
Cache	Side	Channel	Attack:	
Exploitability	and	Countermeasures

Gorka Irazoqui
Xiaofei (Rex)	Guo,	Ph.D.
girazoki *noSPAM*	wpi.edu

xiaofei.rex.guo*noSPAM*	tetrationanalytics.com

Who	are	We?

• Gorka	Irazoqui
• PhD	candidate	in	WPI
• Intern	at	Intel	in	summer	2016
• Focus	on	micro-architectural	attacks

Who	are	We?

• Xiaofei (Rex)	Guo
• Technical	lead	at	Cisco	Tetration Analytics

• Visibility	to	everything	in	data	center	in	real	time
• Automated	and	dynamic	policy	generation	and	enforcement

• Worked	at	Intel	Security	Center	of	Excellence	and	
Qualcomm	Product	Security	Initiative
• IoT and	mobile	platform	security,	infrastructure	security,	and	

application	security
• PhD	from	New	York	University

We	don’t	speak	for	our	employer.	All	the	opinions	
and	information	here	are	our	responsibility
including	mistakes	and	bad	jokes.

Disclaimer

“You	must	be	kidding,	cache	attacks	are	not	
practical!”

“You	must	be	kidding,	cache	attacks	are	not	
practical!”

“You	must	be	kidding,	cache	attacks	are	not	
practical!”

“You	must	be	kidding,	cache	attacks	are	not	
practical!”

“You	must	be	kidding,	cache	attacks	are	not	
practical!”

Feasibility	Trend
Intel,	Spark,	AMD	|	Linux	|	OpenSSLAES

Feasibility	Trend
Intel,	Spark,	AMD	|	Linux	|	OpenSSLAES

Intel	|	Linux	|	OpenSSLRSA

Feasibility	Trend
Intel,	Spark,	AMD	|	Linux	|	OpenSSLAES

Intel	|	Linux	|	OpenSSLRSA

Intel	(Cross-core)	|	Linux	(deduplication)	|	
GnuPGRSA

Feasibility	Trend

Intel	(Cross-Core)	|	Linux	(no	deduplication)	
|	GnuPGRSA

Intel,	Spark,	AMD	|	Linux	|	OpenSSLAES

Intel	|	Linux	|	OpenSSLRSA

Intel	(Cross-core)	|	Linux	(deduplication)	|	
GnuPGRSA

Feasibility	Trend

Intel	(Cross-Core)	|	Linux	(no	deduplication)	
|	GnuPGRSA

Intel,	Spark,	AMD	|	Linux	|	OpenSSLAES

Intel	|	Linux	|	OpenSSLRSA

Intel	(Cross-core)	|	Linux	(deduplication)	|	
GnuPGRSA

AMD	(cross	CPU)	|	Linux	|	OpenSSLAES	and	
GnuPGEl	Gamal

Feasibility	Trend

Intel	(Cross-Core)	|	Linux	(no	deduplication)	
|	GnuPGRSA

Intel,	Spark,	AMD	|	Linux	|	OpenSSLAES

Intel	|	Linux	|	OpenSSLRSA

Intel	(Cross-core)	|	Linux	(deduplication)	|	
GnuPGRSA

AMD	(cross	CPU)	|	Linux	|	OpenSSLAES	and	
GnuPGEl	Gamal
ARM	(cross	core/CPU)	|	Android	|	Bouncy	
Castle	AES

Functionality

LLC	as	a	Side	Channel?
• Caches:	fast	access	memories
• Why	would	an	attacker	use	LLC	as	covert	channel?

• Cross-core
• Inclusiveness
• High	 resolution

• Set	associative:	cache	divided	in	n-way	sets
• Location	in	the	cache	determined	by	physical	address

Cache	Architecture

Cache	tag Set Byte

Offset

OffsetPhysical	Page	

Virtual	Page	

MMU

S0
S1

Sn

Cache

00001

.	.	.	.	

.	.	.	.	

.	.	.	.	

tag

tag

tag

B0
B0

B0

Bn

Bn

Bn

.

