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“You must be kidding, cache attacks are not
practicall”
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Storlng secret crypto keys in the Amazon
cloud? New attack can steal them

Technique allows full recovery of 2048-bit RSA key stored in Amazon's EC2 service.

DAN GOODIN - 9/28/2015, 2:55 PM
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Security considerations and disallowing inter-Virtual Machine
Transparent Page Sharing (2080735)
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Only Sandy Bridge (and earlier) Intel CPUs are affected
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the already infamous DROWN attack but also patched seven other security
flaws, one labeled as high, one moderate, and five as low severity.
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ANDROID DEVICES VULNERABLE TO ARMAGEDDON CACHE ATTACK Yesterday's OpenSSL updates (1.0.2g and 1.0.1s) not only brought a fix against

the already infamous DROWN attack but also patched seven other security

SECURITY NEWS | AUGUST 15, 2016 flaws, one labeled as high, one moderate, and five as low severity.

The paper ARMageddon: Cache Attacks on Mobile Devices have been included in 25th USENIX Security Symposium. The
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LLC as a Side Channel?

 (Caches: fast access memories

 Why would an attacker use LLC as covert channel?
* Cross-core
* Inclusiveness
e High resolution

3 N
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Cache Architecture

e Set associative: cache divided in n-way sets

* Location in the cache determined by physical address
Cache
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MMU
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Cache tag l Set : Byte
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Flush + Reload Attack

* Requirement1: deduplication mZL".::'es
* |dentical read-only memory
pages are shared

e Attacker and victim access the
Sa me addreSS Shared (common) pages

* Linuxand KVM (KSM), Vmware Hyperdsor
(TPS) and Android (Zygote) —
* Requirement2: flush
instruction (e.g., clflush in x86) - I |
Security considerations and disallowing inter-Virtual Machine

* CVE 2014-3356: Vmware Transparent Page Sharing (2080735)
enabled deduplication by

d efa u | t This article acknowledges the recent academic research that leverages Transparent Page Sharing (TPS) to gain unauthorized access to data under
certain highly controlled conditions and documents Vware's precautionary measure of restricting TPS to individual virtual machines by default in

Private pages| |Private pages| |Private pages

Physical machine

upcoming ESXi releases. At this time, VMware believes that the published information disclosure due to TPS between virtual machines is impractical in a
real world deployment



Flush + Reload Attack

e Attacker flushes a cached Cache
memory location




Flush + Reload Attack

e Attacker flushes a cached Cache
memory location

Flush




Flush + Reload Attack

e Attacker flushes a cached Cache
memory location

* Victim accesses/does not
access

Access



Flush + Reload Attack

e Attacker flushes a cached Cache
memory location

* Victim accesses/does not
access

* Attacker re-accesses memory
location

* Fast access time -> victim
accessed

* Slow access time -> victim did not
access

Reload




Flush + Reload Attack Summary

* Pros:

Low noise: focus onone line,
noisy process needs to fill an
entire set

Applicable across CPU sockets!

Flush instruction invalidates
memory in other CPUs

Works in non-inclusive caches

e Cons:

Requirement might be met in
some scenarios

Canonlyrecover statically
allocated data

LOCAL
MEM | pram tink

(sLow)

DRAM Link

LOCAL | (stow
MEM

CPUO

Cache

HT Link
(FAST)

CPU 2

Cache

-
HT Link
(FAST)

HT Link
(FAST)

CPU 1
Cache

HT Link
(FAST)

CPU3
Cache

DRAM Link
(sLow)

DRAM Link
(SLow)

LOCAL
MEM

LOCAL
MEM




Evict + Reload Attack

* No flush instruction?

* Attacker needs to evict data from LLC
* Attacker can use huge pages

* Physical address selects the set to

O CC u 12 bits
Py —
Virtual
Addr: Offset
I
| I | l
| I I [
| I | |
| | I 1 |
[ lfLT)l
| I |
D I
—Ll==
P 19 [
| | L3 |
o
[ Tl [
N
Virtual
Addr: Offset

4 KB page
Offset=12 bits

2MB page
Offset= 21 bits



Evict + Reload Attack

* No flush instruction?
e Attacker needs to evict data from LLC
* Attacker can use huge pages

Cache

* Physical address selects the set to
occupy

* Attacker evicts (fills set)

Evict
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Evict + Reload Attack

* No flush instruction?
e Attacker needs to evict data from LLC
* Attacker can use huge pages

Cache

* Physical address selects the set to
occupy

* Attacker evicts (fills set)

e Victim accesses/does not access

Access

©



Evict + Reload Attack

* No flush instruction?
e Attacker needs to evict data from LLC
* Attacker can use huge pages

Cache

* Physical address selects the set to
occupy

* Attacker evicts (fills set)

e Victim accesses/does not access

Reload

e Attacker reloads
* Fast access time -> victim accessed %

* Slow access time -> victim did not access



Evict + Reload Attack Summary

* Pros:
* Applicablein processors withoutflush instruction (e.g. most ARM
processors)
* Cons:

 Canonlytarget statically allocated memory
* Deal with LLC slices (undocumented)

* Only works with inclusive caches

* Onlyworks inthe same CPU socket



Prime + Probe Attack

* No shared memory pages?

