Breaking Korea Transit Card with Side-Channel Attack -Unauthorized Recharging-

Black Hat Asia 2017

Tae Won Kim, Tae Hyun Kim, and Seokhie Hong

Outline

- 1. Attack Goal & Scenario
- 2. Target Device Details
 - Introduction of Target Device
 - Authentication Protocol Analysis
 - Cryptosystem
- 3. Key Recovery Attack
 - Attack environment & Measurement Set-Up
 - Attack Overview
 - Attack Results
- 4. Recharging Simulation
- 5. Conclusion

1. Attack Goal & Scenario

- 2. Target Device Details
 - Introduction of Target Device
 - Authentication Protocol Analysis
 - Cryptosystem
- 3. Key Recovery Attack
 - Attack environment & Measurement Set-Up
 - Attack Overview
 - Attack Results
- 4. Recharging Simulation
- 5. Conclusion

Recharging on Transit Card

Recharging on Transit Card

Our Ultimate Goal

Free recharging as much as attacker want

Attack Scenario toward Goal

Phase 1. Extract authentication key for recharging using side-channel analysis attack

Attack Scenario toward Goal

Phase 2. Design free recharging tool with restored key

Attack Scenario toward Goal

Phase 2. Design free recharging tool with restored key

1. Attack Goal & Scenario

- 2. Target Device Details
 - Introduction of Target Device
 - Authentication Protocol Analysis
 - Cryptosystem
- 3. Key Recovery Attack
 - Attack environment & Measurement Set-Up
 - Attack Overview
 - Attack Results
- 4. Recharging Simulation
- 5. Conclusion

- Transit card
 - Pre-paid transit card for the freeway in Korea
 - Over 800 million cards were issued and used
 - Cafeteria and convenience store in the freeway service area
 - Movie theater, Airport car park etc...
- Contact Smartcard
 - Equipped with cryptographic engine in hardware level
 - Countermeasure employed against side-channel attacks
 - Support ISO/IEC 7816 standard and KS X 6924 Korea standard

Crypto Algorithm Analysis

- Sign & verify
 - => performs crypto Algorithm
- 128-bit Block cipher & operation mode
 - Crypto function => Two Triple-DES
 - Cipher Block Chaining (CBC) mode
- Initial Vector
 - 0128
- Signature value
 - Most significant 32-bit of last ciphertext block
- Padding rule
 - 80 00 00 00 ...

Outline

- 1. Attack Goal & Scenario
- 2. Target Device Details
 - Introduction of Target Device
 - Authentication Protocol Analysis
 - Cryptosystem
- 3. Key Recovery Attack
 - Attack environment & Measurement Set-Up
 - Attack Overview
 - Attack Results
- 4. Recharging Simulation5. Conclusion

Attack Environment

- Attack under the secure transit card
 - APDU commands for recharging the card
- Hardware
 - Board
 - Card reader
 - Oscilloscope
 - Spectrum Analyze

Measurement setup command response Reader Communication with card PC iteration store signals Smartcard power control ΕM Oscilloscope control filtered signal Spectrum analyzer Oscilloscope - Frequency Signal analysis Acquisition Filtering

- Software
 - For the acquisitions(Customized)
 - Signal preprocessing(Customized)
 - Analysis(Customized)
 - Matlab

Phase 1 : Locate the positon of T-DES

- 1. I/O signal analysis
- 2. Visual Inspection
 - Find similar patterns
- 3. Plaintext CPA
 - Find location of relating plaintext
 - Can deduce location of target operation from plaintext location

Phase 2 : DPA Attack for key recovery

- 1. Pre-processing
 - Compression
 - Alignment
- 2. First Round attack in the DES
 - 48-bit Key recovery
 - 6-bitwise CPA
- 3. Correction of error
 - Prevent error propagation
 - Method based on BS-CPA
- 4. 2-15 Round attack
 - 56-bit full-key recovery
 - 32-bitwise CPA

1. I/O signal analysis 2. Visual Inspection

- Find similar patterns
- 3. Plaintext CPA
 - Find location of relating plaintext
 - Can deduce location of target • operation from plaintext location