.

.

• Requirement	1:	deduplication
• Identical	read-only	memory	

pages	are	shared
• Attacker	and	victim	access	the	

same	address
• Linux	and	KVM	(KSM),	Vmware

(TPS)	and	Android	(Zygote)
• Requirement	2:	flush	

instruction	(e.g.,	clflush in	x86)
• CVE	2014-3356:	Vmware

enabled	deduplication	by	
default

Flush	+	Reload	Attack

• Attacker	flushes	a	cached	
memory	location

Flush	+	Reload	Attack
Cache

• Attacker	flushes	a	cached	
memory	location

Flush	+	Reload	Attack

Flush

Cache

• Attacker	flushes	a	cached	
memory	location

• Victim	accesses/does	not	
access

Flush	+	Reload	Attack
Cache

Access

• Attacker	flushes	a	cached	
memory	location

• Victim	accesses/does	not	
access

• Attacker	re-accesses	memory	
location
• Fast	access	time	->	victim	

accessed
• Slow	access	time	->	victim	did	not	

access

Flush	+	Reload	Attack

Reload

Cache

• Pros:
• Low	noise:	focus	on	one	line,	

noisy	process	needs	to	fill	an	
entire	set

• Applicable	across	CPU	sockets!	
Flush	instruction	invalidates	
memory	in	other	CPUs

• Works	in	non-inclusive	caches
• Cons:

• Requirement	might	be	met	in	
some	scenarios

• Can	only	recover	statically	
allocated	data

Flush	+	Reload	Attack	Summary

Evict	+	Reload	Attack

11

• No	flush	instruction?
• Attacker	needs	to	evict	data	from	LLC
• Attacker	can	use	huge	pages
• Physical	address	selects	the	set	to	

occupy

Evict	+	Reload	Attack

Evict

Cache
• No	flush	instruction?
• Attacker	needs	to	evict	data	from	LLC
• Attacker	can	use	huge	pages
• Physical	address	selects	the	set	to	

occupy
• Attacker	evicts	(fills	set)

Evict	+	Reload	Attack

Evict

Cache
• No	flush	instruction?
• Attacker	needs	to	evict	data	from	LLC
• Attacker	can	use	huge	pages
• Physical	address	selects	the	set	to	

occupy
• Attacker	evicts	(fills	set)

Evict	+	Reload	Attack

Cache

Access

• No	flush	instruction?
• Attacker	needs	to	evict	data	from	LLC
• Attacker	can	use	huge	pages
• Physical	address	selects	the	set	to	

occupy
• Attacker	evicts	(fills	set)
• Victim	accesses/does	not	access

Evict	+	Reload	Attack

Reload

Cache
• No	flush	instruction?
• Attacker	needs	to	evict	data	from	LLC
• Attacker	can	use	huge	pages
• Physical	address	selects	the	set	to	

occupy
• Attacker	evicts	(fills	set)
• Victim	accesses/does	not	access
• Attacker	reloads

• Fast	access	time	->	victim	accessed
• Slow	access	time	->	victim	did	not	access

• Pros:
• Applicable	in	processors	without	flush	instruction	(e.g.	most	ARM	

processors)

• Cons:
• Can	only	target	statically	allocated	memory
• Deal	with	LLC	slices	(undocumented)
• Only	works	with	inclusive	caches
• Only	works	in	the	same	CPU	socket

Evict	+	Reload	Attack	Summary

• No	shared	memory	pages?
• Attacker	can	know	the	set	utilized	

by	the	victim

• Attacker	Primes

Prime	+	Probe	Attack

Prime

Cache

• No	shared	memory	pages?
• Attacker	can	know	the	set	utilized	

by	the	victim

• Attacker	Primes
• Victim	accesses/not	accesses

Prime	+	Probe	Attack

Cache

Access

• No	shared	memory	pages?
• Attacker	can	know	the	set	utilized	

by	the	victim

• Attacker	Primes
• Victim	accesses/not	accesses
• Attacker	re-accesses

• Fast	access	time	->	victim	
accessed

• Slow	access	time	->	victim	did	not	
access

Prime	+	Probe	Attack

Probe

Cache

• Pros
• Does	not	need	shared	memory!		(Broader	impact)
• Can	target	static	and	dynamically	allocated	memory!

