Breaking Korea Transit Card with Side-Channel Attack -Unauthorized Recharging-

Black Hat Asia 2017

Tae Won Kim, Tae Hyun Kim, and Seokhie Hong
1. Attack Goal & Scenario
2. Target Device Details
 - Introduction of Target Device
 - Authentication Protocol Analysis
 - Cryptosystem
3. Key Recovery Attack
 - Attack environment & Measurement Set-Up
 - Attack Overview
 - Attack Results
4. Recharging Simulation
5. Conclusion
1. Attack Goal & Scenario

2. Target Device Details
 – Introduction of Target Device
 – Authentication Protocol Analysis
 – Cryptosystem

3. Key Recovery Attack
 – Attack environment & Measurement Set-Up
 – Attack Overview
 – Attack Results

4. Recharging Simulation

5. Conclusion
Recharging on Transit Card

USER

Vending & Reload Device

Payment
Recharging on Transit Card
Our Ultimate Goal

Free recharging as much as attacker want
Attack Scenario toward Goal

Phase 1. Extract authentication key for recharging using side-channel analysis attack
Attack Scenario toward Goal

Phase 1. Extract authentication key for recharging using side-channel analysis attack

Phase 2. Design free recharging tool with restored key
Phase 1. Extract authentication key for recharging using side-channel analysis attack

Phase 2. Design free recharging tool with restored key
1. Attack Goal & Scenario

2. Target Device Details
 - Introduction of Target Device
 - Authentication Protocol Analysis
 - Cryptosystem

3. Key Recovery Attack
 - Attack environment & Measurement Set-Up
 - Attack Overview
 - Attack Results

4. Recharging Simulation

5. Conclusion
Target device

• Transit card
 – Pre-paid transit card for the freeway in Korea
 – Over 800 million cards were issued and used
 – Cafeteria and convenience store in the freeway service area
 – Movie theater, Airport car park etc...

• Contact Smartcard
 – Equipped with cryptographic engine in hardware level
 – Countermeasure employed against side-channel attacks
 – Support ISO/IEC 7816 standard and KS X 6924 Korea standard
Authentication protocol for recharging

<table>
<thead>
<tr>
<th>Transit Card</th>
<th>Card reader</th>
<th>Secure Access Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Number – 1 gen</td>
<td>Request recharging</td>
<td></td>
</tr>
<tr>
<td>Session key – 1 gen (E(\text{Random Number-1, Card Key}))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signature – 1 gen (E(\text{Card information, Session key-1}))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Roles:
- **Transit Card**
- **Card reader**
- **Secure Access Module**

Information:
- **Public information**
- **Secret information**
- **Crypto algorithm**
Authentication protocol for recharging

Transit Card

- **Random Number – 1 gen**
- **Session key – 1 gen**
 \[E(\text{Random Number-1, Card Key}) \]
- **Signature – 1 gen**
 \[E(\text{Card information, Session key-1}) \]

Card reader

- **Request recharging**

Secure Access Module

- **Card Key gen**
 \[E(\text{Card information, Master Key}) \]
- **Session key – 1 gen**
 \[E(\text{Random Number – 1, Card Key}) \]
- **Verify Signature – 1**
Authentication protocol for recharging

<table>
<thead>
<tr>
<th>Transit Card</th>
<th>Card reader</th>
<th>Secure Access Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Number – 1 gen</td>
<td>Request recharging</td>
<td></td>
</tr>
<tr>
<td>Session key – 1 gen</td>
<td>E(Random Number-1 , Card Key)</td>
<td></td>
</tr>
<tr>
<td>Signature – 1 gen</td>
<td>E (Card information , Session key-1)</td>
<td></td>
</tr>
<tr>
<td>Card Key gen</td>
<td>E(Card information , Master Key)</td>
<td></td>
</tr>
<tr>
<td>Session key – 1 gen</td>
<td>E(Random Number – 1 , Card Key)</td>
<td></td>
</tr>
<tr>
<td>Verify Signature – 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Random Number – 2 gen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Session key – 2 gen</td>
<td>E(Ran Number-2 , Session Key-1)</td>
<td></td>
</tr>
<tr>
<td>Signature – 2 gen</td>
<td>E (Card info , Session key-2)</td>
<td></td>
</tr>
</tbody>
</table>
Authentication protocol for recharging

