O

blackhat

ASIA 2017

Cache Side Channel Attack:
Exploitability and Countermeasures

Gorka Irazoqui

Xiaofei (Rex) Guo, Ph.D.

girazoki *noSPAM* wpi.edu
xiaofei.rex.guo *noSPAM* tetrationanalytics.com

Who are We?

 Gorkalrazoqui
* PhD candidate in WPI
* Intern at Intelin summer 2016
* Focus on micro-architectural attacks

Who are We?

Xiaofei (Rex) Guo

Technical lead at Cisco Tetration Analytics

* Visibility to everythingin data center in real time
 Automated and dynamicpolicy generation and enforcement
Worked at Intel Security Center of Excellence and
Qualcomm Product Security Initiative

* |oT and mobile platform security, infrastructure security, and
applicationsecurity

PhD from New York University

Disclaimer

We don’t speak for our employer. All the opinions
and information here are our responsibility
including mistakes and bad jokes.

“You must be kidding, cache attacks are not
practicall”

ASSESS)

Storlng secret crypto keys in the Amazon
cloud? New attack can steal them

Technique allows full recovery of 2048-bit RSA key stored in Amazon's EC2 service.

DAN GOODIN - 9/28/2015, 2:55 PM

‘Sfd‘fiﬁg_secret crypto keys in the Amazon
cloud? New attack can steal them

Technique allows full recovery of 2048-bit RSA key stored in Amazon's EC2 service.

DAN GOODIN - 9/28/2015, 2:55 PM

Security considerations and disallowing inter-Virtual Machine
Transparent Page Sharing (2080735)

This article acknowledges the recent academic research that leverages Transparent Page Sharing (TPS) to gain unauthorized access to data under
certain highly controlled conditions and documents VMware’s precautionary measure of restricting TPS to individual virtual machines by default in
upcoming ESXi releases. At this time, ViMlware believes that the published information disclosure due to TPS between virtual machines is impractical in a
real world deployment.

RISK ASSESSMENT —

Storing secret crypto keys in the Amazon
cloud? New attack can steal them

Technique allows full recovery of 2048-bit RSA key stored in Amazon's EC2 service.

DAN GOODIN - 9/28/2015, 2:55 PM

Security considerations and disallowing inter-Virtual Machine
Transparent Page Sharing (2080735)

This article acknowledges the recent academic research that leverages Transparent Page Sharing (TPS) to gain unauthorized access to data under
certain highly controlled conditions and documents VMware’s precautionary measure of restricting TPS to individual virtual machines by default in

upcoming ESXi releases. At this time, ViMlware believes that the published information disclosure due to TPS between virtual machines is impractical in a

real world deployment.

CacheBleed OpenSSL Vulnerability Affects Intel-
Based Cloud Servers

Only Sandy Bridge (and earlier) Intel CPUs are affected

Catalin Cimpanu W sFfy g

Yesterday's OpenSSL updates (1.0.2g and 1.0.1s) not only brought a fix against
the already infamous DROWN attack but also patched seven other security
flaws, one labeled as high, one moderate, and five as low severity.

‘é‘fdfiﬁs}g_secret crypto keys in the Amazon
cloud? New attack can steal them

Technique allows full recovery of 2048-bit RSA key stored in Amazon's EC2 service.

DAN GOODIN - 9/28/2015, 2:55 PM

Security considerations and disallowing inter-Virtual Machine
Transparent Page Sharing (2080735)

CacheBleed OpenSSL Vulnerability Affects Intel-

This article acknowledges the recent academic research that leverages Transparent Page Sharing (TPS) to gain unauthorized access to data under

certain highly controlled conditions and documents VMware’s precautionary measure of restricting TPS to individual virtual machines by default in Based Cloud Servers
upcoming ESXi releases. At this time, VMware believes that the published information disclosure due to TPS between virtual machines is impractical in a) ~
real world deployment Only Sandy Bridge (and earlier) Intel CPUs are affected
Catalin Cimpanu ¥ sFfy g

ANDROID DEVICES VULNERABLE TO ARMAGEDDON CACHE ATTACK Yesterday's OpenSSL updates (1.0.2g and 1.0.1s) not only brought a fix against

the already infamous DROWN attack but also patched seven other security

SECURITY NEWS | AUGUST 15, 2016 flaws, one labeled as high, one moderate, and five as low severity.