• Cons:
• Noisier	than	Flush	+ Reload
• Dealing	with	LLC	slices	(undocumented)
• Only	works	with	inclusive	caches
• Only	works	in	the	same	CPU	socket
• Need	to	identify	the	target	set

Prime	+	Probe	Attack	Summary

How	to	retrieve	information?
Montgomery	ladder	RSA

P=0x7fffc480
Physical	address

Flush	and	Reload

P

Cache

How	to	retrieve	information?

Flush	and	Reload
Cache

Montgomery	ladder	RSA

P=0x7fffc480
Physical	address

How	to	retrieve	information?

Flush	and	Reload
Cache

Montgomery	ladder	RSA

P=0x7fffc480
Physical	address

How	to	retrieve	information?

Flush	and	Reload

P

Cache

Montgomery	ladder	RSA

P=0x7fffc480
Physical	address

How	to	retrieve	information?

Flush	and	Reload

P

Cache

Montgomery	ladder	RSA

P=0x7fffc480
Physical	address

How	to	retrieve	information?

Prime	and	Probe
Cache

Montgomery	ladder	RSA

P=0x7fffc480
Physical	address

How	to	retrieve	information?

Prime	and	Probe
Cache

P

Montgomery	ladder	RSA

P=0x7fffc480
Physical	address

How	to	retrieve	information?

Prime	and	Probe
Cache

Montgomery	ladder	RSA

P=0x7fffc480
Physical	address

Attack	Comparison

Flush	+	Reload Evict	+	Reload Prime	+	Probe

Require	Memory
Deduplication

Y Y N

Require	flush
instruction

Y N N

Attackmemory	 		
type

static static static +	dynamic

Noise low low high

Applicability

• VMs	share	underlying	hardware
• Hardware	isolation	is	usually	not	

provided
• Example	RSA	in	Amazon	EC2	[INCI16]
• Pros:

• Own	virtualized	OS.	Access	to	timers	or	
huge	pages

• If	deduplication	 enabled,	both	 	attacks	
are	applicable

• Cons:
• Requires	co-residency	of	VMs
• High	amount	of	noise

IaaS/PaaS	Cloud	Infrastructures

Hardware

VMM

Guest	OS	#1 Guest	OS	#2

VM VM

SpyVictim

• How	to	find	co-residency?
• Use	available	information!	
• Profile	the	target	LLC	accesses
• Does	the	cache	trace	match	the	trace	we	

expect?
• If	yes,	co-residency
• If	no,	open	more	VMs

• Other	mechanisms	utilize	memory	bus	
locking	attacks

• Example	RSA	exponentiations	easily	
distinguishable

IaaS/PaaS	Cloud	Infrastructures
http	request

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 110000

50

100

150

200

250

timeslot

R
el

oa
d

tim
e

Decryption
Start

First Secret
Exponent (dp)

Second Secret
Exponent (dq)

Guest	OS	#2

VM

Spy Guest	OS	#1

VM

Victim

Demo:	AES	Key	Recovery	Across	VMs
• We	utilize	KVM	hypervisor
• Server	using	T-table	AES	(T-tables	

shared)
• Server	encrypting	plaintext	with	

unknown	key
• Attacker	requests	decryptions	and	

recovers	the	key
• We	check	whether	the	entries	of	the	T-

tables	have	been	used
• We	XOR	with	the	ciphertext after	doing	

statistics	to	get	the	key

0x00

• Attacker	embeds	JS	into	the	website
• Victim	accesses	the	website	
• Victim’s	browser	executes	the	JS
• Example:	Incognito	browsing	profiling	[OREN15]
• Pros:	

• No	need	to	find	co-resident	target
• Attack	executed	in	local	machine	(although	

sandboxed)

