blgc’zk hat

ASIA 2017

MARCH=28-31,2017

I\/|A|=IINA BAY SANDS / SINGAPRPORE

Myth and Truth about
Hypervisor-Based Kernel Protector:

The Reason Why You Need Shadow-Box

Seunghun Han, Jungwhan Kang
(hanseunghun || ultract)@nsr.re.kr

Who are we ?

- Senior security researcher at NSR (National
Security Research Institute of South Korea)

R o - Speaker at HITBSecConf 2016

- Author of the book series titled “64-bit multi-
core OS principles and structure, Vol.1&2"
- a.k.a kkamagui, @kkamaguil

- Researcher at NSR
- Participated final round of some CTFs
- | (Codegate, ISEC... held in South Korea)
/| - Interested in OS security and reading write-up of CTFs
- Got married last year ©
’ . 4 -ak.aultract, @ultractt

Goal of This Presentation

- We present lightweight hypervisor-based

kernel protector, “Shadow-box”
- Shadow-box defends kernel from security threats
efficiently, and we made it from scratch

- We share lessons learned from deploying
and operating Shadow-box in real world

systems
- We have been operating Shadow-box since
last year and share lessons learned!

Background
Design
Implementation

| essons Learned

(and the Truth Previous Researches Did Not Tell You)

Demo. and Conclusion
(Black Hat Sound Bytes)

Linux Kernel Is Everywhere!

Security Threats of Linux Kernel

- The Linux kernel suffers from rootkits and

security vulnerabilities

- Rootkits: EnyelLKM, Adore-ng, Sebek, suckit,
kbeast, and so many descendants

- Vulnerabillities: CVE-2014-3153, CVE-2015-3636,
CVE-2016-4557, CVE-2017-6074, etc.

Devices which use Linux kernel
share security threats

Melee Combats at the Kernel-level

- Kernel-level (Ring 0) protections are not

enough

- Lots of rootkits and exploits work in the Ring O level
- Protections against them are often easily bypassed
and neutralized
- Kernel Object Hooking (KOH)
- Direct Kernel Object Manipulation (DKOM)

Protections need
an even lower level (Ring -1)

Well-known Rootkits

Name

Modified Kernel Object

Type

Attribute

Note

EnyeLKM 1.3

syscall_trace_entry

sysenter_entry

module->list
init_net->proc_net->subdir->tcp_data->tcp4_seq_show

Code
Code
Data
Function pointer

Static
Static
Dynamic
Dynamic

code change,

syscall hook,

direct kernel object
manipulation (DKOM)

Adore-ng 0.56

vfs_root->f_op->write
vfs_root->f_op->readdir
vfs_proc->f_dentry->d_inode->i_op->lookup
socket_udp->ops->recvmsg

Function pointer
Function pointer
Function pointer
Function pointer

Dynamic
Dynamic
Dynamic
Dynamic

function pointer hook

sys_call_table
vfs_proc_net_dev->get_info
vfs_proc_net_packet->proc_fops
module->list

System table
Function pointer
Function pointer
Data

Static

Dynamic
Dynamic
Dynamic

syscall hook,
function pointer hook,
DKOM

Suckit 2.0

idt_table
sys_call_table

System table
System table

Static
Static

idt hook,
syscall hook

kbeast vl

sys_call_table
init_net->proc_net->subdir->tcp_data->tcp4_seq_show
module->list

System table
Function pointer
Data

Static
Dynamic
Dynamic

syscall hook,
function pointer hook,
DKOM

Other rootkits also have
similar patterns

Taking the Higher Ground

- Leveraging virtualization technology (VT)
- VT separates a machine into a host (secure world)
and a guest (normal world)
- The host in Ring -1 can freely access/control
the guest in Ring O (the converse doesn’t hold)
- VT-equipped HW: Intel VT-x, AMD AMD-v,
ARM TrustZone

Trends of Introducing Ring -1

Host Virtualization Technology Guest
(Secure World) (T.Z., VT-X, AMD-v) (Normal World)

Moor, cotrol
User : 2 User
-
(X
(X
Kernel QX Kernel

Host OS Guest OS

Previous Researches...

