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• Gorka	Irazoqui
• PhD	candidate	in	WPI
• Intern	at	Intel	in	summer	2016
• Focus	on	micro-architectural	attacks
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Intel	|	Linux	|	OpenSSLRSA

Intel	(Cross-core)	|	Linux	(deduplication)	|	
GnuPGRSA

AMD	(cross	CPU)	|	Linux	|	OpenSSLAES	and	
GnuPGEl	Gamal
ARM	(cross	core/CPU)	|	Android	|	Bouncy	
Castle	AES



Functionality



LLC	as	a	Side	Channel?
• Caches:	fast	access	memories
• Why	would	an	attacker	use	LLC	as	covert	channel?

• Cross-core
• Inclusiveness
• High	 resolution



• Set	associative:	cache	divided	in	n-way	sets
• Location	in	the	cache	determined	by	physical	address
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• Requirement	1:	deduplication
• Identical	read-only	memory	

pages	are	shared
• Attacker	and	victim	access	the	

same	address
• Linux	and	KVM	(KSM),	Vmware

(TPS)	and	Android	(Zygote)
• Requirement	2:	flush	

instruction	(e.g.,	clflush in	x86)
• CVE	2014-3356:	Vmware

enabled	deduplication	by	
default

Flush	+	Reload	Attack
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• Attacker	flushes	a	cached	
memory	location

• Victim	accesses/does	not	
access

• Attacker	re-accesses	memory	
location
• Fast	access	time	->	victim	

accessed
• Slow	access	time	->	victim	did	not	

access

Flush	+	Reload	Attack

Reload

Cache



• Pros:
• Low	noise:	focus	on	one	line,	

noisy	process	needs	to	fill	an	
entire	set

• Applicable	across	CPU	sockets!	
Flush	instruction	invalidates	
memory	in	other	CPUs

• Works	in	non-inclusive	caches
• Cons:

• Requirement	might	be	met	in	
some	scenarios

• Can	only	recover	statically	
allocated	data

Flush	+	Reload	Attack	Summary
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Reload

Cache
• No	flush	instruction?
• Attacker	needs	to	evict	data	from	LLC
• Attacker	can	use	huge	pages
• Physical	address	selects	the	set	to	

occupy
• Attacker	evicts	(fills	set)
• Victim	accesses/does	not	access
• Attacker	reloads

• Fast	access	time	->	victim	accessed
• Slow	access	time	->	victim	did	not	access



• Pros:
• Applicable	in	processors	without	flush	instruction	(e.g.	most	ARM	

processors)

• Cons:
• Can	only	target	statically	allocated	memory
• Deal	with	LLC	slices	(undocumented)
• Only	works	with	inclusive	caches
• Only	works	in	the	same	CPU	socket

Evict	+	Reload	Attack	Summary



• No	shared	memory	pages?
• Attacker	can	know	the	set	utilized	

by	the	victim

• Attacker	Primes

Prime	+	Probe	Attack
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• No	shared	memory	pages?
• Attacker	can	know	the	set	utilized	

by	the	victim

• Attacker	Primes
• Victim	accesses/not	accesses
• Attacker	re-accesses

• Fast	access	time	->	victim	
accessed

• Slow	access	time	->	victim	did	not	
access

Prime	+	Probe	Attack
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• Pros
• Does	not	need	shared	memory!		(Broader	impact)
• Can	target	static	and	dynamically	allocated	memory!

• Cons:
• Noisier	than	Flush	+ Reload
• Dealing	with	LLC	slices	(undocumented)
• Only	works	with	inclusive	caches
• Only	works	in	the	same	CPU	socket
• Need	to	identify	the	target	set

Prime	+	Probe	Attack	Summary



How	to	retrieve	information?
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How	to	retrieve	information?

Prime	and	Probe
Cache

Montgomery	ladder	RSA

P=0x7fffc480
Physical	address



Attack	Comparison

Flush	+	Reload Evict	+	Reload Prime	+	Probe

Require	Memory
Deduplication

Y Y N

Require	flush
instruction

Y N N

Attackmemory	 		
type

static static static +	dynamic

Noise low low high



Applicability



• VMs	share	underlying	hardware
• Hardware	isolation	is	usually	not	

provided
• Example	RSA	in	Amazon	EC2	[INCI16]
• Pros:

• Own	virtualized	OS.	Access	to	timers	or	
huge	pages

• If	deduplication	 enabled,	both	 	attacks	
are	applicable

• Cons:
• Requires	co-residency	of	VMs
• High	amount	of	noise

IaaS/PaaS	Cloud	Infrastructures

Hardware

VMM

Guest	OS	#1 Guest	OS	#2

VM VM

SpyVictim



• How	to	find	co-residency?
• Use	available	information!	
• Profile	the	target	LLC	accesses
• Does	the	cache	trace	match	the	trace	we	

expect?
• If	yes,	co-residency
• If	no,	open	more	VMs

• Other	mechanisms	utilize	memory	bus	
locking	attacks

• Example	RSA	exponentiations	easily	
distinguishable

IaaS/PaaS	Cloud	Infrastructures
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Demo:	AES	Key	Recovery	Across	VMs
• We	utilize	KVM	hypervisor
• Server	using	T-table	AES	(T-tables	

shared)
• Server	encrypting	plaintext	with	

unknown	key
• Attacker	requests	decryptions	and	

recovers	the	key
• We	check	whether	the	entries	of	the	T-

tables	have	been	used
• We	XOR	with	the	ciphertext after	doing	

statistics	to	get	the	key

0x00



• Attacker	embeds	JS	into	the	website
• Victim	accesses	the	website	
• Victim’s	browser	executes	the	JS
• Example:	Incognito	browsing	profiling	[OREN15]
• Pros:	