• Cons:
• Flush	and	Reload	can	not	be	applied
• Fine	grain	timers	hard	to	achieve

Browser	Javascript

Hardware

www.yyyyy.com

• Smartphone	applications	are	logically	isolated	
by	the	OS

• However,	as	with	TEEs,	all	applications	utilize	
the	hardware	caches

• Micro-architectural	attacks	look	as	innocent	
binaries,	as	they	only	perform	timed	memory	
accesses

• Example:	AES	key	steal	across	apps	[LIPP16]

Smart	Phone	Applications

Hardware

Smart	Phone	Applications
• Pros:

• Deduplication	 is	generally	used	(e.g.	
Android)

• Easy	deployment

• Cons
• Flush	 instruction	has	to	be	enabled	by	

SoC (only	Samsun	S6	for	now)
• Pseudo	Random	Replacement	policies	

(reverse	engineered)
• Device	dependent	 algorithms	 (e.g.	

non-inclusive	caches	or	lockdown)

Trusted	Execution	Environment
• Trusted	execution	environments	

designed	to	achieve	isolation	from	
untrusted	processes

• But	both	trusted	and	untrusted	
environments	access	same	hardware	
caches!

• Enclave	to	enclave	or	host	to	enclave	
attacks	are	possible

• Example:	TrustZoneAES	key	steal	
[BRM15]

• Example:	Intel	SGX	RSA	key	steal	
[SCW17]

TEE
Enclave

LLC

Untrusted	
process

DRAM

Encrypted Non
Encrypted

Non	Encrypted

Non	Encrypted

• Pros
• Higher	resolution:	The	OS	can	be	

malicious!	more	fine	grain	resources	
(including	scheduling)

• No	need	to	find	co-resident	target
• Limited	noise:	malicious	OS	can	

interrupt	processes	after	(virtually)	
every	memory	access

• Cons
• Flush	and	Reload	not	applicable	

(deduplication	disabled)

Trust	Execution	Environment

Prime

Cache

• Pros
• Higher	resolution:	The	OS	can	be	

malicious!	more	fine	grain	resources	
(including	scheduling)

• No	need	to	find	co-resident	target
• Limited	noise:	malicious	OS	can	

interrupt	processes	after	(virtually)	
every	memory	access

• Cons
• Flush	and	Reload	not	applicable	

(deduplication	disabled)

Trust	Execution	Environment

Cache

Access

• Pros
• Higher	resolution:	The	OS	can	be	

malicious!	more	fine	grain	resources	
(including	scheduling)

• No	need	to	find	co-resident	target
• Low	noise:	malicious	OS	can	interrupt	

processes	after	(virtually)	every	memory	
access

• Cons
• Flush	and	Reload	not	applicable	

(deduplication	disabled)

Trust	Execution	Environment

Interrupt

Cache

Probe

Countermeasures

Design	Cache	Leakage	Free	Code
• Secret	independent	instruction	accesses
• Secret	independent	data	accesses
• Identification	of	variables	that	contain	information	related	to	

the	secret	(manual	inspection,	taint	analysis,	etc.)
• Obtain	cache	timing	traces	to	correlate	with	the	secret	

variables	to	measure	the	leakage

Collect	cache	
timing	

information
Correlation

Identify	
secret	

dependent
access

Design

Design	Cache	Leakage	Free	Code
CVE-2016-7439

Design	Cache	Leakage	Free	Code

secret	dependent	
instruction	access

CVE-2016-7439

Design	Cache	Leakage	Free	Code

Secret	independent	
instruction	access

CVE-2016-7439

Design	Cache	Leakage	Free	Code

Secret	independent
instruction	access

Secret	dependent	data	
access

CVE-2016-7439

Design	Cache	Leakage	Free	Code

Secret	independent	
instruction	access

Secret	independent	
data	access

Page	Coloring
• Avoiding	collisions	in	the	LLC
• Location	in	LLC	determined	by	physical	address
• Give	each	user	a	color	(address	bits)