SecVisor: A Tiny Hypervisor to Provide
Lifetime Kernel Code Integrity for Commodity OSes:

Arvind Seshadri
CyLab/CMU
Pittsburgh, PA, USA

Mark Luk
CyLab/CMU

Pittsburgh, PA, USA

Ning Qu Adrian Perrig
CyLab/CMU CyLab/CMU
Pittsburgh, PA, USA Pittsburgh, PA, USA

arvinds@cs.cmu.edu mluk@ece.cmu.edu quning@cmu.edu perrig@cmu.edu

ABSTRACT

We propose SecVisor, a tiny hypervisor that ensures code integrity
for commodity OS kernels. In particular, SecVisor ensures that
only user-approved code can execute in kernel mode over the en-
tire system lifetime. This protects the kernel against code injection
attacks, such as kemnel rootkits. SecVisor can achieve this prop-
erty even against an attacker who controls everything but the CPU,
the memory controller, and system memory chips. Further, SecVi-
sor can even defend against attackers with knowledge of zero-day
kernel exploits.

Our goal is to make SecVisor amenable to formal verification

1. INTRODUCTION

Computing platforms are steadily increasing in complexity, in-
corporating an ever-growing range of hardware and supporting an
ever-growing range of applicati C quently, the plex-
ity of OS kernels is steadily increasing. The increased complexity
of OS kernels also increases the number of security vulnerabili-
ties. The effect of these vulnerabilities is compounded by the fact
that, despite many efforts to make kernels modular, most kemels in
common use today are monolithic in their design. A compromise of
any part of a monolithic kemel could compromise the entire kernel.
Since the kemel occupies a privileged position in the software stack

Lares: An Architecture for Secure Active Monitoring Using Virtualization

Bryan D. Payne Martim Carbone Monirul Sharif Wenke Lee
School of Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332-0765
{bdpayne,mcarbone,msharif,wenke} @cc.gatech.edu

Ab:

Host-based security tool.
sion detection systems are r
day’s computers. Malware
ately disable any security t
ing them useless. While cu
moving these vulnerable sec
tual machine, this approach

(xueyang.wang | | xiaofei.rex.guo) *noSPAM* intel.com

blackhat

AS|A 2005

NumcChecker:

A System Approach for Kernel Rootkit
Detection and Identification

Xueyang Wang, Ph.D.
Xiaofei (Rex) Guo, Ph.D.

Guest-Transparent Prevention of Kernel Rootkits with VMM-based
Memory Shadowing

Ryan Riley
Purdue University
rileyrd@cs.purdue.edu

Xuxian Jiang Dongyan Xu
George Mason University Purdue University
xjiang@gmu.edu dxu@cs purdue.edu

Abstract

Kernel rootkits pose a significant threat to computer systems as they run at the highest privilege level
and have unrestricted access to the resources of their victims. Many current efforts in kernel rootkit de-
fense focus on the detection of kernel rootkits — after a rootkit attack has taken place, while the smaller
number of efforts in kernel rootkit prevention exhibit limitations in their capability or deployability. In
this paper we present a kernel rootkit prevention system called NICKLE which addresses a common, fun-
damental characteristic of most kernel rootkits: the need for executing their own kernel code. NICKLE
is a lightweight, virtual machine monitor (VMM) based system that transparently prevents unauthorized
kernel code execution for unmodified commodity (guest) OSes. NICKLE is based on a new scheme

Ensuring Operating System Kernel Integrity with OSck

Owen S. Hofmann Alan M. Dunn Sangman Kim Indrajit Roy* Emmett Witchel
The Uni
{osh,adunn,sangm

Abstract

modify operating system state to a
i threat to system security. This pag
1t discovers kernel rootkits by det
1s to operating system data. OSch
1 techniques for detecting rootkits,
r large portions of the kernel heap
educe type information for verifica
kernel source code and in-memory

e integrity checks that execute ¢
ating system create data races, and
¢ solution for ensuring kernel men

introduce two new classes of ker

Researches Are Excellent, But They Look ...

| heard and knew about them
But, | can not find in real world!

Restrictions on Previous Researches (1)

- Many researches have preconditions
- They usually change kernel code or hypervisor
- They also need well-known hashes of LKM,
well-known value of kernel data, secure VM
for analyzing target VM, etc.