The paper ARMageddon: Cache Attacks on Mobile Devices have been included in 25th USENIX Security Symposium. The

Feasibility Trend

Intel, Spark, AMD | Linux | OpenSSL AES

Cache Attacks and Countermeasures: The Case of
AES

Article in Lecture Notes in Computer Science 2005 - January 2005 with 26 Reads
DOI: 10.1007/11605805_1 - Source: DBLP

2nd Adi Shamir

3rd Eran Tromer

| 14.96 - Tel Aviv University

Feasibility Trend

Cache Attacks and Countermeasures: The Case of

{ Intel, Spark, AMD | Linux | OpenSSL AES

AES
Yet another MicroArchitectural Attack: : exploiting { Intel | Linux | OpenSSLRSA
I-Cache.

Conf Paper (PDF ilable) - January 2007 with 32 Reads
)I: 10.1145/1314466.1314469 - Source: DBLP
Proceedings of the 2007 ACM workshop on

Tst Onur Acigmez
7.04 - Unknown

Feasibility Trend

Cache Attacks and Countermeasures: The Case of

{ Intel, Spark, AMD | Linux | OpenSSL AES
AES

Yet another MicroArchitectural Attack: : exploiting

{ Intel | Linux | OpenSSLRSA
I-Cache.

FLUSH+RELOAD: A High Resolution, Low Noise, L3
Cache Side-Channel Attack

Intel (Cross-core) | Linux (deduplication) |
GnuPGRSA

Conference Paper - August 2014 with 13 Reads

1st Yuval Yarom 2nd Katrina Falkner
1.71 - University of Adelaide 16.03 - University of Adelaide

Feasibility Trend

Cache Attacks and Countermeasures: The Case of
AES

Yet another MicroArchitectural Attack: : exploiting
I-Cache.

FLUSH+RELOAD: A High Resolution, Low Noise, L3
Cache Side-Channel Attack

Last-Level Cache Side-Channel Attacks are Practical

Article - July 2015 with 30 Reads
DOI: 10.1109/SP.2015.43

1st Fangfei Liu 2nd Yuval Yarom
1.47 - Princeton University | 1.71 - University of Adelaide

3rd Qian ge
0.01 - UNSW Australia

{ Intel, Spark, AMD | Linux | OpenSSL AES

{ Intel | Linux | OpenSSLRSA

Intel (Cross-core) | Linux (deduplication) |
GnuPGRSA

Intel (Cross-Core) | Linux (no deduplication)
| GnuPG RSA

Feasibility Trend

Cache Attacks and Countermeasures: The Case of
AES

Yet another MicroArchitectural Attack: : exploiting
I-Cache.

FLUSH+RELOAD: A High Resolution, Low Noise, L3
Cache Side-Channel Attack

Last-Level Cache Side-Channel Attacks are Practical

Cross Processor Cache Attacks

Conference Paper - January 2016 with 3 Reads
DOI: 10.1145/2897845.2897867

th ACM

1st Gorka Irazoqui 2nd Thomas Eisenbarth

ﬂ 3rd Berk Sunar
" 19.39 - Worcester Polytechnic Institute

ot st W anten Wana W guten

Intel, Spark, AMD | Linux | OpenSSL AES

Intel | Linux | OpenSSLRSA

Intel (Cross-core) | Linux (deduplication) |
GnuPGRSA

Intel (Cross-Core) | Linux (no deduplication)
| GnuPG RSA

AMD (cross CPU) | Linux | OpenSSLAES and
GnuPG El Gamal

Feasibility Trend

Cache Attacks and Countermeasures: The Case of

{ Intel, Spark, AMD | Linux | OpenSSL AES

AES
Yet another MicroArchitectural Attack: : exploiting { Intel | Linux | OpenSSLRSA
I-Cache.
Intel (Cross-core) | Linux (deduplication
FLUSH+RELOAD: A High Resolution, Low Noise, L3 ()| (P)l
. GnuPG RSA
Cache Side-Channel Attack

Intel (Cross-Core) | Linux (no deduplication)

Last-Level Cache Side-Channel Attacks are Practical

| GnuPG RSA
Cross Processor Cache Attacks AMD (cross CPU) | Linux | OpenSSLAES and
ARMageddon: Last-Level Cache Attacks on Mobile GnuPG El Gamal
Devices ARM (cross core/CPU) | Android | Bouncy
Castle AES

Article - November 2015 with 34 Reads

1st Moritz Lipp 2nd Daniel Gruss

3rd Raphael Spreitzer 4th Stefan Mangard
2.25 - Graz University of Technology

Functionality

LLC as a Side Channel?