. Attacker- cqn know the set utilized Cache
by the victim

e Attacker Primes

Prime




Prime + Probe Attack

* No shared memory pages?

. Attacker- cqn know the set utilized Cache
by the victim

e Attacker Primes
* Victim accesses/not accesses

Access

@



Prime + Probe Attack

* No shared memory pages?

. Attacker- cqn know the set utilized Cache
by the victim

e Attacker Primes
* Victim accesses/not accesses

e Attacker re-accesses

* Fast access time -> victim
accessed

 Slow access time -> victim did not Probe

aCcess %




Prime + Probe Attack Summary

°* Pros
 Does not need shared memory! (Broaderimpact)
* Cantargetstaticand dynamically allocated memory!

* Cons:
* Noisierthan Flush + Reload
e Dealing with LLC slices (undocumented)
* Only works with inclusive caches
* Only works inthe same CPU socket
* Need toidentifythe target set



How to retrieve information?

Montgomery ladder RSA

1 function modpow (a,b):

Input : base b, modulus N, secret Flush and Reload
E = (ek—11 "'961360)

Output: b mod N Cache

Ro =1 Rl = b;

if ¢,==0 then

Ry = Ro * Ry mod N; PhyS|Ca| address

RO = RO LS RO mOd N: ‘ P=0X7fffc480
end
i _

E=RE- - T T LI S PR

R0=R0*R1 mod N;
Ry = Ry * Ry mod N;

—
=

11 end
12 end
13 return Ry:
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How to retrieve information?

Montgomery ladder RSA

1 function modpow (a,b):

Input : base b, modulus N, secret Flush and Reload
E = (ek—11 "'961360)
Output: b mod N Cache

ZRo—l Rl—b

T el};I—i tgzil R; mod N: Physical address _
Ry = Ry * Ry mod N; ‘ P=0x7fffc480
end
Ielse |
1 Ry = Ry * Ry mod N
1 end
13 end

13 return Ry:




How to retrieve information?

Montgomery ladder RSA

1 function modpow (a,b):

E=RE- - T T LI S PR

—
=

11

12

Input : base b, modulus N, secret
E = (ek—11 "'961360)

Output: b mod N

Ro =1 R1 =b:
for i =k — ownto 0 do
if ¢;==0 then
Rl =R0*R1 mod N:
4 Ry = Ry * Ry mod N;
end
else
R0=R0*R1 mod N;
Ry = Ry * Ry mod N;
end
end

13 return Ry:

Flush and Reload
Cache

Physical address

‘ P=0x7fffc480




How to retrieve information?

Montgomery ladder RSA

1 function modpow (a,b):

Input : base b, modulus N, secret Flush and Reload
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Output: b mod N Cache

Ro =1 Rl = b;

Rl = Ro* Ry mod N; Physical address
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11 end
12 end
13 return Ry:




How to retrieve information?

Montgomery ladder RSA

1 function modpow (a,b):

Input : base b, modulus N, secret Prime and Probe
E = (ek—le "'981980)
Output: b¥ mod N Cache

R, = Ro * Ry mod N: Physical address
Ry=Ry* Rymod N; mmmmmp  P=0x7fffc480

=T -2 N7 TR SN PR

Ro = Ro * Ry mod N
Ry = R; * Ry mod N:

—
=

11 end
12 end
13 return Ry:




How to retrieve information?

Montgomery ladder RSA

1 function modpow (a,b):

Input : base b, modulus N, secret Prime and Probe
FE = (ek_l, ...,81,80)
Output: b¥ mod N Cache
3
: _ e‘;:g t;;zll T mod V- Physical address
6 4 Ry = Ry* Rymod N; P=0x7fffc480
7 end
8 else
9 Ro = Ro * Ry mod N;
10 Ry = Ry * Ry mod N;
1 end
12 end

13 return Ry:




How to retrieve information?