Transit Card

- Random Number – 1 gen
- Session key – 1 gen
 \[E(\text{Random Number -1}, \text{Card Key}) \]
- Signature – 1 gen
 \[E(\text{Card information}, \text{Session key-1}) \]

Card reader

- Request recharging
- Random Number – 1, Card Information, Signature – 1

Secure Access Module

- Card Key gen
 \[E(\text{Card information}, \text{Master Key}) \]
- Session key – 1 gen
 \[E(\text{Random Number -1}, \text{Card Key}) \]
- Verify Signature – 1
- Random Number – 2 gen
- Session key – 2 gen
 \[E(\text{Random Number -2}, \text{Session Key-1}) \]
- Signature – 2 gen
 \[E(\text{Card info}, \text{Session key-2}) \]
- Verify Signature – 2
- Recharging
Authentication protocol for recharging

<table>
<thead>
<tr>
<th>Transit Card</th>
<th>Card reader</th>
<th>Secure Access Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Number – 1 gen</td>
<td>Request recharging</td>
<td>Card Key gen</td>
</tr>
<tr>
<td>Session key – 1 gen</td>
<td></td>
<td>E(Card information, Master Key)</td>
</tr>
<tr>
<td>E(Random Number-1, Card Key)</td>
<td></td>
<td>Session key – 1 gen</td>
</tr>
<tr>
<td>Signature – 1 gen</td>
<td></td>
<td>E(Random Number – 1, Card Key)</td>
</tr>
<tr>
<td>E(Card information, Session key-1)</td>
<td></td>
<td>Verify Signature – 1</td>
</tr>
<tr>
<td>Session key – 2 gen</td>
<td></td>
<td>Random Number – 2 gen</td>
</tr>
<tr>
<td>E(Ran Number-2, Session Key-1)</td>
<td></td>
<td>Session key – 2 gen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E(Ran Number-2, Session Key-1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Signature – 2 gen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E(Card info, Session key-2)</td>
</tr>
<tr>
<td>Session key – 2 gen</td>
<td></td>
<td>Signature -2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Send card a valid signature !!</td>
</tr>
</tbody>
</table>
Authentication protocol for recharging

<table>
<thead>
<tr>
<th>Transit Card</th>
<th>Card reader</th>
<th>Secure Access Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Number – 1 gen</td>
<td>Request recharging</td>
<td>Card Key gen</td>
</tr>
<tr>
<td>Session key – 1 gen (E\left(\text{Random Number-1}, \text{Card Key} \right))</td>
<td>(E\left(\text{Card Information}, \text{Signature – 1} \right))</td>
<td>(E\left(\text{Card information}, \text{Master Key} \right))</td>
</tr>
<tr>
<td>Signature – 1 gen (E\left(\text{Card information}, \text{Session key-1} \right))</td>
<td>(E\left(\text{Random Number – 1, Card Information, Signature – 1} \right))</td>
<td>Session key – 1 gen (E\left(\text{Random Number – 1, Card Key} \right))</td>
</tr>
</tbody>
</table>

Secure Access Module

- **Card Key gen**
 \(E\left(\text{Card information}, \text{Master Key} \right)\)
- **Session key – 1 gen**
 \(E\left(\text{Random Number – 1, Card Key} \right)\)
- **Verify Signature – 1**
- **Random Number – 2 gen**
- **Session key – 2 gen**
 \(E\left(\text{Random Number-2, Session Key-1} \right)\)
- **Signature – 2 gen**
 \(E\left(\text{Card info, Session key-2} \right)\)

Target

- **Random Number – 1, Card Information, Signature – 1**

Send card a valid signature !!

