
Seunghun Han, Jungwhan Kang
(hanseunghun || ultract)@nsr.re.kr

Myth and Truth about

Hypervisor-Based Kernel Protector:

The Reason Why You Need Shadow-Box

- Senior security researcher at NSR (National

 Security Research Institute of South Korea)

- Speaker at HITBSecConf 2016

- Author of the book series titled “64-bit multi-

 core OS principles and structure, Vol.1&2”

- a.k.a kkamagui, @kkamagui1

 Who are we ?

- Researcher at NSR

- Participated final round of some CTFs

 (Codegate, ISEC… held in South Korea)

- Interested in OS security and reading write-up of CTFs

- Got married last year 

- a.k.a ultract, @ultractt

 Goal of This Presentation

- We present lightweight hypervisor-based

 kernel protector, “Shadow-box”

 - Shadow-box defends kernel from security threats

 efficiently, and we made it from scratch

- We share lessons learned from deploying

 and operating Shadow-box in real world

 systems

 - We have been operating Shadow-box since

 last year and share lessons learned!

Background

Design

Implementation

Lessons Learned
(and the Truth Previous Researches Did Not Tell You)

Demo. and Conclusion
(Black Hat Sound Bytes)

 Linux Kernel Is Everywhere!

 Security Threats of Linux Kernel

- The Linux kernel suffers from rootkits and

 security vulnerabilities

 - Rootkits: EnyeLKM, Adore-ng, Sebek, suckit,

 kbeast, and so many descendants

 - Vulnerabilities: CVE-2014-3153, CVE-2015-3636,

 CVE-2016-4557, CVE-2017-6074, etc.

Devices which use Linux kernel

share security threats

 Melee Combats at the Kernel-level

- Kernel-level (Ring 0) protections are not

 enough

 - Lots of rootkits and exploits work in the Ring 0 level

 - Protections against them are often easily bypassed

 and neutralized

 - Kernel Object Hooking (KOH)

 - Direct Kernel Object Manipulation (DKOM)

Protections need

an even lower level (Ring -1)

 Well-known Rootkits

Other rootkits also have

similar patterns

 Taking the Higher Ground

- Leveraging virtualization technology (VT)

 - VT separates a machine into a host (secure world)

 and a guest (normal world)

 - The host in Ring -1 can freely access/control

 the guest in Ring 0 (the converse doesn’t hold)

 - VT-equipped HW: Intel VT-x, AMD AMD-v,

 ARM TrustZone

User User

 Trends of Introducing Ring -1

User

Kernel

Guest

(Normal World)

Host

(Secure World)

Host OS Guest OS

User

Kernel

Virtualization Technology

(T.Z., VT-x, AMD-v)

Monitor, control

 Previous Researches…

TOO MANY…

OH, NO…

 Researches Are Excellent, But They Look …

I heard and knew about them

But, I can not find in real world!

- Many researches have preconditions

 - They usually change kernel code or hypervisor

 - They also need well-known hashes of LKM,

 well-known value of kernel data, secure VM

 for analyzing target VM, etc.

- Many researches consume much resource

 - The host and the guest run each OS

 - They allocate resources independently!

 - The host consumes many CPU cycles to introspect

 the guest because of semantic gap

 Restrictions on Previous Researches (1)

 Restrictions on Previous Researches (2)

- In conclusion, previous researches are

 considered for laboratory environment only

 - They assume they can control environment!

 - But, real world environment is totally different from

 laboratory environment!

 - You even don’t know the

 actual environment before

 the software is installed!

REAL WORLD!

WELCOME TO

Therefore,

PRACTICAL and LIGHTWEIGHT

mechanism is needed for

REAL WORLD ENVIRONMENT!

 Design Goals of Kernel Protector

- Lightweight

 - Focus on rootkit detection and protection

 - Simple and extensible architecture

 - Small memory footprint

 - No secure VMs and no multiple OSes

- Practical

 - Out-of-box approach

 - No modification of kernel code and data

 - Dynamic injection

 - Load any time from boot to runtime

Background

Design

Implementation

Lessons Learned
(and the Truth Previous Researches Did Not Tell You)

Demo. and Conclusion
(Black Hat Sound Bytes)

 Security Architecture in Shadow Play

Bulb

Actors

Audience

 Security Architecture in Shadow Play

Ring -1 Monitoring Mechanism

Activities in OS

Security Monitor

We named this architecture

“Shadow-box”

(Light-Box)

(Shadow-Watcher)

User

Shared

Area

Light-Box

(Lightweight Hypervisor)

 Architecture of Shadow-Box

User
(Read/Write

Permission)

Shared Kernel
(Read-only

Permission)

