicatio	on Version	Date	e Modified		Modifi	ied		
	Server Applications										
20MX	• (********* DNP V3.00 DPA	System Point Data	oase Properti	es					-		×
	Automation Applications	<u>Client/Automatic</u>	on Apps Ac	Ivanced Cont	rol <u>L</u> ockout	Sub Group	•				
	Calculator DTA	DCA App	l Name	DCA Instance	DI Points	DO Points	CT Points	AI Points	AO Points	DV Points	
	Communication Watchdog	DNP V3.0	0 DCA	0	308	153	0	124	0	12	
	IP Redundancy Monitor	DNP V3.0	0 DCA	1	292	143	0	111	0	11	Ξ
		DNP V3.0		2	292	143	0	111	0	11	-
	Supporting Applications	Communicatio	n Watchdog	0	50	145	0	0	0	0	-
	Internet Protocol Stack	Calculate	or DTA	0	0	0	0	0	0	0	+
	System Point Database	IP Redundar	cy Monitor	0	6	0	0	0	0	0	-
					1240	582	0	457	0	45	-
	Data Link Applications	•								•	
						ا	Points	Des	criptors	1 Move	e
							ОК	X	Cancel	Help	
										Car	

With engineering applications

Start Page Project: SOUTH_RTUS 🙁	Start Page Project: SOUTH RTUS SOUTH RTUS/ACME230KV/DNP V3.00 DCA
Main Page	
	Icons Tables
Application List	DCA Configuration Device Configuration Device Point Map Device Poll
FAC_DI 🛛 🧭 Open Application(s) 🚹 Add Application 🔼 Change Application 🔚 Remove Application(s) 📀 Er	ኤ 🖻 🖺 🖬 🗙 🍱 🗳 💥 🖻 🔚 🔁
D20MX Solution Descriptors	Point DCA Object Tupe Number Of Device Points
Application Properties Description Info	1 U Analog Input 16 3
Please use the Ctrl and Shift keys	2 H Binary Input 3
Applications on the D20 Digital Inputs Digital Outputs Analog Inputs Devices	3 Binary Output 2
🖌 📄 💼 Server Applications 🐰 🖻 🖆 🍱	4 Papalog Input 16 5
ACME: Point Description	5 Biparu Ipput 4
DZUMX DNP V3.00 DPA 1 Line 1 - MW	6 II Binany Autout
Automation Applicatio	
Calculator DTA	
5 Line 1 - IB	8 🖳 Binary Input /
6 Line 1 - IC	9 🖳 Binary Output 3
IP Redundancy Mo 7 Line 1 - Fault Dist	10 🖳 Analog Input 16 7
Supporting Application 9 Apalog 9 - SPARE	11 🛛 Binary Input 5
10 Analog 10 - SPARE	12 🛛 Binary Output 3
11 Analog 11 - SPARE	13 🛛 Analog Input 16 3
System Point Data	14 🛛 Binary Input 3
Wesmaint II+	15 🖳 Binary Output 2
Data Link Applications	16 🛛 Analog Input 16 10
Rridgeman OK Cancel	17 🖳 Binary Input 6
	18 🖳 Binary Output 3
	19 🛛 Analog Input 16 0
	20 🖳 Binary Input 2
	21 🖳 Binary Output 0
	22 🖳 Analog Input 16 8
	23 🖳 Binary Input 0
	24 Binary Output 0
	25 H Analog Input 16 0
	26 Binary Input 64
	27 Biparu Output 0