 (Caches: fast access memories

 Why would an attacker use LLC as covert channel?
* Cross-core
* Inclusiveness
e High resolution

3 N
Core i Core \

~ ttcache UM Uitcace 7 CAicwhs

L2 Cache L2 Cache L2 Cache
\& v/ A Y/
L3 Cache /

P
/ Core

Cache Architecture

e Set associative: cache divided in n-way sets

* Location in the cache determined by physical address
Cache

‘ SO
43' —> S1

MMU

U v

Sn

Cache tag l Set : Byte

00001 |

Flush + Reload Attack

* Requirement1: deduplication mZL".::'es
* |dentical read-only memory
pages are shared

e Attacker and victim access the
Sa me addreSS Shared (common) pages

* Linuxand KVM (KSM), Vmware Hyperdsor
(TPS) and Android (Zygote) —
* Requirement2: flush
instruction (e.g., clflush in x86) - I |
Security considerations and disallowing inter-Virtual Machine

* CVE 2014-3356: Vmware Transparent Page Sharing (2080735)
enabled deduplication by

d efa u | t This article acknowledges the recent academic research that leverages Transparent Page Sharing (TPS) to gain unauthorized access to data under
certain highly controlled conditions and documents Vware's precautionary measure of restricting TPS to individual virtual machines by default in

Private pages| |Private pages| |Private pages

Physical machine

upcoming ESXi releases. At this time, VMware believes that the published information disclosure due to TPS between virtual machines is impractical in a
real world deployment

Flush + Reload Attack

e Attacker flushes a cached Cache
memory location

Flush + Reload Attack

e Attacker flushes a cached Cache
memory location

Flush

Flush + Reload Attack

e Attacker flushes a cached Cache
memory location

* Victim accesses/does not
access

Access

Flush + Reload Attack

e Attacker flushes a cached Cache
memory location

* Victim accesses/does not
access

* Attacker re-accesses memory
location

* Fast access time -> victim
accessed

* Slow access time -> victim did not
access

Reload

Flush + Reload Attack Summary

* Pros:

Low noise: focus onone line,
noisy process needs to fill an
entire set

Applicable across CPU sockets!

Flush instruction invalidates
memory in other CPUs

Works in non-inclusive caches

e Cons:

Requirement might be met in
some scenarios

Canonlyrecover statically
allocated data

LOCAL
MEM | pram tink

(sLow)

DRAM Link

LOCAL | (stow
MEM

CPUO

Cache

HT Link
(FAST)

CPU 2

Cache

-
HT Link
(FAST)

HT Link
(FAST)

CPU 1
Cache

HT Link
(FAST)

CPU3
Cache

DRAM Link
(sLow)

DRAM Link
(SLow)

LOCAL
MEM

LOCAL
MEM

Evict + Reload Attack

* No flush instruction?

* Attacker needs to evict data from LLC
* Attacker can use huge pages

* Physical address selects the set to

O CC u 12 bits
Py —
Virtual
Addr: Offset
I
| I | l
| I I [
| I | |
| | I 1 |
[lfLT)l
| I |
D I
—Ll==
P 19 [
| | L3 |
o
[Tl [
N
Virtual
Addr: Offset

4 KB page
Offset=12 bits

2MB page
Offset= 21 bits

Evict + Reload Attack

* No flush instruction?
e Attacker needs to evict data from LLC
* Attacker can use huge pages

Cache

* Physical address selects the set to
occupy

* Attacker evicts (fills set)

Evict

Evict + Reload Attack

* No flush instruction?
e Attacker needs to evict data from LLC
* Attacker can use huge pages

Cache

* Physical address selects the set to
occupy

* Attacker evicts (fills set)

