
Myth and Truth about Hypervisor-Based Kernel

Protector: The Reason Why You Need Shadow-Box

Seunghun Han

National Security Research Institute

hanseunghun@nsr.re.kr

Junghwan Kang

National Security Research Institute

ultract@nsr.re.kr

Wook Shin

National Security Research Institute

wshin@nsr.re.kr

HyoungChun Kim

National Security Research Institute

khche@nsr.re.kr

Eungki Park

National Security Research Institute

ekpark@nsr.re.kr

Abstract

We propose a security monitoring framework for operat-

ing systems, Shadow-box, exploiting state-of-the-art virtu-

alization technologies. Shadow-box is primarily composed

of a lightweight hypervisor and a security monitor. As being

loaded on an operating system, the lightweight hypervisor

prepares a guest machine and project the operating system

upon the guest. The hypervisor partially shadows the guest

kernel for the purpose of security investigation and recovery,

and runs the security monitor to supervise accesses and san-

ity of the guest. We manipulate address translations from the

guest to the physical memory in order to exclude unautho-

rized accesses to the host and the hypervisor spaces. In that

way, Shadow-box can properly introspect the guest operat-

ing system and mediate all accesses, even when the operat-

ing system is compromised. The Shadow-box could be used

for various security enforcements, such as malware filtering,

information flow control, auditing, etc. We exemplify the se-

curity monitor by implementing an integrity protector for an

operating system kernel, and show how it effectively neu-

tralizes rootkits and malicious root accesses of malware in

Linux and Android. Performance evaluation results are pre-

sented as well. Shadow-box provides stronger protections

with less overhead than existing hypervisor-based security

solutions. Moreover, all the protections are applied to an ex-

isting system on-the-fly. The hypervisor does not have to be

installed antecedently.

1. Introduction

Rootkits are clandestine malware capable of obtaining ad-

ministrator privileges and manipulating kernel objects. The

kernel objects include a wide variety of codes and data,

such as kernel texts, modules, function tables, process lists,

page tables, etc. Rootkits play an important part in practi-

This paper was presented at Black Hat Asia 2017, March 30–31, 2017, Singapore

cal cyber-attacks; Relying on tunnels provided by a lurking

rootkit, other malware sneaks in and subverts the kernel of

the fortress. McAfee, Inc. [3, 4] reports that the number of

rootkits has been increased by 33% over the past three years

and kept increasing.

Protection rings [11] define hierarchically ordered do-

mains where privileges for accessing system resources are

differentiated. An access across the rings is restricted. Both

Windows and Linux operating systems implement two lev-

els of the rings: Ring 0 and Ring 3 for running the kernel and

user applications, respectively. It had been believed that de-

fense mechanisms better be placed at Ring 0 for regulating

malware at Ring 3, however the belief becomes obsolete due

to proliferation of rootkits. Rootkits can escalate their priv-

ilege levels, modify kernel objects, and even disable anti-

malware solutions.

Some anti-rootkit solutions [19, 25, 30, 34, 37, 39] tackle

problems by employing virtualization technologies. Recent

CPU vendors even provide hardware instructions to support

virtualizations and create a new privilege level underneath

Ring 0. The new level, Ring -1, offers a set of instructions

controlling Ring 0 accesses. Those instructions can be uti-

lized by a hypervisor, a piece of software that enables a

physical machine to run multiple heterogeneous systems ex-

clusively on virtual execution environments. Namely, anti-

rootkit solutions running at the hypervisor level would re-

main unharmed and sustain their functions even when guest

virtual machines (VMs) are compromised.