Excel sheets of helpful engineers

6 7 8 9 10 11 12 13	A Enter Engin 360.00 150.00 1200.00 Analog Meter Enter	B MW KV AMPS er Readings ((C 0-1mA range) Enter	D Note: PT and CT ratio Example: 150kV will r The next tab (Substat	E os are chosen normally be us ion Transduce Enter	F with the pro sed on a 115 er Calc) has AMPS	G per amoun 5kV line (~3 many pop	H I of engineering ove 1% overrange) ar PT and CT ratios Simplifie	J rrange s for conve	K 2.5 3	L 1500 1500 1200:5 CT	M N	3-element transdu 90.00 MW 114.00 KV
14	0.25	90.00	0.76	114.00	0.39	468.00		One-line				× PT	400.00 Amps
16	0.20	30.00	0.70	114.00	0.55	400.00		One-line		BKRA		1000:1	
17	Digital SCA	DA Values (in	the Substation	RTU to the SCADA Hos	st)					Entry		Phase-	to-Phase
18	Enter	ADC	RTU Database	RTU Protocol Bipolar	Host Raw	Host En	gr Limit	115kV Bu	IS				
19	MW	14-bit counts	16-bit counts	12-bit counts	12-bit counts	Eng Hi	360						
20	90.00	4096	8192	512	2560	Eng Lo	-360						INC NELIOF
21									6	XEMR 1			
22	Enter	ADC	RTU Database	RTU Protocol Unipola	Host Raw	Host En	gr Limit 👘						ENCINEER
23	kV	14-bit counts	16-bit counts	12-bit counts	12-bit counts	Eng Hi	150			/			
24	114.00	12451	24903	3112	3604	Eng Lo	0	34.5kV B					
25	Enter	400	DTUDetehan	DTU Deste sel Dis ster	Linet David	Linet Co.	and insid				1		
20	Enter	ADC	16 bit counto	12 bit counts	12 bit counto	Host En				1			
21	AMES 00	6200	12770	709	2946	Englia	1200			V7Y			
20	400.00	0303	12115	730	2040	Ling Lo	-1200			V			
30		The ADC	The RTU DB	This SCADA Protocol									
31		has 14-bit	has 16-bit	has 12-bit analogs									
32		resolution	analog register	Ex: Telegyr 8979									
33		with a sign bi	it	Yes I wanted to show	how difficult s	caling could	d be with						
34				This happens in the r	eal worldAF	HHwhy n	iot ju						
35													
36	Chris Sistru	nk					~						
	•	Example	Substation	Transducer Calc	Subnet Solu	utions-Host	Scaling	0			1		

Learning More from Use Cases

Use Case2: Distributed Control System (DCS)

Typical architecture

Business & Production

bláčk hať

ASIA 2017

Corporate network (L4)

Production Analysis

- Homogeneous configuration requirements
- Centralized configuration from the DCS server

Production Explorer

Operations Management

Planning & Scheduling

Supervisory control

Regulatory control

Typical data scaling

ACQ:DAT	AACQ Block,	daca - Paramete	rs [Project]						
	Block Prefe	rences	1	Template Defining	Í	Insertion			
Nain	Alarms	Identification	Dependencies	Block Pins	Configuration Parameters	Monitoring Parameters			
ame :	daca		Executio	n Order in CM: 20					
escription :	# Feed F	Flow Control							
ngr Units : i	# BPH								
rocess Va	riable								
PV Sourc	e Option : 🧿	ONLYAUTO	ALL PVEU R	ange Hi : 500	0				
DV C			PVEU R	ange Lo : 0					
PV Sourc	e: AUTO	<u>~</u>	PV Exter	ded Hi Limit : 1510	0				
PV Forma	t D1	-	· · Euci	1910					
1 V I Cime			PV Exter	nded Lo Limit : -2.9					
PV Chara	cter: NONE	•	Low Sign	nal Cut Off: Nat					
lamping/F	iltering								
lamoina (ontion : C								
and and a	provide a second		LINGEL						
1 1 1 1			E COLLARS						