Montgomery ladder RSA

1 function modpow (a,b):

Input : base b, modulus N, secret Prime and Probe
E = (ek—le "'981980)
Output: b¥ mod N Cache

R, = Ro * Ry mod N: Physical address
Ry=Ry* Rymod N; mmmmmp  P=0x7fffc480

=T -2 N7 TR SN PR

Ro = Ro * Ry mod N
Ry = R; * Ry mod N:

—
=

11 end
12 end
13 return Ry:




Attack Comparison

Flush + Reload Evict + Reload Prime + Probe
Require Memory Y Y N
Deduplication
Require flush Y N N
instruction
Attack memory static static static + dynamic
type
Noise low low high




Applicability



laaS/PaaS Cloud Infrastructures

* VMs shareunderlying hardware

 Hardwareisolationisusually not

provided
* ExampleRSAin Amazon EC2 [INCI16] - ’
* Pros:
* Ownvirtualized OS. Access to timers or VMM
huge pages
* If deduplication enabled, both attacks Hardware

are applicable

e (Cons:

e Requires co-residency of VMs
* High amount of noise




laaS/PaaS Cloud Infrastructures

* How tofind co-residency? - htto request
e Use availableinformation! '-

* Profilethe target LLC accesses

e Does the cache trace match the trace we 1
expect?
* Ifyes, co-residency

* If no, open more VMs

?

W

e Other mechanisms utilize memory bus T e mmm e

distinguishable

locking attacks
» Example RSA exponentiations easily }

00000




Demo: AES Key Recovery Across VMs

We utilize KVM hypervisor

* Server using T-table AES (T-tables S,
shared) l

* Server encrypting plaintextwith
known key - {0x63,0x7b, Ox7c Ox6 1}

* Attacker requests decryptionsand \ l
OxOO

recovers the key K, = @
We check whether the entries of the T- l \, l
tables have been used C, = {0x63,0x7b,0x7c,0x6f} C

0
 We XOR with the ciphertext after doing

statistics to get the key



Browser Javascript

e Attacker embeds JS into the website

* Victim accesses the website WWW.yyyyy.com

* Victim’s browser executes the JS

* Example:Incognito browsing profiling [OREN15] | s_:(_f)
* Pros: Javgjc?ipt
* Noneed to find co-resident target
e Attackexecuted in local machine (although
sandboxed)
* Cons:

e Flush and Reload can not be applied
* Fine grain timers hard to achieve

Hardware



Smart Phone Applications

Smartphone applications are logicallyisolated
by the OS

However, as with TEEs, all applications utilize
the hardware caches

Micro-architectural attacks look asinnocent
binaries, as they only perform timed memory
accesses

Example: AES key steal across apps [LIPP16]

l

Hardware



Smart Phone Applications

* Pros:

Deduplication is generally used (e.g.
Android)

 Easydeployment
* Cons
* Flush instruction has to be enabled by
SoC (only Samsun S6 for now)
* Pseudo Random Replacement policies
(reverse engineered)

Device dependent algorithms (e.g.
non-inclusive caches or lockdown)

Zygote

Zygote heap

(shared dirty,
Copy-on-write;
rarely written)

core library
dex files

Maps

Maps
dex file
(mmap()ed)

Maps live
code and heap

(private dirty)

Browser

Browser
dex file
(mmap()ed)

Browser live
code and heap

(private dirty)

Home

Home
dex file
(mmap()ed)

Home live
code and heap

(private dirty)

(mmap()ed)

shared from

| shared from | |

Z

| | shared from

Zygote

Zygote T |
//

s

=




Trusted Execution Environment

* Trusted execution environments
designed to achieve isolationfrom
untrusted processes -
* Butboth trusted and untrusted \
environmentsaccess same hardware

caches! Non Encrypted
* Enclaveto enclave or hostto enclave

attacks are possible

* Example:TrustZone AES key steal -
[BRM15]
* Example:Intel SGX RSA key steal DRAM

[SCW17]



Trust Execution Environment

°* Pros

* Higher resolution: The OS can be Cache

malicious! more fine grain resources
(including scheduling)

* No needto find co-resident target

* Limited noise: malicious OS can
interrupt processes after (virtually)
every memory access

* Cons

Prime

* FlushandReload notapplicable
(deduplication disabled) %
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Trust Execution Environment

°* Pros

* Higher resolution: The OS can be Cache

malicious! more fine grain resources
(including scheduling)

* No needto find co-resident target

* Low noise: malicious OS can interrupt
processes after (virtually) every memory
access

[ ]
Cons Probe

* FlushandReload notapplicable
(deduplication disabled) — @
Interrupt




Countermeasures



Design Cache Leakage Free Code

e Secretindependentinstruction accesses

* Secretindependentdata accesses

* |dentification of variables that contain information related to
the secret (manual inspection, taint analysis, etc.)