Downsides of hypervisor-based security solutions are

performance overheads and semantic inconsistency due to

virtual state managements. Hypervisor processes, like se-

curity monitors, need to introspect VMs for figuring out

their status and behavior. Virtual machine state informa-

tion is accessible when the hypervisor reads raw-bits from

virtual memory, virtual registers, and virtual devices, how-

ever, interpretation of the raw-bits requires such reconstruc-

1



Name Modified Kernel Object Type Attribute Note

EnyeLKM 1.3 syscall_trace_entry Code Static code change,

sysenter_entry Code Static syscall hook,

module->list Data Dynamic direct kernel object

init_net->proc_net->subdir->tcp_data->tcp4_seq_show Function pointer Dynamic manipulation (DKOM)

Adore-ng 0.56 vfs_root->f_op->write Function pointer Dynamic function pointer hook

vfs_root->f_op->readdir Function pointer Dynamic

vfs_proc->f_dentry->d_inode->i_op->lookup Function pointer Dynamic

socket_udp->ops->recvmsg Function pointer Dynamic

Sebek 2.0 sys_call_table System table Static syscall hook,

vfs_proc_net_dev->get_info Function pointer Dynamic function pointer hook,

vfs_proc_net_packet->proc_fops Function pointer Dynamic DKOM

module->list Data Dynamic

Suckit 2.0 idt_table System table Static idt hook,

sys_call_table System table Static syscall hook

kbeast v1 sys_call_table System table Static syscall hook,

init_net->proc_net->subdir->tcp_data->tcp4_seq_show Function pointer Dynamic function pointer hook,

module->list Data Dynamic DKOM

Table 1. List of well-known Linux kernel rootkit and modified kernel objects

tion processes as address translations, symbol resolutions,

record reconstructions, etc. Namely, it may cause perfor-

mance overhead and inconsistency between semantic views

of the hypervisor and VMs. VM introspection may decrease

portability as well because it depends on implementation

details of guest operating systems.

There are diverse approaches of reducing virtualization

overheads and semantic gaps. SecVisor [34] employed a

lightweight hypervisor and offered protection for static ker-

nel objects such as kernel codes and read-only data [25, 30].

Others used hardware devices dedicated for security [23, 24,

26, 41]. Auxiliary hardware cannot lessen performance bur-

den only, but also help guarantee the integrity of security-

related procedures engraved in circuits. Malware may over-

throw guest operating systems, but cannot compromise hard-

ware logic. Dedicated hardware, however, increases costs

and decreases the portability, and there is still semantic gap

between the context of the CPU and the dedicated one.

In this paper, the hypervisor-based approach is revis-

ited. We designed and implemented a lightweight hypervisor

which facilitates security enforcements at Ring -1 level. By

making the host and the guest operating systems share most

parts of the kernel space, our hypervisor works with neg-

ligible performance cost and semantic gap. The hypervisor

is a sort of type 2, designed as a loadable kernel module

(LKM), and can be applied to an existing system. Based

on CPU and I/O virtualization supports, we design Shadow-

box, a hypervisor-based monitoring framework that supports

periodic and event-based monitoring on kernel objects. Ben-

efits of Shadow-box are exemplified by implementing an in-

tegrity monitor that recognizes integrity breach in static and

dynamic kernel objects. We show how it can rule out system

attacks effectively by running five well-known rootkits on a

machine.

We measured performance overheads from the proposed

system by running benchmarking tools in single-core and

multi-core processor settings. To compile a Linux kernel,

the proposed system imposes about 5.3% of overheads in

the single-core processor setting and 6.2% of overheads in

the multi-core processor setting.

Our contributions can be summarized as follows;

• We present a security enforcing framework, Shadow-box,

based on a lightweight hypervisor. It comes with less

virtualization overheads and semantic gap than existing

hypervisor-based security solutions. Shadow-box does

not require kernel modification or patches, and hence it

can be applied to existing systems without re-installation.

• We propose a practical countermeasure against rootkits

using Shadow-box. After looking into well-known rootk-

its and related work, we classified static and dynamic ker-

nel objects that are altered by the rootkits. Shadow-box

tests and guarantees integrity of the classified kernel ob-

jects. The classification results can be used by other anti-

malware solutions as well.

• We design event-based and periodic monitoring inter-

faces of Shadow-box considering various security needs.