Evict

Evict + Reload Attack

* No flush instruction?
e Attacker needs to evict data from LLC
* Attacker can use huge pages

Cache

* Physical address selects the set to
occupy

* Attacker evicts (fills set)

e Victim accesses/does not access

Access

©

Evict + Reload Attack

* No flush instruction?
e Attacker needs to evict data from LLC
* Attacker can use huge pages

Cache

* Physical address selects the set to
occupy

* Attacker evicts (fills set)

e Victim accesses/does not access

Reload

e Attacker reloads
* Fast access time -> victim accessed %

* Slow access time -> victim did not access

Evict + Reload Attack Summary

* Pros:
* Applicablein processors withoutflush instruction (e.g. most ARM
processors)
* Cons:

 Canonlytarget statically allocated memory
* Deal with LLC slices (undocumented)

* Only works with inclusive caches

* Onlyworks inthe same CPU socket

Prime + Probe Attack

* No shared memory pages?

. Attacker- cqn know the set utilized Cache
by the victim

e Attacker Primes

Prime

Prime + Probe Attack

* No shared memory pages?

. Attacker- cqn know the set utilized Cache
by the victim

e Attacker Primes
* Victim accesses/not accesses

Access

@

Prime + Probe Attack

* No shared memory pages?

. Attacker- cqn know the set utilized Cache
by the victim

e Attacker Primes
* Victim accesses/not accesses

e Attacker re-accesses

* Fast access time -> victim
accessed

 Slow access time -> victim did not Probe

aCcess %

Prime + Probe Attack Summary

°* Pros
 Does not need shared memory! (Broaderimpact)
* Cantargetstaticand dynamically allocated memory!

* Cons:
* Noisierthan Flush + Reload
e Dealing with LLC slices (undocumented)
* Only works with inclusive caches
* Only works inthe same CPU socket
* Need toidentifythe target set

How to retrieve information?

Montgomery ladder RSA

1 function modpow (a,b):

Input : base b, modulus N, secret Flush and Reload
E = (ek—11 "'961360)

Output: b mod N Cache

Ro =1 Rl = b;

if ¢,==0 then

Ry = Ro * Ry mod N; PhyS|Ca| address

RO = RO LS RO mOd N: ‘ P=0X7fffc480
end
i _

E=RE- - T T LI S PR

R0=R0*R1 mod N;
Ry = Ry * Ry mod N;

—
=

11 end
12 end
13 return Ry:

How to retrieve information?

Montgomery ladder RSA

1 function modpow (a,b):

Input : base b, modulus N, secret Flush and Reload
E = (ek—11 "'961360)

Output: b mod N Cache

Ro =1 Rl = b;

Rl = Ro* Ry mod N; Physical address
Ry=Ry* Rymod N; mmmmm)p P=0x7fffc480

E=RE- - T T LI S PR

R0=R0*R1 mod N;
Ry = Ry * Ry mod N;

—
=

1 end

12 end
13 return Ry:

How to retrieve information?

Montgomery ladder RSA

1 function modpow (a,b):

Input : base b, modulus N, secret Flush and Reload
E = (ek—11 "'961360)
Output: b mod N Cache

ZRo—l Rl—b

T el};I—i tgzil R; mod N: Physical address _
Ry = Ry * Ry mod N; ‘ P=0x7fffc480
end
Ielse |
1 Ry = Ry * Ry mod N
1 end
13 end

13 return Ry:

How to retrieve information?

Montgomery ladder RSA

1 function modpow (a,b):

E=RE- - T T LI S PR

—
=

11

12

Input : base b, modulus N, secret
E = (ek—11 "'961360)

Output: b mod N

Ro =1 R1 =b:
for i =k — ownto 0 do
if ¢;==0 then
Rl =R0*R1 mod N:
4 Ry = Ry * Ry mod N;
end
else
R0=R0*R1 mod N;
Ry = Ry * Ry mod N;
end
end

13 return Ry:

Flush and Reload
Cache

Physical address

‘ P=0x7fffc480

How to retrieve information?