Block Preferences	Block Preference	es	1	Templat	e Defining		Ĭ	Insertion
lain Alarms Identif	Main Alarms Id	dentification	Dependencies	Bloc	k Pins	Configuration	Parameters	Monitoring Paramete
ame : daca escription : # Feed Flow Contro ngr Units : # BPH	Alarm Limits PV High High : PV High : PV Low :	Trip Point 4150 3350	Priority URGENT V HIGH V	Severity	On-Delay Time (sec) 0	Off-Delay Time (sec) 0	DeadBand Value	DeadBand Units PERCENT O EU PERCENT O EU C PERCENT O EU
Process Variable PV Source Option :	PV Low Low : Positive Rate of Change : Negative Rate of Change :	1000 NaN NaN	HIGH ▼ URGENT ▼ NONE ▼				1	PERCENT O EU
PV Source : AUTO PV Format : D1	Bad PV : High Significant Change : Low Significant Change :	NaN NaN	LOW	0	0	0		
PV Character: NONE	© ENABLE minutes							

DATAACQ:DATAACQ Block, daca - Para DATAACQ:DATAACQ Bloc R	EGCTL:PID Block, PIDA - Parameters [Project]
Block Preferences Block Preferences Alarms Identificat	Configuration Parameters Monitoring Parameters Block Preferences Template Defining Insertion
Name : daca Description : # Feed Flow Control Engr Units : # BPH PV High High : PV High 1: PV Low : PV Low : PV Source Option : • ONLYAUTO PV Source : Auto PV Format : D1	SP: Input Range High Limit: 5000 Low Limit: 0
PV Character: NONE	Time: 0 Max. Ramp Deviation: 50 SP Tolerance: 0 Image: Constraint of the set of

DATAACQ:DATAACQ Block, daca - Para I		REGCTL:PID Block, PI	EGCTL:PID Block, PIDA - Param	eters [Project]					<u>?</u> ×
Block Preferences Main Alams Identificat	Block Pn Main Alarms	Configuration Pa Main Alc	Configuration Parameters Main Algorithm	Monitoring Para SetPoint Output	umeters ut Alarms	Block Preferences	Template Identification [Defining Dependencies	Insertion Block Pins
Name : daca Description : # Feed Flow Control Engr Units : # BPH Process Variable PV Source Option : • ONLYAUTC PV Source : AUTO PV Format : D1	PV High High : PV High : PV Low : PV Low Low : Positive Rate of Chai Negative Rate of Chai Bad PV : High Significant Char Low Significant Char	SP: Input Range - High Limit: Low Limit: Timeout Mode: Time:	Output Limits High Limit (%): Low Limit (%): Extended High Limit (%): Extended Low Limit (%): Rate of Change Limit (%): Minimum Change (%):	105 -5 106.9 -6.9 NaN 0	Control Variable CVEU Range Hi: CVEU Range Low Output Bias: Output Bias Rate:	5000			
Clamping/Filtering Clamping Option : C DISABLE Lag Time : 0	ENABLE minutes	SP Tolerance	Safe OP (%): OP Tolerance Limit (%): Output Indication	NaN 0 Direct	•				

Retrieving point configuration

Directly from the controller

DCS controllers are not easily obtainable to the attacker for analysis

Get access to engineering station and grab the project folder of interest

- Manual search, inconvenient

Query config from DCS Config DB

- Hundreds and hundreds of tables
- Some DB entries may not have descriptions -> need to find the "manual"

P.S. Honeywell's manual on controller parameters is 2478 pages long. Happy reading!

Retrieving point configuration

black hat

ASIA 2017

	DATAACQ:DATAACQ Block, SQL - Parameters [Project]	<u>? ×</u>
er Add-Ins Window Help Metadology (C300_BM1:SQL_TEST [Project] C300_BM1:SQL_TEST [Project] C300_BM1:SQL [PI] C300_BM1:SQL [PI]	Block Preferences Template Defining Main Alams Identification Dependencies Block Pins Configure Name : SQL Execution Order in CM: 10 Description : # SQL Engr Units : # %	Insertion ation Parameters Monitoring Parameters
PVSRCOPT ONLYAUTO PIFILITTIME 0 PVEUHI 100	Process Variable PV Source Option : ONLYAUTO C ALL PV Source : AUTO Y PV Format : D1 Y PV Character: NONE Y PV Character: NONE Y Clamping/Filtering Clamping Option : Olisable Image Composition : Olisable Process Variable Process Variable PV Character: NONE	
	Show Parameter Names	OK Cancel Help