Other than a kernel integrity monitor, diverse security-

related applications such as an auditor, an intrusion de-

tector, and a security assessment tool can be built upon

Shadow-box to achieve their own goals with hypervisor-

level privileges.

2. Background

2.1 Rootkit

A rootkit is malware that is characterized by its nature of

hiding and privilege escalation. Once after a rootkit success-

2



fully elevated its privilege level to administrator’s, it often

forges variety of kernel objects including internal data struc-

tures for managing processes, files, and modules for the pur-

pose of persistent attacks. It may place a backdoor and lead

to influx of other malware. It also may establish a hidden

communication channel with a remote attacker.

Rootkit Categories: Rootkits are two sorts. User-level

rootkits run with user privileges. They forge system com-

mands such as ls, ps, netstat, etc. They also may implant

hooks [40] to falsify system information and lurk in the sys-

tem using linker preload directives to replace core libraries

such as libc. Kernel-level rootkits, with administrator priv-

ileges, are capable of altering kernel objects such as kernel

texts, function pointers, system call tables, and interrupt de-

scriptor table (IDT) [38], that are normally out of reach of

users. Since kernel-level rootkits are even able to neutral-

ize kernel-level anti-malware solutions, the rootkits have

become prevalent and drawn significant attention.

Kernel-level Rootkits and Kernel Objects: In Table 1, we

enumerated the kernel objects that are frequently tampered

by well-known rootkits [14, 23, 28, 29], which again can be

categorized into static and dynamic kernel objects.

Static Kernel Objects: The static objects that reside in read-

only memory area include kernel codes (texts), the system

call table (sys_call_table), and the interrupt descriptor

table (idt_table). Read-only data of loadable kernel mod-

ules also fall into this class. A rootkit can set the static ker-

nel objects writable, and then alter the objects by registering

codes, system calls, and interrupt handlers.

Dynamic Kernel Objects: The dynamic objects reside in

writable memory area. The list of all processes and installed

kernel modules, which can be traversed by init_task and

module, are dynamic kernel objects. Files and sockets are

also dynamic ones as they are located in the kernel heap and

store mutable values. File and socket objects define available

operations in their structure. The implementation instances

of the operations, which are function pointers, are normally

in read-only memory area. However, an attacker can set the

memory area writable, besides it is possible to replace the

pointers toward the operation instances with bogus pointers

toward malicious codes.

2.2 Virtualization Technology

Hypervisor, also known as virtual machine monitor (VMM),

allows a host physical machine (or the host) to run multiple

guest virtual machines (or the guests). Hypervisor virtual-

izes computing resources of the host, such as CPU, main

memory, storage, and network, so that the guests share the

abstracted resources and run independently. Thanks to the

abstraction, multiple guests can even run different operating

systems.

Hypervisor can be categorized into two types [27]; Type

1 hypervisors (or bare-metal hypervisors) are installed and

run on host hardware directly, whereas Type 2 hypervisors

require operating systems installed beforehand on the host.

That is to say, a Type 2 hypervisor is a sort of an applica-

tion program. Xen [15], VMware ESXi [1], and Microsoft

Hyper-V [2] fall into the Type 1, while KVM [21], VMware

Workstation [7], and Oracle VirtualBox [6] do into the Type

2. Recent hypervisors do not come with software stack only.

Modern processors are equipped with hardware-assisted vir-

tualization (HAV) technologies, such as Intel VT-x [11],

AMD-V [9], and ARM TrustZone [5], for better perfor-

mance. Complexities and overheads from CPU-, memory-,

and I/O-virtualization are reduced by leveraging HAV.

3. Assumptions

Our CPU is supposed to be equipped with virtualization

technologies (VT) such as Intel VT-x [11] and AMD-V

[9]. The main board chipset is also assumed to have I/O

virtualization supports such as Intel VT-d [8] and AMD-Vi

[10]. A system is assumed to be booted properly, utilizing

the existing secure booting methods, such as secure boot

[13], verified boot [18], and tboot [12]. The secure booting

process should guarantee the integrity of the bootloader, the

kernel, and loadable kernel modules including Shadow-box.