00xxxxxx

01xxxxxx

10xxxxxx

11xxxxxx

DRAM

c

LLCPhysical
address

Users

Cache	Allocation	Technology
• Intel	CAT	provides	hardware	framework	to	lock	the	cache
• Allows	OS/hypervisor	to	mark	cache	ways	as	un-evictable
• Attacker	can	not	influence	victim’s	cache	accesses
• Modify	hypervisor	to	support	more	lock	partitions	[LIU16]

Lock

Cache

Cache	Allocation	Technology
• Intel	CAT	provides	hardware	framework	to	lock	the	cache
• Allows	OS/hypervisor	to	mark	cache	ways	as	un-evictable
• Attacker	can	not	influence	victim’s	cache	accesses
• Modify	hypervisor	to	support	more	lock	partitions	[LIU16]

Cache
Prime

Cache	Allocation	Technology
• Intel	CAT	provides	hardware	framework	to	lock	the	cache
• Allows	OS/hypervisor	to	mark	cache	ways	as	un-evictable
• Attacker	can	not	influence	victim’s	cache	accesses
• Modify	hypervisor	to	support	more	lock	partitions	[LIU16]

Cache
Probe

Behavior	Detection
• Hardware	Performance	Counters	(HPCs)	can	track	hardware	

events	(e.g.	LLC	misses)
• LLC	attacks	leave	a	clear	trace	in	terms	of	cache	misses/hits
• Hypervisor/OS	tracks	this	events	to	detect	unusual	behavior
• Detection	can	be	improved	by	inspecting	memory	access	

HardwareHPCs

Guest	OS	(Process) Guest	OS	(Process)

Hypervisor	 (OS)Detection

Countermeasure	Comparison	(Requirements)

Leakage	Free	
Code

Page	Coloring Intel	CAT Behavior
Detection

Require source	
code	change

Y N N N

Require OS	
(hypervisor)	
update

N Y Y Depends

Require new	
hardware

N N Y N

Countermeasure	Comparison	(Coverage)

Leakage	Free	
Code

Page	Coloring Intel	CAT Behavior	
Detection

IaaS/PaaS Y Y Depends Y

Javascript in	
broswer

Y Depends Depends Y

Smartphone Y Y Depends Y

TEE Y N N N

Key	Takeaways
• Cache attacks are complex but a real threat!
• Flush+Reload, Evict+Reload, Prime+Probe
• IaaS/PaaS, web browsers, smartphones, TEE,...What

else?
• Call to action:

• Application level: introduce cache leakage free code design
• Hypervisor/OS level: page coloring for cache isolation
• System level: use software to leverage hardware features (Intel

CAT, performance counters)

[INCI16]	Inci,M.,	Gulmezoglu,	B.,	Irazoqui,	G.,	Eisenbarth,	T.,	Sunar,	B.	Cache	
Attacks	Enable	Bulk	Key	Recovery	on	the	Cloud.	CHES	2016

[OREN15]	Oren,Y.,	Kemerlis,	V.,	Sethumadhavan,	S,	Keromytis,	A.		The	Spy	in	the	
Sandbox:	Practical	Cache	Attacks	in	JavaScript	and	their	Implications.	ACM	
CCS	2015

[BRM15]	Brumley,B.		Cache	Storage	Attacks.	CT-RSA	2015
[SCW17]	Schwarz,M.,	Weiser,S.,	Gruss,	D.,	Maurice,	C.,	Mangard,	S.	Malware	

Guard	Extension:	Using	SGX	to	Conceal	Cache	Attacks.	Arxiv 2017
[LIPP16]	Lipp,M.,	Gruss,	D.,	Spreitzer,	R.,	Maurice,	C.,	Mangard,	S.	

ARMageddon:	Cache	Attacks	on	Mobile	Devices.USENIX	2016
[LIU16]	Liu,	F.,	Yarom,	Y.,	Mckeen,	F.,	Rozas,	C.,	Heiser,	G.,	Lee	R.	CATalyst:	

Defeating	last-level	cache	side	channel	attacks	in	cloud	computing.	HPCA	
2016

References