Montgomery ladder RSA

1 function modpow (a,b):

Input : base b, modulus N, secret Flush and Reload
E = (ek—11 "'961360)

Output: b mod N Cache

Ro =1 Rl = b;

Rl = Ro* Ry mod N; Physical address
Ry=Ry* Rymod N; mmmmm)p P=0x7fffc480

E=RE- - T T LI S PR

R0=R0*R1 mod N;
Ry = Ry * Ry mod N;

—
=

11 end
12 end
13 return Ry:

How to retrieve information?

Montgomery ladder RSA

1 function modpow (a,b):

Input : base b, modulus N, secret Prime and Probe
E = (ek—le "'981980)
Output: b¥ mod N Cache

R, = Ro * Ry mod N: Physical address
Ry=Ry* Rymod N; mmmmmp P=0x7fffc480

=T -2 N7 TR SN PR

Ro = Ro * Ry mod N
Ry = R; * Ry mod N:

—
=

11 end
12 end
13 return Ry:

How to retrieve information?

Montgomery ladder RSA

1 function modpow (a,b):

Input : base b, modulus N, secret Prime and Probe
FE = (ek_l, ...,81,80)
Output: b¥ mod N Cache
3
: _ e‘;:g t;;zll T mod V- Physical address
6 4 Ry = Ry* Rymod N; P=0x7fffc480
7 end
8 else
9 Ro = Ro * Ry mod N;
10 Ry = Ry * Ry mod N;
1 end
12 end

13 return Ry:

How to retrieve information?

Montgomery ladder RSA

1 function modpow (a,b):

Input : base b, modulus N, secret Prime and Probe
E = (ek—le "'981980)
Output: b¥ mod N Cache

R, = Ro * Ry mod N: Physical address
Ry=Ry* Rymod N; mmmmmp P=0x7fffc480

=T -2 N7 TR SN PR

Ro = Ro * Ry mod N
Ry = R; * Ry mod N:

—
=

11 end
12 end
13 return Ry:

Attack Comparison

Flush + Reload Evict + Reload Prime + Probe
Require Memory Y Y N
Deduplication
Require flush Y N N
instruction
Attack memory static static static + dynamic
type
Noise low low high

Applicability

laaS/PaaS Cloud Infrastructures

* VMs shareunderlying hardware

 Hardwareisolationisusually not

provided
* ExampleRSAin Amazon EC2 [INCI16] - ’
* Pros:
* Ownvirtualized OS. Access to timers or VMM
huge pages
* If deduplication enabled, both attacks Hardware

are applicable

e (Cons:

e Requires co-residency of VMs
* High amount of noise

laaS/PaaS Cloud Infrastructures

* How tofind co-residency? - htto request
e Use availableinformation! '-

* Profilethe target LLC accesses

e Does the cache trace match the trace we 1
expect?
* Ifyes, co-residency

* If no, open more VMs

?

W

e Other mechanisms utilize memory bus T e mmm e

distinguishable

locking attacks
» Example RSA exponentiations easily }

00000

Demo: AES Key Recovery Across VMs

We utilize KVM hypervisor

* Server using T-table AES (T-tables S,
shared) l

* Server encrypting plaintextwith
known key - {0x63,0x7b, Ox7c Ox6 1}

* Attacker requests decryptionsand \ l
OxOO

recovers the key K, = @
We check whether the entries of the T- l \, l
tables have been used C, = {0x63,0x7b,0x7c,0x6f} C

0
 We XOR with the ciphertext after doing

statistics to get the key

Browser Javascript

e Attacker embeds JS into the website

* Victim accesses the website WWW.yyyyy.com

* Victim’s browser executes the JS

* Example:Incognito browsing profiling [OREN15] | s_:(_f)
* Pros: Javgjc?ipt
* Noneed to find co-resident target
e Attackexecuted in local machine (although
sandboxed)
* Cons:

e Flush and Reload can not be applied
* Fine grain timers hard to achieve

Hardware

Smart Phone Applications

Smartphone applications are logicallyisolated
by the OS

However, as with TEEs, all applications utilize
the hardware caches

Micro-architectural attacks look asinnocent
binaries, as they only perform timed memory
accesses

Example: AES key steal across apps [LIPP16]

l

Hardware

Smart Phone Applications

* Pros:

Deduplication is generally used (e.g.
Android)