File Edit View Query Project Debug	g Tools Window He	lp											
🗄 🛅 🝷 🖮 🍷 📂 🛃 🗿 🗎 🔔 New Query	y 🗅 🔁 🔁 🌇 🕷	6 🗈 遇 🤊 🔹	· (° - 📮 ·	· 🖳 🛛 🍇 🛛		-				- 🖄		-	•
🐺 🗽 ps_erdb 🗸	🕴 🥊 Execute 🕨 Deb	bug 🔲 🧹 🚏	e 🗉 🗄	' 🖷 🍋 <mark>(</mark>	🗊 🖏 🗏 🖻 😫	*	E 🖓 📮	;					
Object Explorer)LOuerv1.sal											
Connect 🕶 📑 📑 📰 🍸 🛃			from STRAT	EGY where	STRATEGY.St	rategyN	lame 'SQ	DL.					
÷ =		select * f	From STRAT	EGY_PARAM	VALUE where	STRATE	GY_PARA	M_VALI	UE.Strat	tegyID=20	0012875;		
		select * 1	From SIRAI	EGY_PARAM	_VALUE where	STRATE	GY_PARA	M_VALU	UE.Parar	m1D=1473	L;		
dbo.STRATEGY													
± =													
• •													
 													
Đ													
• •	10	0.01											
	10	0% ▼ <u>•</u>	. 1										
± 🔤			Aessages		(a.)		100	DOC 1	1 100	14.0.1			_
		StrategyID	TemplateID	ProjectID 1	SOL	5097	-32750	1	LastUC	1		377-227 569-515 0	1
		20012073	57	1	JQL	5057	-32/30		U	1	ux.	377-227 303-313 0	
æ 🧕													
E .													
± 🛄													
1 m													
T B													

	File Edit View Query Project Debug Tools	Window	Help		_						1		
	🗄 🛅 👻 📨 🎽 🛃 🎯 🔛 New Query 🛛 🔓	🖞 📸 👸	👗 🗎) 🗳 🎝 י	· (°' - 4	- 🗟 🌌		Ŧ		Ŧ	2		
A	🗄 🕎 🗽 🛛 ps_erdb 🔹 🕴 E	xecute 🕨 🕨	Debug	= 🗸 📅	ē 🗄	r" 🖷 🎕 🤇	🗯 💭 📜 🖆	2 🛊 🛊	Aå ⇒				
	Object Explorer	- ₽ ×	SQLQu	ery 1.sql									•
	Connect 🕶 🛃 🗒 🖉 😰 😼		Ę	select * f	from STR/	ATEGY where	STRATEGY.S	trategyNa	<pre>ne='SQL';</pre>				÷
		_		select * 1 select * 1	from STR/ from STR/	ATEGY_PARAM	_VALUE when VALUE when	e STRATEGY e STRATEGY	Y_PARAM_VAL Y PARAM VAL	UE.Strateg UE.ParamID	1D=20012875	5	_
						1.20.2.1.001		- 51101120		och ar anizo	1001)		
	 												
	. ■												
	. ■												
	. ■												
	• • •												•
	± 🚞		100 %										•
			R	lesults 🚹 N	lessages						,		
	• 			StrategyID	ParamID	ParamIndex	IntegerValue	RealValue	StringValue	BLOBValue	TempDefAttr		
			1	20012875	14663	0	NULL	NULL	SQL	NULL	1		
			2	20012875	14664	0	NULL	NULL	76 NUUL	NULL	1		
	E 💆		4	20012875	14704	0	NULL	90	NULL	NULL	1		
	E		5	20012875	14727	0	3	NULL	NULL	NULL	1		
	E E		6	20012875	14731	0	NULL	10	NULL	NULL	1		
								1					
	+ 🚞												
		T	_										