= I\/Iany researches consume much resource
- The host and the guest run each OS
- They allocate resources independently!
- The host consumes many CPU cycles to introspect
the guest because of semantic gap

Restrictions on Previous Researches (2)

- In conclusion, previous researches are

considered for laboratory environment only

- They assume they can control environment!
- But, real world environment is totally different from

laboratory environment! WELCOME TO
- You even don't know the s
actual environment before .

the software Is Iinstalled!

"(4 ;L

e :
9.4 ’
. 3 L . A!
4 LI .
) L {)
o ¥ “d
(223 :
f 4 - J { o
o { i Koim.
’ AL S b) b 207
= 2o et > 3 - Y ¥
Tp e e «
T

EAL WORLD!

Therefore,

PRACTICAL and LIGHTWEIGHT

mechanism Is needed for

REAL WORLD ENVIRONMENT!

Design Goals of Kernel Protector

- Lightweight
- Focus on rootkit detection and protection
- Simple and extensible architecture
- Small memory footprint
- No secure VMs and no multiple OSes

- Practical
- Out-of-box approach
- No modification of kernel code and data
- Dynamic injection
- Load any time from boot to runtime

Background
Design
Implementation

| essons Learned

(and the Truth Previous Researches Did Not Tell You)

Demo. and Conclusion
(Black Hat Sound Bytes)

Security Architecture in Shadow Play

—

=P
- f\\ ~g \ % ,/'

» | p— VA
x Ny -1 A B |
- “\\\-\ ‘ N - a 4 =
\ / Ve "W
| v o R I
' (W9

Audience

Security Architecture in Shadow Play

| We named this architecture
“Shadow-box” |

3 . " s
, . "",,?" y/ ' = \\ , .
4 = “ A7 @ @
\'r’fﬂ W W
Security Monitor
N (Shadow-Watcher)

Activities in OS
7

+— Ring -1 Monitoring Mechanism (Light-Box)

Architecture of Shadow-Box

Host (Ring -1)

Watcher
(Monitor)

@t‘fﬁ'/

Shadow- oty

Guest (Ring 0~3)

User

Monitor, contr>

(Read/Write
Permission)

Shared Kernel

(Read/Write
Permission)

Shared
Area

Shared Kernel

(Read-only
Permission)

Shared Kernel Only

Light-Box
(Lightweight Hypervisor)

Architecture of Light-Box

- Light-box, lightweight hypervisor,
- Isolates worlds by using memory protection
technique in VT
- Shares the kernel area between the host (Ring -1)
and the guest (Ring 0 ~ 3)
- Does not run each OS in two worlds
- Uses smaller resources than existing mechanisms
and has narrow semantic gap
- Can be loaded any time (loadable kernel module)

Architecture of Shadow-Watcher

- Shadow-watcher
- Monitors the guest by using Light-box
- Checks If applications of the guest modify kernel
objects or not by event-driven way
- Code, system table, IDT table, etc.
- Checks the integrity of the guest by introspecting
kernel object by periodic way
- Process list, loadable kernel module (LKM) list,
function pointers of file system and socket

What can Shadow-Box do?

- Shadow-box protects Linux kernel from
- Static kernel object attacks

- Static kernel object = immutable in runtime
- Code modification and system table modification attacks
- Dynamic kernel object attacks

- Dynamic kernel object = mutable in runtime
- Process hiding and module hiding
- Function pointer modification attacks

Background
Design
Implementation

| essons Learned

(and the Truth Previous Researches Did Not Tell You)

Demo. and Conclusion
(Black Hat Sound Bytes)

Boot Process using Shadow-Box

Starting UEFI
with Secure Boot

|

Starting
Bootloader

Y

Starting
Linux Kernel

|

v

- Enabling VMX
(% (Virtual Machine

Preparing
Virtualization

Extension)

< - Identifying kernel
information

.- Setting VMCS

(Virtual Machine
Control Structure)

\ 2
- Separating
Separating and memory area
Starting the Guest _ Launching VMCS
Guest Host

(Normal World)

(Secure World)

v

v

Loading
Shadow-Box

Starting

Linux Applications

Monitoring
the Guest

[: Linux

[: Shadow-Box

Static Kernel Object Protection (1)