 Easydeployment
* Cons
* Flush instruction has to be enabled by
SoC (only Samsun S6 for now)
* Pseudo Random Replacement policies
(reverse engineered)

Device dependent algorithms (e.g.
non-inclusive caches or lockdown)

Zygote

Zygote heap

(shared dirty,
Copy-on-write;
rarely written)

core library
dex files

Maps

Maps
dex file
(mmap()ed)

Maps live
code and heap

(private dirty)

Browser

Browser
dex file
(mmap()ed)

Browser live
code and heap

(private dirty)

Home

Home
dex file
(mmap()ed)

Home live
code and heap

(private dirty)

(mmap()ed)

shared from

| shared from | |

Z

| | shared from

Zygote

Zygote T |
//

s

=

Trusted Execution Environment

* Trusted execution environments
designed to achieve isolationfrom
untrusted processes -
* Butboth trusted and untrusted \
environmentsaccess same hardware

caches! Non Encrypted
* Enclaveto enclave or hostto enclave

attacks are possible

* Example:TrustZone AES key steal -
[BRM15]
* Example:Intel SGX RSA key steal DRAM

[SCW17]

Trust Execution Environment

°* Pros

* Higher resolution: The OS can be Cache

malicious! more fine grain resources
(including scheduling)

* No needto find co-resident target

* Limited noise: malicious OS can
interrupt processes after (virtually)
every memory access

* Cons

Prime

* FlushandReload notapplicable
(deduplication disabled) %

Trust Execution Environment

°* Pros

* Higher resolution: The OS can be Cache
malicious! more fine grain resources
(including scheduling)

* No needto find co-resident target

* Limited noise: malicious OS can
interrupt processes after (virtually)
every memory access

* Cons
* Flushand Reload notapplicable Access

(deduplication disabled) @_

Trust Execution Environment

°* Pros

* Higher resolution: The OS can be Cache

malicious! more fine grain resources
(including scheduling)

* No needto find co-resident target

* Low noise: malicious OS can interrupt
processes after (virtually) every memory
access

[]
Cons Probe

* FlushandReload notapplicable
(deduplication disabled) — @
Interrupt

Countermeasures

Design Cache Leakage Free Code

e Secretindependentinstruction accesses

* Secretindependentdata accesses

* |dentification of variables that contain information related to
the secret (manual inspection, taint analysis, etc.)

* Obtain cache timingtraces to correlate with the secret
variables to measure the leakage

Identify
secret
dependent
access

Collect cache

timing Correlation
information

Design Cache Leakage Free Code

function modpow (a,b): CVE-2016-7439
Input : base b, modulus N, secret

E = (ex_1,...,€1,€p)
Output: b* mod N

2 R() =1; Rl = b;

3 for i =k —1 downto 0 do

4 if €;==0 then

S R, = Rog * Ry mod N;
6 Ry = Ry * Ry mod N
7 end

8 else

9 Ro = Ro * Ry mod N;
10 Ry =R, * Ry mod N;
1 end

12 end

13 return Ry:

Design Cache Leakage Free Code

E=R- A AT LT SN R B

—
=

11
12

13

function modpow (a,b);

Input : base b, modulus N, secret
FE = ((’.k_l.....(’.l.eo)
Output: b* mod N

Ro =1; Rl = b;
for i = k — 1 downto 0 do
if ¢;==0 then
1 = Ho * Ry mod N;
Ry = Ry * Ry mod N
end
0o = Ro* Ry mod N;
Ry =R, * Ry mod N;
end
end
return Ry:

-‘/',

1 . .

CVE-2016-7439

secret dependent
instruction access

Design Cache Leakage Free Code

CVE-2016-7439

function modpow (a,b);
Input : base b, modulus N, secret
E=(ex_1,...,€1,€0)
Output: b¥ mod N
R[0]=1: R[1] =b:
for i = k — 1 downto 0 do
R[é;] = R[0] * R[1] mod N;
Rle;] = Rle;] * R[e;] mod N
end
return R[0]:

-

Secret independent
instruction access

e - Y S

Design Cache Leakage Free Code

CVE-2016-7439

function modpow (a,b);
Input : base b, modulus N, secret
E=(ex_1,...,€1,€0)
Output: b¥ mod N
R[0] = 1: R[1] = b:
for i = k — 1 downto 0 do
R[é;] = R[0] * R[1] mod N’;
IR[e;] = Rle;] * R[e;] mod N |
end
return R[0]:

Secret independent
instruction access

Secret dependent data
access

e - Y S

Design Cache Leakage Free Code

1 function modpow (a,b):
Input : base b, modulus N, secret
E = (ex—_1,...,€1,€0)

Output: b*¥ mod N
R[0] = 1: R[1] = b;
for i = k — 1 downto 0 do

R[0] x e; + R[1] * é¢; = R[0] *x R[1] mod N

R[1] * R[1] x e; + R[0] * R[0] * €; mod N;

6 end
7 return R[0];

Secret independent
instruction access

_ w9

Secret independent
data access

h

Page Coloring

* Avoidingcollisionsin the LLC

* Locationin LLC determined by physical address
* Give each user a color (address bits)

DRAM Physical

address
‘m 2
. . l OOXXXXXX
I

Users LLC

OIxxxXXXX

XXXXXX

e e T

TIXXXXXX

Jelb=lbsibe

L[[
IRV

Cache Allocation Technology

* Intel CAT provides hardware framework to lock the cache
* Allows OS/hypervisor to mark cache ways as un-evictable
e Attacker can notinfluence victim’s cache accesses

* Modify hypervisorto support more lock partitions [LIU16]

Cache

Lock

Cache Allocation Technology

* Intel CAT provides hardware framework to lock the cache
* Allows OS/hypervisor to mark cache ways as un-evictable
e Attacker can notinfluence victim’s cache accesses

* Modify hypervisorto support more lock partitions [LIU16]

Cache

Prime m—)p

Cache Allocation Technology

* Intel CAT provides hardware framework to lock the cache
* Allows OS/hypervisor to mark cache ways as un-evictable
e Attacker can notinfluence victim’s cache accesses

* Modify hypervisorto support more lock partitions [LIU16]

Cache

Probe ‘

Behavior Detection

 Hardware Performance Counters (HPCs) can track hardware
events (e.g. LLC misses)

e LLC attacks leave a clear trace in terms of cache misses/hits
* Hypervisor/OS tracks this events to detect unusual behavior
* Detection can be improved by inspecting memory access

Guest OS (Process)

Countermeasure Comparison (Requirements)

Leakage Free Page Coloring Intel CAT Behavior
Code Detection

Require source Y N N N
code change
Require OS N Y Y Depends
(hypervisor)
update
Require new N N Y N

hardware

Countermeasure Comparison (Coverage)

Leakage Free Page Coloring Intel CAT Behavior
Code Detection
laaS/PaaS Y Y Depends Y
Javascriptin Y Depends Depends Y
broswer
Smartphone Y Y Depends Y

TEE Y N N N

Key Takeaways

« Cache attacks are complex but a real threat!
 Flush+Reload, Evict+Reload, Prime+Probe

* |laaS/PaaS, web browsers, smartphones, TEE,...What
else?

 Call to action:
« Application level: introduce cache leakage free code design
« Hypervisor/OS level: page coloring for cache isolation

« System level: use software to leverage hardware features (Intel
CAT, performance counters)

References

[INCI16] Inci,M., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T., Sunar, B. Cache
Attacks Enable Bulk Key Recovery on the Cloud. CHES 2016

[OREN15] Oren,Y., Kemerlis, V., Sethumadhavan, S, Keromytis, A. The Spy in the
Sandbox: Practical Cache Attacks in JavaScript and their Implications. ACM
CCS 2015

[BRM15] Brumley,B. Cache Storage Attacks. CT-RSA 2015

[SCW17] Schwarz,M., Weiser,S., Gruss, D., Maurice, C., Mangard, S. Malware
Guard Extension: Using SGX to Conceal Cache Attacks. Arxiv 2017

[LIPP16] Lipp,M., Gruss, D., Spreitzer, R., Maurice, C., Mangard, S.
ARMageddon: Cache Attacks on Mobile Devices. USENIX 2016

[LIU16] Liu, F, Yarom, Y., Mckeen, F.,, Rozas, C., Heiser, G., Lee R. CATalyst:
Defeatinglast-level cache side channel attacks in cloud computing. HPCA
2016