After Shadow-box is loaded correctly, it can defeat the recent

attacks against bootstrapping, such as BIOS [17], UEFI [32],

and bootloader [22].

Attackers are omnipotent in this paper, after the Shadow-

box is loaded. There is no limit for an attacker to install and

run rootkits and other malware on the system. Attackers can

even load their own kernel modules, alter memory via direct

memory access (DMA), and attach any peripheral devices.

Attackers can monitor, filter, and change any code and data

of user, system, and hypervisor, in order to steal valuable

information or compromise the system. We, however, ex-

clude the cases of abusing resources only for reducing the

availability. Denial-of-service, such as repeated rebooting or

storage wiping out, is not our concern here.

4. Design

We explain how we designed the Light-box and the Shadow-

watcher. It is designed to support a lightweight and practi-

cal security monitoring framework using virtualization tech-

nologies.

4.1 Light-Box Design

We developed a security monitoring framework, Shadow-

box that keeps an OS safe by filtering out unauthorized ac-

cesses to important kernel elements and defending integrity

of kernel elements periodically. Shadow-box relies upon its

two sub-parts: a lightweight hypervisor and a security mon-

itor. The lightweight hypervisor, Light-box, efficiently iso-

lates an OS inside a guest machine, and projects static and

dynamic kernel objects of the guest into the host machine,

so that our security monitor in the host can investigate the

projected images. The security monitor, Shadow-watcher,

places event monitors on static kernel elements and tests se-

3



�✁✂✁✄☎✆✝✞✟✆✝✠

✡☛☞✌✍✎✏✑✒

✓✌✔✕✑✖✎✗✔✍✘✌✙✚

✛☎✜✢✣ ✤✥✦✧★

✩✪✠✢✣☎✜✢✣

✫✬✆✞✜✟✠✞ ✭✠✝✥✠✦ ✮✝✠✆

✯✢✠✝ ✮✝✠✆

✰✱✲✳✱✴ ✵✶✷✱

✰✱✲✳✱✴ ✸✹✺✹

✸✱✻✼✽✱ ✸✲✼✻✱✲

✾✿❀❁❂❃❄❅❆

✰✱✲✳✱✴ ✵✶✷✱

✰✱✲✳✱✴ ✸✹✺✹

✸✱✻✼✽✱ ✸✲✼✻✱✲

✭✠✝✥✠✦ ✮✝✠✆

❇❂❅❄❈❂❉❄❅❆

Figure 1. Block architecture of Shadow-box

curity of dynamic kernel elements. Running inside the host,

it can test the security of the guest without malicious inter-

ference even when the guest OS is compromised.

Light-box does not require another OS underneath, which

means it could be considered to be a sort of type 2 hypervisor

[6, 7, 21]. Neither requires it a privileged virtual machine in-

stance as Xen [15] does. Light-box can virtualize an installed

OS, while many of existing hypervisor-based protections re-

quire installation of a hypervisor prior to the OS that needs

to be protected. We implemented Light-box to be as compact

as possible to minimize virtualization overheads and maxi-

mize available resources for the guest.

Figure 1 shows the design of Shadow-box. Light-box sep-

arates the guest and the host and shadows important kernel

information on the host area. The host runs monitoring log-

ics to guarantee security of the guest machine. Light-box

is designed for providing an isolated execution environment

for the purpose of protecting an operating system from sys-

tem attacks, not for instantiating multiple virtual machines.

Consequently, the hypervisor better be as compact as

possible to minimize virtualization overheads and maximize

resource allocations for the guest. Light-box lets the host and

the guest machines share the kernel space as shown in Figure

1. It promises less virtualization overheads. Moreover, it also

reduces the semantic gap between the host and the guest. The

less we have semantic gap between the host and the guest the

more accurate and efficient monitoring logic on the guest

behavior we have.