Guest (Ring 0~3) Host (Ring -1)

Shared Kernel Only Shared Kernel and User

Shared Kernel
(Read/Write

Permission)

Shadow-

Watcher

(Monitor)

Monitor, control

- Light-box, lightweight hypervisor,

 - Isolates worlds by using memory protection

 technique in VT

 - Shares the kernel area between the host (Ring -1)

 and the guest (Ring 0 ~ 3)

 - Does not run each OS in two worlds

 - Uses smaller resources than existing mechanisms

 and has narrow semantic gap

 - Can be loaded any time (loadable kernel module)

 Architecture of Light-Box

- Shadow-watcher

 - Monitors the guest by using Light-box

 - Checks if applications of the guest modify kernel

 objects or not by event-driven way

 - Code, system table, IDT table, etc.

 - Checks the integrity of the guest by introspecting

 kernel object by periodic way

 - Process list, loadable kernel module (LKM) list,

 function pointers of file system and socket

 Architecture of Shadow-Watcher

 What can Shadow-Box do?

- Shadow-box protects Linux kernel from

 - Static kernel object attacks

 - Static kernel object = immutable in runtime

 - Code modification and system table modification attacks

 - Dynamic kernel object attacks

 - Dynamic kernel object = mutable in runtime

 - Process hiding and module hiding

 - Function pointer modification attacks

Background

Design

Implementation

Lessons Learned
(and the Truth Previous Researches Did Not Tell You)

Demo. and Conclusion
(Black Hat Sound Bytes)

 Boot Process using Shadow-Box

Starting UEFI

with Secure Boot

Starting

Bootloader

Starting

Linux Kernel

Preparing

Virtualization

Separating and

Starting the Guest

Monitoring

the Guest

Starting

Linux Applications

Guest

(Normal World)

: Linux : Shadow-Box

- Enabling VMX
 (Virtual Machine

 Extension)

- Setting VMCS
 (Virtual Machine

 Control Structure)

- Identifying kernel

 information

- Separating

 memory area

- Launching VMCS

Host

(Secure World)

Loading

Shadow-Box

 Static Kernel Object Protection (1)

User

Area

Static

Kernel

Objects

Shadow-

Box

Objects

Host Physical
Address

Level.3

Level 4

Level 3

Level 2

Level 1

Paging Structure of EPT

Level.2

Level.1

Physical

Physical

Physical

VT-x Extended

Page Table (EPT)

CPU

Guest Physical Address

Read, Write,
Execute

Read,
Execute

No
Permission

 Static Kernel Object Protection (2)

Read, Execute

Read, Execute

Read, Execute

Read, Execute

No Permission

Read, Execute

Guest

Page Table (GPT)

Extended

Page Table (EPT)

Page 1

Page 2

Page 3

Guest Logical

Address (GLA)

Guest Physical

Address (GPA)

Host Physical

Address (HPA)

Page 1

Page 2

Page 3

Page 1

Page 2

Page 3

Guest (Normal World)

Address Translation (Ring 0)

Host (Secure World)

Address Translation (Ring -1)

 Static Kernel Object Protection (3)

Read, Execute

Read, Execute

Read, Execute

No Permission

Guest

Page Table (GPT)

Extended

Page Table (EPT)

Page 1

Page 2

Guest Logical

Address (GLA)

Guest Physical

Address (GPA)

Host Physical

Address (HPA)

Page 1
Page 1

Page 2

Page 3

EPT protects the host from

attack propagation of the guest

Guest (Normal World)

Address Translation (Ring 0)

Host (Secure World)

Address Translation (Ring -1)

Read, Execute Read, Execute

Page 3

Page 2

Page 3

Write, Execute Read, Execute

Page 3

Page 2

Page 3

 Static Kernel Object Protection (4)

User

Area

Static

Kernel

Objects

Shadow-

Box

Objects

DMA

VT-d DMA Remapping

Reporting (DMAR) Table

Physical Address
DMA Address

Read, Write

No
Permission

No
Permission

Level.3

Level 4

Level 3

Level 2
Level 1

Paging Structure of
Second Level Page Table

Level.2

Level.1
Physical

Physical

Physical

context

Root
Table

Level.4

Context
Table

 Dynamic Kernel Object Protection (1)

A B F ...
Next

Prev

Next Next

Prev Prev

Task and Module List

in Guest

⑤ Comparing data

Task and Module

Create Function

 do_fork() or

 load_module()

 {

 create_object();

 modify_list();

 }

Task and Module

Delete Function

 release_task() or

 delete_module()

 {

 delete_object();

 modify_list();

 }

② Inserting

 H/W breakpoint

③ Monitoring

Task and Module List

in Shadow-box ① Creating initial data

A B F ...
Next

Prev

Next Next

Prev Prev

④ Shadowing

 list data

VFS and Socket Objects

of Guest

FP

Pointer

Host

Logical Address

Module

Code

Malicious

Code

Open

Function Pointer

Structure

Read

Write

Close

Kernel

Code

...