CPU Host Physical
Address
U Guest Physical Address
VT'X EXtended Read' Write'
Page Table (EPT) Execute User
>
Area
Level 4
Level 3 :
—>1 Level.3 > Read, Static
Execute
e Kernel
eve :
Level.2 = Objects
Level 1
Level.1
Physical No
Permission
Physicalp—=" >
Paging Structure of EPT |Physicalp===> = :

Static Kernel Object Protection (2)

Guest (Normal World)
Address Translation (Ring 0)

(

Guest

Al

Host (Secure World)

Address Translation (Ring -1)

Extended

\

Page Table (GPT) Page Table (EPT)

Host Physical
Address (HPA)

Guest Logical Guest Physical
Address (GLA) Address (GPA)

/ Read, Execute \,

Page 1 »

-
—®»| Ranl, EXecute '—p

Read, Execute

No Permission }-.

Page 1

w

Page 2 Page 2

Page34'ne | = 4 | L | krrrrrrrrrzzzZZi] Baveeesscessesesss

P984
\I /V Page 3 \ i

Read, Execute Read, Execute

Static Kernel Object Protection (3)

Guest (Normal World) Host (Secure World)
Address Translation (Ring 0) Address Translation (Ring -1)
[Guest \ [Extended \
Page Table (GPT) Page Table (EPT)
Guest Logical Guest Physical ‘ Host Physical
Address (GLA) Address (GPA) Address (HPA)

Page 1

Read, Execute \, / Read, Execute
4 s |
;j Page 1

—» Read, Execute

% Page 2 4P| No Permission |-, buerieeennans |

Writ,

™ Execute P Page3

EPT protects the host from
attack propagation of the guest

Execute

Static Kernel Object Protection (4)

Physical Address

Kernel

Objects

Second Level Page Table

DMA
U DMA Address
Root
Table ¢ VT-d DMA Remapping .
Reporting (DMAR) Table Read, W"'te>
context
Context 5
ALLIL Permission
> Level 4 ——
Level .4 = Level 3
Level.3 =2 Level 2
Level.2 = Level 1
Level.1 .
Physical N
Physical|—— Permission
Paging Structure of Physicall— —|

Dynamic Kernel Object Protection (1)

Task and Module List

@ Creating initial data

(® Comparing data

In Guest
\ 4
Nextf=——p] Next j=——» =—p] Next
JAN B =
Prev je=—{ Prev <« Prev
A

.

/ Task and Module \

Create Function

do_fork() or

load _module()

{
create_object();
modify_list();

/

.

@ Shadowing
list data

@ Inserting
H/W breakpoint

® Monitoring

Task and Module List
in Shadow-box

A B

NeXt p=—p] NeXt j=— —pl Next

PreV |e={ Prev jq=— <+« Prev

Delete Function

release_task() or
delete_module()

{
modify_list();

delete_object();
<

/Task and Module\

i

Dynamic Kernel Object Protection (2)

Host
Logical Address
VES and Socket Objects : 2
of Guest < L Invalid | Malicious User
unction Pointer @ Code > el
Structure /
-’
il Valid R
Ep Read Kernel
Pointer > Write
e
Close Module
Code . Kernel
Invalid Area
Malicious
\- Code
(Loaded after
Shadow-box) e

Bl : Code area loaded before Shadow-box

Privileged Register Protection

- GDTR, LDTR and IDTR change Iinteractions
netween kernel and user level

-1A32_SYSENTER_CS, IA32 SYSENTER_ESP,
IA32_STAR, IA32-LSTAR and IA32_FMASK
MSR also change them

- These privileged registers are rarely changed
after boot!

- S0, Shadow-box

- Locks the privileged registers
- Locks and Monitors GDT, LDT, and IDT table

Rootkit Detection

- All rootkits are detected

Name Detected? Detected Point

code change,

EnyeLKM module hide

function pointer change,

Adore-ng 0.56 module hide

system table change,

skl module hide

Suckit 2.0 system table change

system table change,

kbeast module hide

Performance Measurements of Prototype

- Application benchmarks show 1% ~ 10%

performance overhead
- 5.3% at kernel compile in single-core processor
- 6.2% at kernel compile in multi-core processor

[JBare-me tal W@ Shadow-box

SPEC INT SPEC FP PARSEC Kernel Compile PARSEC Kernel Compile

Single-core processor Multi-core processor

Results of Application Benchmark. Lower is better.
(Intel 17-4790 4core 8thread 3.6GHz, 32GB RAM, 512GB SSD)

Background
Design
Implementation

| essons Learned

(and the Truth Previous Researches Did Not Tell You)

Demo. and Conclusion
(Black Hat Sound Bytes)

Ready to launch!