Phase 2 : DPA Attack for key recovery

- 1. Pre-processing
 - Compression
 - Alignment
- 2. First Round attack in the DES
 - 48-bit Key recovery
 - 6-bitwise CPA
- 3. Correction of error
 - Prevent error propagation
 - Method based on BS-CPA
- 4. 2-15 Round attack
 - 56-bit full-key recovery

• 32-bitwise CPA

Phase 1 : Locate the positon of T-DES

- 1. I/O signal analysis
- 2. Visual Inspection
 - Find similar patterns
- 3. Plaintext CPA
 - Find location of relating plaintext
 - Can deduce location of target operation from plaintext location

Phase 3 : Verification of restored the key

- Compare the signature value through card response with the signature value generated by recovered key
- This is only way to confirm the validity

Phase 2 : DPA Attack for key recovery

- 1. Pre-processing
 - Compression
 - Alignment
- 2. First Round attack in the DES
 - 48-bit Key recovery
 - 6-bitwise CPA
- 3. Correction of error
 - Prevent error propagation
 - Method based on BS-CPA
- 4. 2-15 Round attack
 - 56-bit full-key recovery
 - 32-bitwise CPA

Phase 1 : Locate the positon of T-DES

- 1. I/O signal analysis
- 2. Visual Inspection
 - Find similar patterns
- 3. Plaintext CPA
 - Find location of relating plaintext
 - Can deduce location of target
 operation from plaintext location

If fail, return to the beginning

Repeat until the key is found

Tremendous trials and errors!!

Phase 3 : Ve - Co w - Th

Phase 3 : Verification of restored the key

- Compare the signature value through card response with the signature value generated by recovered key
- This is only way to confirm the validity

Some Problems for Key Recovery

- Hiding Countermeasure
 - Pre-processing for mitigation
 - Filtering, Alignment
 - Increases the number of traces
- Alignment
 - Align, whenever guess the location of target operation
 - There is no good reference pattern
 - By effect of hiding countermeasure
 - Need elaborated work
 - One or two point of misalignment leads to attack failure
- More requirement of time cost, memory
 - Compression of trace
 - Parallel processing

Visual Inspection

- Search for similar patterns
- Execution of three crypto function
 - =>6 T-DES

Plaintext CPA

- Perform after alignment
- Result of CPA

=> Indicate location relating to plaintext

Plaintext CPA

- Perform after alignment
- Result of CPA

=> Indicate location relating to plaintext

Plaintext CPA

• Two possible intervals for target operation

48-bit key recovery

• Correlation Coefficients for the first Round of DES

Full Key Recovery

- Correlation coefficients for the Hamming distances between rounds(2-15) of the T-DES
- Correct key guess => Observe 14 peaks

Verification of Restored Entire Key

3 10

13

14

17

18

4 100100000FAEC6AA04B3517627

12 100100000FAE560AFE78F9B45639010

0010000FAEB969E7525E0160D3

100100000FAE9BD9EC682BB5ED4801

16 100100000FAE369148FBB3B878F6010101999000002

Generated signatures by ourselves

Response values from the card including signatures

- 1. Attack Goal & Scenario
- 2. Target Device Details
 - Introduction of Target Device
 - Authentication Protocol Analysis
 - Cryptosystem
- 3. Key Recovery Attack
 - Attack environment & Measurement Set-Up
 - Attack Overview
 - Attack Results

4. Recharging Simulation

5. Conclusion

Insert amount of money you wish to recharge $\Rightarrow 10,000 (\texttt{W})$

- 1. Attack Goal & Scenario
- 2. Target Device Details
 - Introduction of Target Device
 - Authentication Protocol Analysis
 - Cryptosystem
- 3. Key Recovery Attack
 - Attack environment & Measurement Set-Up
 - Attack Overview
 - Attack Results
- 4. Recharging Simulation
- 5. Conclusion

Conclusion

- Demonstrated that side-channel analysis attack is serious threat in real-world
 - Hacking the Korea transit card in a black-box manner
 - Showing financial damage through unauthorized recharging balance
- Practical attack
 - Trials and errors
 - Approx. six months
 - Current extracting key in same device
 - Approx. 63 hours (trace collection : 58 hours + Attack : 5 hours)
- Further works
 - For black box attack, combination of reverse engineering and sidechannel attack
 - Go on attack for any commercial devices!

More details ? Could please see white paper & Questions ? ktw@sntworks.kr

Thank you 🙂