Invalid

Invalid

Valid

Valid

Malicious

Code
(Loaded after

Shadow-box)

User

Area

Kernel

Area

 Dynamic Kernel Object Protection (2)

: Code area loaded before Shadow-box

 Privileged Register Protection

- GDTR, LDTR and IDTR change interactions

 between kernel and user level

- IA32_SYSENTER_CS, IA32_SYSENTER_ESP,

 IA32_STAR, IA32-LSTAR and IA32_FMASK

 MSR also change them

- These privileged registers are rarely changed

 after boot!

- So, Shadow-box

 - Locks the privileged registers

 - Locks and Monitors GDT, LDT, and IDT table

 Rootkit Detection

- All rootkits are detected

Name Detected? Detected Point

EnyeLKM √
code change,

module hide

Adore-ng 0.56 √
function pointer change,

module hide

Sebek 2.0 √
system table change,

module hide

Suckit 2.0 √ system table change

kbeast √
system table change,

module hide

 Performance Measurements of Prototype

- Application benchmarks show 1% ~ 10%

 performance overhead

 - 5.3% at kernel compile in single-core processor

 - 6.2% at kernel compile in multi-core processor

Results of Application Benchmark. Lower is better.

(Intel i7-4790 4core 8thread 3.6GHz, 32GB RAM, 512GB SSD)

Single-core processor Multi-core processor

Background

Design

Implementation

Lessons Learned
(and the Truth Previous Researches Did Not Tell You)

Demo. and Conclusion
(Black Hat Sound Bytes)

Ready to launch!

We deployed

Shadow-box in REAL WORLD!

and …

We met

BEASTS of REAL WORLD!

(false positive, slow-down, system hang, etc.)

WHAT HAPPENED…

OH, NO…

Previous researches did not
tell us something important!

AGAIN!

NICE TO MEET YOU

 Lessons Learned - 1

- Code is not immutable!

 - Linux kernel has a CONFIG_JUMP_LABEL option!

 - If this option is set, Linux kernel patches itself on

 runtime!

 - Unfortunately, this option is set by default!

- Solution

 - Option 1: Add exceptional cases for mutable code

 pages

 - Option 2: If you can build kernel,

 Turn Off CONFIG_JUMP_LABEL option NOW!

 Lessons Learned - 2

- Cache type in EPT is very important!

 - Linux system has some memory mapped I/O area

 - BIOS area, APIC area, PCI area, etc.

 - Misconfiguration makes various problems such as

 system hang, slow down, video mode change error,

 etc.

- Solution

 - Set uncacheable type by default

 - Set write-back type to “System RAM” area only!

 Lessons Learned - 2

Write-back

Cache Type

Uncacheable

Cache Type

by Default

 Lessons Learned - 3

- Multi-core environment is more complicated

 than you think!

 - Each core modifies process list and module list

 concurrently

 - When H/W breakpoint exception occurred,

 other cores could be changing the lists already!

 - So, we need a mechanism for synchronizing lists

- Solution

 - Lock tasklist_lock and module_mutex of the guest

 while Shadow-box is checking the lists!

Now,

We have been operating

Shadow-box in REAL WORLD

SUCCESSFULLY !

Background

Design

Implementation

Lessons Learned
(and the Truth Previous Researches Did Not Tell You)

Demo. and Conclusion
(Black Hat Sound Bytes)

DEMO

 Future Work

X86

VT-x, VT-d
(Virtualization Technology)

Shadow-Box

Linux

TrustZone
(Virtualization Technology)

Shadow-Box

Linux

Multi-platform Support!

 Conclusion and Black Hat Sound Bytes

- Kernel-level (Ring 0) threats should be

 protected in a more privileged level (Ring -1)

 - We create Ring -1 level by using VT from scratch

- Shadow-box is lightweight and practical

 - Shadow-box uses less resource than existing

 mechanisms and protects kernel from rootkits

- Real world is Serengeti!

 - Real world is different from laboratory environment

 - You should have a strong mentality for defeating

 beasts of real world! or use Shadow-box instead!

THANK YOU

THE CHOICE IS YOURS !

Contact: hanseunghun@nsr.re.kr, @kkamagui1

 ultract@nsr.re.kr, @ultractt

Project : github.com/kkamagui/shadow-box-for-x86