We deployed

Shadow-box mﬁ\L WORLD!
d

w

We met
BEASTS of REAL WORLD!

(false positive, slow-down, system hang, etc.)

i WL
[y z

‘ D
y

bt =
v
< ; ~) i

Previous researches did not
tell us something important!

Lessons Learned - 1

- Code Is not immutable!
- Linux kernel has a CONFIG_JUMP_LABEL option!
- If this option Is set, Linux kernel patches itself on
runtime!
- Unfortunately, this option is set by default!

- Solution
- Option 1: Add exceptional cases for mutable code
pages
- Option 2: If you can build kernel,

Lessons Learned - 2

- Cache type In EPT Is very important!
- Linux system has some memory mapped I/O area
- BIOS area, APIC area, PCI area, etc.
- Misconfiguration makes various problems such as
system hang, slow down, video mode change error,
etc.

- Solution

- Set uncacheable type by default
- Set write-back type to "System RAM” area only!

Lessons Learned - 2

user$ cat /proc/iomem

7~ 00000000-00000fff : reserved
00001000-0009dbff : System RAM
VYVIdcYV-VVYItTTtT : reserved
000a0000-000bffff : PCI Bus 0000:
000c0000-000ce7ff : Video ROM

000c4000-000cbfff : PCI Bus 0000:
000ce800-000cefff : Adapter ROM
000cf000-000cf7ff : Adapter ROM
000cf800-000d53ff : Adapter ROM
000d5800-000d67ff : Adapter ROM
000c0000-000f ffff : reserved

000f0000-000fffff : System ROM

%“C??hiab'e< 00100000-Ca336Ff : System RAM < Write-back
ache lype V1000000-01519400 : Kernel code Cache Type
by Default 01519401-018ecdff : Kernel data

01a21000-01af2fff : Kernel bss
ca337000-cb68bfff : reserved
cb68cP00-cbefefff : ACPI Non-volati
cbeff@00-cbfcefff : ACPI Tables
cbfcf@@0-cbffffff : System RAM
dovovvoo-attrtt . PCL MMLUNFLG 0000 [bus 00-ff]
doooooR-dfffffff : reserved
e0000000-f7ffbfff : PCI Bus 0000:00
e0000000-f1ffffff : PCI Bus 0000:04
(]
(]

Storage

e0000000-efffffff : 0000:04:00.
N8 f0000000-f1ffffff : 0000:04:00.

L essons Learned - 3

- Multi-core environment is more complicated

than you think!
- Each core modifies process list and module list
concurrently
- When H/W breakpoint exception occurred,
other cores could be changing the lists already!
- S0, we need a mechanism for synchronizing lists

- Solution
- Lock tasklist_lock and module mutex of the guest
while Shadow-box Is checking the lists!

Now,
We have been operating
Shadow-box in REAL WORLD
SUCCESSFULLY !

Background
Design
Implementation

| essons Learned

(and the Truth Previous Researches Did Not Tell You)

Demo. and Conclusion
(Black Hat Sound Bytes)

DEMO
SHADOW-BOX

Lightweight Hypervisor-Based Kernel Protector

Future Work

Linux Linux

Shadow-Box Shadow-Box

VT-x, VT-d
(Virtualization Technology)

TrustZone
(Virtualization Technology)

Multi-platform Support!

Conclusion and Black Hat Sound Bytes

- Kernel-level (Ring 0) threats should be

protected in a more privileged level (Ring -1)
- We create Ring -1 level by using VT from scratch

- Shadow-box is lightweight and practical
- Shadow-box uses less resource than existing
mechanisms and protects kernel from rootkits

- Real world is Serengeti!
- Real world is different from laboratory environment
- You should have a strong mentality for defeating
beasts of real world! or use Shadow-box instead!

THE CHOICE IS YOURS !

JTRUTH
) MYTH

THANKYOU

Project : github.com/kkamagui/shadow-box-for-x86

Contact: hanseunghun@nsr.re.kr, @kkamaguil
ultract@nsr.re.kr, @ultractt