-

	File Edit View Query Project Debug	Tools Window	Help										
	🛅 🕶 📨 📂 🛃 🥥 🛄 New Query	🚡 🐴 🐴 🌇	1 🔏 🗉	a 🖪 🔊 -	· (~ - 💻	- 🖪 🛛 🕰		-		-	100		- 🛛 🗧
\bigtriangleup		Evenute	Debug			P 🔒 26	en 200	♀ ≠≡ ≠≡	Ač.				
<u> </u>		, Execute V	Debug	- • •2					N+B ₹				
	Object Explorer	- ₽ ×	SQLQu	ery1.sql									•
	Connect 🕶 📑 📑 📰 🖉 🛃 🏑		F	select * f	rom STRA	TEGY where	STRATEGY.S	StrategyNam	e='SQL';				ŧ
			select * f	From STRA	TEGY_PARAM	_VALUE when	e STRATEGY	PARAM_VAL	UE.Strateg	vTD=20012875	;	_
	÷ =		- L	Select	TOIL STRA	TEUT_PARAM	_VALUE WHEN	" STRATEUT	_PARAN_VAL	OC' Hallamith	14731;		
	dbo.STRATEGY												
	+												
	.												
	+												
	± =												
	• 🚞												•
			100 %	•									,
	E			lesults 📑 🚹 N	lessages								
	+			StrategyID	ParamID	ParamIndex	IntegerValue	RealValue	StringValue	BLOBValue	TempDefAttr		_
	🕀 🚞		1	20002704	14731	0	NULL	1	NULL	NULL	1		
	• •		2	20003039	14731	0	NULL	6	NULL	NULL	1		
	•		3	20003046	14731	0	NULL	6	NULL	NULL	1		
	I I I I I I I I I I I I I I I I I I I		4	20003053	14/31	0	NULL	6	NULL	NULL	1		
	± 9		0	20003094	14/31	0	NULL	0 120	NULL	NULL	1		
			7	20003174	14731	0	NULL	20	NULL	NULL	1		
			/	20003273	14731	0	NULL	200	NULL	NULL	1		
	+ 🚞		9	20003332	14731	0	NULL	200	NULL	NULL	1		
	± 🚞		10	20003407	14731	0	NULL	200	NULL	NULL	1		
			11	20003414	14731	0	NULL	200	NULL	NULL	1		
			10	20002422	14701	n	NU U I	200	NULU I	NU U I	4		
	- 40												

Learning More from Use Cases

Miscellaneous : What's Different Plant by Plant

Diversity of architectures

Plant is rarely operated with a help of a single DCS

- Different plant units are operated by different DCSs, often of different vendors
- Some units are operated by the PLC-based architectures
- Old/legacy pieces of equipment
- Smaller plants or utilities are operated by non-homogeneousvendor equipment configured by multiple integrators
- Specialized equipment or applications

Diversity of data scaling & formatting

We interviewed more than 10 control engineers from multiple industries of different work experience globally

Data scaling and formatting depends on multiple factors

- Experience years of the control engineer
- Equipment/application/protocol constraints
- Requirements to data quality
- Data normalization
- Best practices (sometimes country/continent-dependent)
- Customer preferences

Configurations can be customized tailored to meet the scaling needs of a tremendous range of equipment and applications

Data normalization

PLANT 1

PLANT 2

Data normalization allows to compare data sets obtained in different scales or context

- Comparison of measurements from two distinct plants
- Communication of equipment working on different range and scale of measurements (e.g. different size/type of boilers in the plant)

- Monitoring performance of equipment
- Engineers perceive equipment performance faster/better when numbers are presented in % instead of actual EU

Anatomy of the Cyber-Physical Attack

From Script-Kiddie to Competent Attacker

Alarm propagation

black hat

State estimation in power sector

State Estimator (SE)