* Obtain cache timingtraces to correlate with the secret
variables to measure the leakage

Identify
secret
dependent
access

Collect cache

timing Correlation
information




Design Cache Leakage Free Code

function modpow (a,b): CVE-2016-7439
Input : base b, modulus N, secret

E = (ex_1,...,€1,€p)
Output: b* mod N

2 R() =1; Rl = b;

3 for i =k —1 downto 0 do

4 if €;==0 then

S R, = Rog * Ry mod N;
6 Ry = Ry * Ry mod N
7 end

8 else

9 Ro = Ro * Ry mod N;
10 Ry =R, * Ry mod N;
1 end

12 end

13 return Ry:




Design Cache Leakage Free Code

E=R- A AT LT SN R B

—
=

11
12

13

function modpow (a,b);

Input : base b, modulus N, secret
FE = ((’.k_l.....(’.l.eo)
Output: b* mod N

Ro =1; Rl = b;
for i = k — 1 downto 0 do
if ¢;==0 then
1 = Ho * Ry mod N;
Ry = Ry * Ry mod N
end
0o = Ro* Ry mod N;
Ry =R, * Ry mod N;
end
end
return Ry:

-‘/',

1 . .

CVE-2016-7439

secret dependent
instruction access



Design Cache Leakage Free Code

CVE-2016-7439

function modpow (a,b);
Input : base b, modulus N, secret
E=(ex_1,...,€1,€0)
Output: b¥ mod N
R[0]=1: R[1] =b:
for i = k — 1 downto 0 do
R[é;] = R[0] * R[1] mod N;
Rle;] = Rle;] * R[e;] mod N
end
return R[0]:

-

Secret independent
instruction access

e - Y S




Design Cache Leakage Free Code

CVE-2016-7439

function modpow (a,b);
Input : base b, modulus N, secret
E=(ex_1,...,€1,€0)
Output: b¥ mod N
R[0] = 1: R[1] = b:
for i = k — 1 downto 0 do
R[é;] = R[0] * R[1] mod N’;
IR[e;] = Rle;] * R[e;] mod N |
end
return R[0]:

Secret independent
instruction access

Secret dependent data
access

e - Y S




Design Cache Leakage Free Code

1 function modpow (a,b):
Input : base b, modulus N, secret
E = (ex—_1,...,€1,€0)

Output: b*¥ mod N
R[0] = 1: R[1] = b;
for i = k — 1 downto 0 do

R[0] x e; + R[1] * é¢; = R[0] *x R[1] mod N

R[1] * R[1] x e; + R[0] * R[0] * €; mod N;

6 end
7 return R[0];

Secret independent
instruction access

_ w9

Secret independent
data access

h




Page Coloring

* Avoidingcollisionsin the LLC

* Locationin LLC determined by physical address
* Give each user a color (address bits)

DRAM Physical

address
‘m 2
. . l OOXXXXXX
I

Users LLC

OIxxxXXXX

XXXXXX

e e T

TIXXXXXX

Jelb=lbsibe

L[ [
IRV




Cache Allocation Technology

* Intel CAT provides hardware framework to lock the cache
* Allows OS/hypervisor to mark cache ways as un-evictable
e Attacker can notinfluence victim’s cache accesses

* Modify hypervisorto support more lock partitions [LIU16]

Cache

Lock




Cache Allocation Technology

* Intel CAT provides hardware framework to lock the cache
* Allows OS/hypervisor to mark cache ways as un-evictable
e Attacker can notinfluence victim’s cache accesses

* Modify hypervisorto support more lock partitions [LIU16]

Cache

Prime m—)p




Cache Allocation Technology

* Intel CAT provides hardware framework to lock the cache
* Allows OS/hypervisor to mark cache ways as un-evictable
e Attacker can notinfluence victim’s cache accesses

* Modify hypervisorto support more lock partitions [LIU16]

Cache

Probe ‘




Behavior Detection

 Hardware Performance Counters (HPCs) can track hardware
events (e.g. LLC misses)

e LLC attacks leave a clear trace in terms of cache misses/hits
* Hypervisor/OS tracks this events to detect unusual behavior
* Detection can be improved by inspecting memory access

Guest OS (Process)




Countermeasure Comparison (Requirements)

Leakage Free Page Coloring Intel CAT Behavior
Code Detection

Require source Y N N N
code change
Require OS N Y Y Depends
(hypervisor)
update
Require new N N Y N

hardware




Countermeasure Comparison (Coverage)

Leakage Free Page Coloring Intel CAT Behavior
Code Detection
laaS/PaaS Y Y Depends Y
Javascriptin Y Depends Depends Y
broswer
Smartphone Y Y Depends Y

TEE Y N N N




Key Takeaways

« Cache attacks are complex but a real threat!
 Flush+Reload, Evict+Reload, Prime+Probe

* |laaS/PaaS, web browsers, smartphones, TEE,...What
else?

 Call to action:
« Application level: introduce cache leakage free code design
« Hypervisor/OS level: page coloring for cache isolation

« System level: use software to leverage hardware features (Intel
CAT, performance counters)
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