The share between the host and the guest, however, can

create security weaknesses. Compromising the kernel space

of the guest immediately affects the host, and it may lead

to the subversion of the hypervisor. Light-box precludes any

improper access to the shared area based on the following

building blocks;

• Security Bootstrapping: It has to be guaranteed that im-

portant parts of Shadow-box are not corrupted by the time

of system booting. Security Bootstrapping is to provide

initial protections for the important parts by employing

an existing secure booting technique.

• Memory Separation and Protection: The memory

space of security bootstrapping has to be separated from

the guest machine. After the system is booted, unautho-

rized accesses to the separated area are not possible be-

cause the area is protected from the guest.

• Privileged Register Protection: Some registers, called

privileged registers, are important to manage execution

of the guest OS and to maintain different levels of privi-

leges. Unauthorized accesses on the registers are prohib-

ited.

• OS Independent Execution Flow: We generate an inde-

pendent control flow, rather than using the main kernel

control flow. The independent one can be used for peri-

odic testing for various purposes, such as integrity moni-

toring.

The above is described further in the following subsections.

4.1.1 Security Bootstrapping

At the moment of Shadow-box being loaded, the shared

kernel area between the host and the guest is supposed to

be clean. Important kernel objects and procedures, including

our monitoring logic, reside in the kernel area. Disruption

of the area brings compromising of the whole system. By

taking advantage of existing secure booting supports, such

secure boot, verified boot, and tboot, we can guarantee the

integrity of the kernel at the stage of system booting. We put

important loadable kernel modules in the kernel area, ahead

of Shadow-box. Shadow-box ought to protect those pre-

loaded modules after all. We do not maintain the whitelist

which keeps the names of trustworthy modules, differently

from NICKLE [30] and Lares [25], and get free from burden

of managing the list.

4.1.2 Memory Separation and Protection

The accesses of shared kernel in the guest need to be con-

trolled for protecting the host. Especially, the code and data

of Shadow-box has to be out of reach for the guest. We

keep the important codes being separated from the guests

exploiting the page mapping data structures of the system.

We maintain shadowed data that the Shadow-watcher uses as

fresh as possible so that it can correctly reflect the execution

status of the guest machine. These processes are explained

further below:

On-access Shadowing: Light-box uses the page tables not

only for the purpose of address translation, but also for

protecting memory spaces. Page tables convert logical ad-

dresses that the guest machine uses into the physical ad-

dresses that the host machine manages. A hypervisor needs

to update page tables to preserve consistent execution con-

text between the host machine and guest machines. Light-

4



�����

�������������	�


	��
��
�������

�
�

�����
��
�������

�
�

�� �	��

�

�
	���������


	��

��
�������

�����

��
�������

�
�

�
�
�
�
�

������	���


����������	�

Figure 2. Operation of on-access shadowing

box synchronizes page tables in an on-the-fly manner. It

identifies when and where the host machine looks into the

guest machine’s memory space, and selectively synchro-

nizes only the accessed area. Figure 2 shows how the ta-

bles are managed; when Light-box starts, it makes copy of

the page table in which the security bootstrapping informa-

tion is included. The duplicated page table is called shadow

page table, and only accessed by the host machine. If the

host needs to access the memory of the guest, the hypervisor

checks the validity of guest’s page table. If it has valid infor-

mation, the host’s table is synchronized with the guest’s.

This way of page table synchronization, which we call

on-access shadowing, imposes lower overheads than the

other hypervisor-based security studies where they dupli-

cate whole copy of the page tables. Secvisor [34] monitors

the cr3 register, an execution of invlpg instruction, and an

occurrence of page fault exception, and finds when they

have to synchronize page tables between the host and the

guest.