Kirchoff's Current Law

 Current flowing into a substation, group of substations, or a grid <u>must equal</u> current flowing out

P.S. Hire Ruben Santamarta to hack the SE http://shinnai.altervista.org/papers_videos/STATG.pdf

State estimation in power sector

□ State Estimator (SE)

Kirchoff's Current Law

 Current flowing into a substation, group of substations, or a grid <u>must equal</u> current flowing out

P.S. Hire Ruben Santamarta to hack the SE http://shinnai.altervista.org/papers_videos/STATG.pdf

https://credc.mste.illinois.edu/applet/pg

black hat ASIA 2017

Losing visibility into data

- The attacker pushes the process outside of normal operational envelope
 - She may lose visibility into process measurement
- □ Sensor calibration; signal clamping; truncation

Data scaling

 E.g. during process probing the attacker will make small changes to the process which may get "lost in translation"

50000<u>89</u> -> scaled into 0-4095 50000<u>89</u> -> floating point 5*10⁶

http://www.indiana.edu/~emusic/361/images/digitalaudio-clipping.png

black hat ASIA 2017

Losing visibility into data

- The attacker pushes the process outside of normal operational envelope
 - She may lose visibility into process measurement
- Sensor calibration; signal clamping; truncation
- Data scaling
 - E.g. during process probing the attacker will make small changes to the process which may get "lost in translation"

50000<u>89</u> -> scaled into 0-4095 50000<u>89</u> -> floating point 5*10⁶

UNCERTAIN

OUTCOME

AHEAD

Where to monitor

□ From the attacker standpoint single monitoring point is preferable

- By all means, the most hacker-friendly way to monitor process data in (RT)DB or Historian
- Historians typically rely on data compression for storage space optimization
 - "Unimportant" data is removed

Where to monitor

- The problem with data compression is that data LOST FOREVER
 - Missing data is interpolated
- Historical data might not be appropriate for a feedback loop, especially for high precision attack
 - Because of lost data fidelity

Suppression of alarms

Alarms can be generated

- On the controller
- In (some) DB
- By a dedicated application

May or may not be transmitted over wire

Depending how the plant is configured, alarms can be suppressed in a dedicated application

- Alarm shelving; changing priority of alarm; etc.

Cause alarm flood

- To be honest I have not idea (yet) how exactly to do it

OLE for Process Control (OPC)

lack hat

HAVEX: Using OPC, the malware component gathers any details about OPC server and connected field devices and sends them back to the C&C.

- Query controllers for config data
- R/W configurable parameters
- Query process data; monitor alarms
- Issue control commands (if configured)
- In short, OPC allows achieving almighty privileges with minimal hacking efforts

Key Takeaways

Turning this audience into ICS Superheros

Study the application under protection

Once the access is gained to ICS infrastructure, the attack still needs to be performed

 We need to do more applied research on understanding what the attacker needs to do and why

ICS/SCADA security

□ There are PERCEIVED and REAL threats in ICS world. We need to challenge the assumptions about perceived threats

- Successful MITM attack requires a great deal of knowledge about data point configuration
 - It involves extensive reconnaissance and specialized knowledge

Everything what is marked as conservatively than the prisoners in high-security correctional facilities

- Lock away config files, monitor access
- Harden DCS/SCADA servers
- Upgrade OPC to OPC UA (please)

Goal: New line of thinking

Understanding point configuration fundamentals reveals an additional attack surface

Instead of modifying data directly

Modify the configuration of the data point

 Change sensor calibration or its range. Good for alarm suppression and blinding operators & controllers

Take advantage of it

Taking advantage of point config

Never Trust Your Inputs: Causing 'Catastrophic Physical Consequences' from the Sensor (or how to fool ADC)

A. Bolshev & M. Krotofil. Black Hat Asia 2016

Marina Krotofil

marina.krotofil@honeywell.com

@marmusha

Honeywell

Chris Sistrunk

chris.sistrunk@mandiant.com @chrissistrunk

A FireEye® Company