- **Session key – 2 gen**
 \(E\left(\text{Random Number-2, Session Key-1} \right)\)
- **Verify Signature - 2**
- **Recharging**
Authentication protocol for recharging

Transit Card
- Random Number – 1 gen
- Session key – 1 gen
 \[E(\text{Random Number-1}, \text{Card Key}) \]
- Signature – 1 gen
 \[E(\text{Card information}, \text{Session key-1}) \]

Card reader
- Request recharging
 \[\text{Target} \]
- Random Number – 1 , Card Information, Signature – 1

Secure Access Module
- Card Key gen
 \[E(\text{Card information}, \text{Master Key}) \]
- Session key – 1 gen
 \[E(\text{Random Number – 1}, \text{Card Key}) \]
- Verify Signature – 1
- Random Number – 2 gen
- Session key – 2 gen
 \[E(\text{Ran Number-2}, \text{Session Key-1}) \]
- Signature – 2 gen
 \[E(\text{Card info}, \text{Session key-2}) \]
- Send card a valid signature !!
- Recharging

Public information
- Secret information
- Crypto algorithm

Transit Card

- Random Number – 1 gen
- Session key – 1 gen
 \[E(\text{Random Number-1}, \text{Card Key}) \]
- Signature – 1 gen
 \[E(\text{Card information}, \text{Session key-1}) \]

Card reader

- Request recharging
 \[\text{Target} \]
- Random Number – 1 , Card Information, Signature – 1

Secure Access Module

- Card Key gen
 \[E(\text{Card information}, \text{Master Key}) \]
- Session key – 1 gen
 \[E(\text{Random Number – 1}, \text{Card Key}) \]
- Verify Signature – 1
- Random Number – 2 gen
- Session key – 2 gen
 \[E(\text{Ran Number-2}, \text{Session Key-1}) \]
- Signature – 2 gen
 \[E(\text{Card info}, \text{Session key-2}) \]
- Send card a valid signature !!
- Recharging
Crypto Algorithm Analysis

1. **Sign & verify**

 => performs crypto Algorithm

2. **128-bit Block cipher & operation mode**

 - Crypto function => Two Triple-DES
 - Cipher Block Chaining (CBC) mode

3. **Initial Vector**

 - 0^{128}

4. **Signature value**

 - Most significant 32-bit of last ciphertext block

5. **Padding rule**

 - $80 \ 00 \ 00 \ 00 \ ...$
Outline

1. Attack Goal & Scenario
2. Target Device Details
 - Introduction of Target Device
 - Authentication Protocol Analysis
 - Cryptosystem
3. Key Recovery Attack
 - Attack environment & Measurement Set-Up
 - Attack Overview
 - Attack Results
4. Recharging Simulation
5. Conclusion
Attack Environment

- Attack under the secure transit card
 - APDU commands for recharging the card

- Hardware
 - Board
 - Card reader
 - Oscilloscope
 - Spectrum Analyze

- Software
 - For the acquisitions (Customized)
 - Signal preprocessing (Customized)
 - Analysis (Customized)
 - Matlab

Measurement setup
Phase 1: Locate the position of T-DES

1. I/O signal analysis
2. Visual Inspection
 - Find similar patterns
3. Plaintext CPA
 - Find location of relating plaintext
 - Can deduce location of target operation from plaintext location
Attack Overview

Phase 2 : DPA Attack for key recovery

1. Pre-processing
 - Compression
 - Alignment

2. First Round attack in the DES
 - 48-bit Key recovery
 - 6-bitwise CPA

3. Correction of error
 - Prevent error propagation
 - Method based on BS-CPA

4. 2-15 Round attack
 - 56-bit full-key recovery
 - 32-bitwise CPA

Phase 1 : Locate the position of T-DES

1. I/O signal analysis
2. Visual Inspection
 - Find similar patterns
3. Plaintext CPA
 - Find location of relating plaintext
 - Can deduce location of target operation from plaintext location
Attack Overview

Phase 1: Locate the position of T-DES
1. I/O signal analysis
2. Visual Inspection
 - Find similar patterns
3. Plaintext CPA
 - Find location of relating plaintext
 - Can deduce location of target operation from plaintext location