• No	need	to	find	co-resident	target
• Attack	executed	in	local	machine	(although	

sandboxed)

• Cons:
• Flush	and	Reload	can	not	be	applied
• Fine	grain	timers	hard	to	achieve

Browser	Javascript

Hardware

www.yyyyy.com



• Smartphone	applications	are	logically	isolated	
by	the	OS

• However,	as	with	TEEs,	all	applications	utilize	
the	hardware	caches

• Micro-architectural	attacks	look	as	innocent	
binaries,	as	they	only	perform	timed	memory	
accesses

• Example:	AES	key	steal	across	apps	[LIPP16]

Smart	Phone	Applications

Hardware



Smart	Phone	Applications
• Pros:

• Deduplication	 is	generally	used	(e.g.	
Android)

• Easy	deployment

• Cons
• Flush	 instruction	has	to	be	enabled	by	

SoC (only	Samsun	S6	for	now)
• Pseudo	Random	Replacement	policies	

(reverse	engineered)
• Device	dependent	 algorithms	 (e.g.	

non-inclusive	caches	or	lockdown)



Trusted	Execution	Environment
• Trusted	execution	environments	

designed	to	achieve	isolation	from	
untrusted	processes

• But	both	trusted	and	untrusted	
environments	access	same	hardware	
caches!

• Enclave	to	enclave	or	host	to	enclave	
attacks	are	possible

• Example:	TrustZoneAES	key	steal	
[BRM15]

• Example:	Intel	SGX	RSA	key	steal	
[SCW17]

TEE
Enclave

LLC

Untrusted	
process

DRAM

Encrypted Non
Encrypted

Non	Encrypted

Non	Encrypted



• Pros
• Higher	resolution:	The	OS	can	be	

malicious!	more	fine	grain	resources	
(including	scheduling)

• No	need	to	find	co-resident	target
• Limited	noise:	malicious	OS	can	

interrupt	processes	after	(virtually)	
every	memory	access

• Cons
• Flush	and	Reload	not	applicable	

(deduplication	disabled)

Trust	Execution	Environment

Prime

Cache
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• Pros
• Higher	resolution:	The	OS	can	be	

malicious!	more	fine	grain	resources	
(including	scheduling)

• No	need	to	find	co-resident	target
• Low	noise:	malicious	OS	can	interrupt	

processes	after	(virtually)	every	memory	
access

• Cons
• Flush	and	Reload	not	applicable	

(deduplication	disabled)

Trust	Execution	Environment

Interrupt

Cache

Probe



Countermeasures



Design	Cache	Leakage	Free	Code
• Secret	independent	instruction	accesses
• Secret	independent	data	accesses
• Identification	of	variables	that	contain	information	related	to	

the	secret	(manual	inspection,	taint	analysis,	etc.)
• Obtain	cache	timing	traces	to	correlate	with	the	secret	

variables	to	measure	the	leakage

Collect	cache	
timing	

information
Correlation

Identify	
secret	

dependent
access

Design



Design	Cache	Leakage	Free	Code
CVE-2016-7439
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Design	Cache	Leakage	Free	Code

Secret	independent	
instruction	access

Secret	independent	
data	access



Page	Coloring
• Avoiding	collisions	in	the	LLC
• Location	in	LLC	determined	by	physical	address
• Give	each	user	a	color	(address	bits)

00xxxxxx

01xxxxxx

10xxxxxx

11xxxxxx

DRAM

c

LLCPhysical
address

Users



Cache	Allocation	Technology
• Intel	CAT	provides	hardware	framework	to	lock	the	cache
• Allows	OS/hypervisor	to	mark	cache	ways	as	un-evictable
• Attacker	can	not	influence	victim’s	cache	accesses
• Modify	hypervisor	to	support	more	lock	partitions	[LIU16]

Lock

Cache
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• Intel	CAT	provides	hardware	framework	to	lock	the	cache
• Allows	OS/hypervisor	to	mark	cache	ways	as	un-evictable
• Attacker	can	not	influence	victim’s	cache	accesses
• Modify	hypervisor	to	support	more	lock	partitions	[LIU16]

Cache
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Behavior	Detection
• Hardware	Performance	Counters	(HPCs)	can	track	hardware	

events	(e.g.	LLC	misses)
• LLC	attacks	leave	a	clear	trace	in	terms	of	cache	misses/hits
• Hypervisor/OS	tracks	this	events	to	detect	unusual	behavior
• Detection	can	be	improved	by	inspecting	memory	access	

HardwareHPCs

Guest	OS	(Process) Guest	OS	(Process)

Hypervisor	 (OS)Detection



Countermeasure	Comparison	(Requirements)

Leakage	Free	
Code

Page	Coloring Intel	CAT Behavior
Detection

Require source	
code	change

Y N N N

Require OS	
(hypervisor)	
update

N Y Y Depends

Require new	
hardware

N N Y N



Countermeasure	Comparison	(Coverage)

Leakage	Free	
Code

Page	Coloring Intel	CAT Behavior	
Detection

IaaS/PaaS Y Y Depends Y

Javascript in	
broswer

Y Depends Depends Y

Smartphone Y Y Depends Y

TEE Y N N N



Key	Takeaways
• Cache attacks are complex but a real threat!
• Flush+Reload, Evict+Reload, Prime+Probe
• IaaS/PaaS, web browsers, smartphones, TEE,...What 

else?
• Call to action:

• Application level: introduce cache leakage free code design
• Hypervisor/OS level: page coloring for cache isolation
• System level: use software to leverage hardware features (Intel 

CAT, performance counters)
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