Phase 2: DPA Attack for key recovery
1. Pre-processing
 - Compression
 - Alignment
2. First Round attack in the DES
 - 48-bit Key recovery
 - 6-bitwise CPA
3. Correction of error
 - Prevent error propagation
 - Method based on BS-CPA
4. 2-15 Round attack
 - 56-bit full-key recovery
 - 32-bitwise CPA

Phase 3: Verification of restored the key
- Compare the signature value through card response with the signature value generated by recovered key
- This is only way to confirm the validity
Attack Overview

Phase 1: Locate the position of T-DES
1. I/O signal analysis
2. Visual Inspection
 - Find similar patterns
3. Plaintext CPA
 - Find location of relating plaintext
 - Can deduce location of target operation from plaintext location

Phase 2: DPA Attack for key recovery
1. Pre-processing
 - Compression
 - Alignment
2. First Round attack in the DES
 - 48-bit Key recovery
 - 6-bitwise CPA
3. Correction of error
 - Prevent error propagation
 - Method based on BS-CPA
4. 2-15 Round attack
 - 56-bit full-key recovery
 - 32-bitwise CPA

If fail, return to the beginning
Repeat until the key is found
Tremendous trials and errors!!

Phase 3: Verification of restored the key
- Compare the signature value through card response with the signature value generated by recovered key
- This is only way to confirm the validity
Some Problems for Key Recovery

• Hiding Countermeasure
 – Pre-processing for mitigation
 • Filtering, Alignment
 – Increases the number of traces

• Alignment
 – Align, whenever guess the location of target operation
 – There is no good reference pattern
 • By effect of hiding countermeasure
 – Need elaborated work
 • One or two point of misalignment leads to attack failure

• More requirement of time cost, memory
 – Compression of trace
 – Parallel processing
Visual Inspection

- Search for similar patterns
- Execution of three crypto function

 \[
 \Rightarrow 6 \text{ T-DES}
 \]
Plaintext CPA

- Perform after alignment
- Result of CPA

=> Indicate location relating to plaintext
Plaintext CPA

- Perform after alignment
- Result of CPA

=> Indicate location relating to plaintext

8-Byte plaintext correlation coefficient peaks

Mean trace
Two possible intervals for target operation

Which one is exact?

=> only can be identified through CPA attack for key recovery

8-Byte plaintext correlation coefficient peaks
Correlation Coefficients for the first Round of DES

- Correlation Coefficients for the first Round of DES
Full Key Recovery

- Correlation coefficients for the Hamming distances between rounds (2-15) of the T-DES
- Correct key guess => Observe 14 peaks
Verification of Restored Entire Key

Response values from the card including signatures

Generated signatures by ourselves

Same
1. Attack Goal & Scenario
2. Target Device Details
 – Introduction of Target Device
 – Authentication Protocol Analysis
 – Cryptosystem
3. Key Recovery Attack
 – Attack environment & Measurement Set-Up
 – Attack Overview
 – Attack Results
4. Recharging Simulation
5. Conclusion
(a) Before recharging, check balance with ATM

(b) Balance : 20,050 (₩)

(c) Recharging Tool

(d) Execution of our recharging program.
 Insert amount of money you wish to recharge => 10,000 (₩)

(e) Completion of recharging

(f) After recharging, Balance : 30,050 (₩)
1. Attack Goal & Scenario
2. Target Device Details
 – Introduction of Target Device
 – Authentication Protocol Analysis
 – Cryptosystem
3. Key Recovery Attack
 – Attack environment & Measurement Set-Up
 – Attack Overview
 – Attack Results
4. Recharging Simulation
5. Conclusion
Conclusion

• Demonstrated that side-channel analysis attack is serious threat in real-world
 – Hacking the Korea transit card in a black-box manner
 – Showing financial damage through unauthorized recharging balance

• Practical attack
 – Trials and errors
 • Approx. six months
 – Current extracting key in same device
 • Approx. 63 hours (trace collection : 58 hours + Attack : 5 hours)

• Further works
 – For black box attack, combination of reverse engineering and side-channel attack
 – Go on attack for any commercial devices!
More details?
Could please see white paper
&
Questions?
ktw@sntworks.kr

Thank you 😊