Physical Page Locking and Hiding: Unauthorized access

is not allowed on the physical address spaces that the hyper-

visor manages. Processes running in the guest’s logical ad-

dress spaces can make read-only access or none to protected

physical pages. Figure 3 shows how addresses are translated

by CPU and DMA. The address spaces of CPU, includ-

ing the address space of the guest and the host, are trans-

lated to physical address spaces by memory management

unit (MMU). The address space used by the guest machine,

called guest logical address (GLA), is mapped to guest phys-

ical address (GPA) space via guest page table. CPU’s mem-

ory virtualization is used to obtain final host physical ad-

dresses (HPAs) from GLAs. Light-box utilizes the page ta-

bles to redefine access permissions to the address spaces.

The guest machine cannot reset the access permissions de-

fined in hypervisor page tables (HPTs), and all accesses with

wrong permissions are mitigated by Light-box. For example,

if a guest process tries to write something on kernel codes,

where only read and execute accesses are given in HPTs,

Light-box intercepts the write operation and stops the guest.

�✁✂✄☎

✆✝✞✟✠ ✡☛☞✌✍✎✏
✑✒✒✓✞✟✟

✔

✕

✆✝✞✟✠ ✖✗✘✟✌✍✎✏
✑✒✒✓✞✟✟

✔

✕

✆✝✞✟✠
✖✎☞✞ ✙✎✚✏✞

✛✜✑
✑✒✒✓✞✟✟

✢

✣

✢✤✥ ✣✦✔

✧☛✟✠ ✖✗✘✟✌✍✎✏
✑✒✒✓✞✟✟

✔

✕

✧✘★✞✓✩✌✟☛✓
✖✎☞✞ ✙✎✚✏✞

✢

✣

✪✪✫ ✬✭✪✪✫

✛✜✑
✮✞✯✎★★✌✰☞
✙✎✚✏✞

Figure 3. Address translation of CPU and DMA

Similar protection is applied to direct memory access

(DMA). A DMA controller can access physical memory di-

rectly bypassing CPU’s memory mitigation. Several studies

have looked for the ways of dealing with DMA physical

memory access attacks [31, 33, 36]. DMA accessible address

spaces can be categorized into two: the DMA addresses rec-

ognized by devices and the addresses actually accessed by

a DMA controller. DMA addresses are translated to HPA

via input-output memory management unit (IOMMU) and

DMA remapping table (DRT). DRT and HPT work in the

same way.

Light-box protects physical memory by setting read-only

permission or no permission in HPT and DRT. We call these

techniques physical page locking and physical page hiding.

4.1.3 Privileged Register Protection

Modern operating systems differentiate modes of running

according to required reliability, safety, or responsibility. For

example, Linux and Windows operating systems have two

modes of operation, in which tasks are running with different

privileges. One is kernel mode (or supervisor mode), which

corresponds to the Ring 0 of the concept of the traditional

protection rings. A wide range of system management tasks

are done in this mode. Kernel mode tasks have unlimited ac-

cesses to the system, including kernel spaces. The other is

user mode, which corresponds to the Ring 3. Casual applica-

tions are running in this mode. User mode applications are

not allowed to modify kernel data.

There are special registers that require protections for

the security of Shadow-box. Some of them are used to set

access privileges on memory spaces. Some of them concern

transitions between the kernel mode and the user mode. We

call those registers, privileged registers, in the sense that

they are only accessible through privileged instructions. The

privileged registers are described as follows.

GDTR and LDTR Protection: Global descriptor table

(GDT) is a set of segment descriptors and system descrip-

tors. Each descriptor holds properties like base address, type,

and limits. Segment descriptors are specified if the segment

contains code, data, and stack. The access privilege to the

segment is also specified in the descriptor. GDT has code

5



and data segment descriptors for the kernel mode and the

user mode. System descriptors include local descriptor ta-

ble (LDT) descriptors, task state segment (TSS) descriptors,

and call gate descriptors. LDT holds descriptors, similarly to

GDT. While GDT can keep all sorts of segment and system

descriptors, LDT only keeps segment descriptors and call

gate descriptors. TSS stores information about task manage-

ment, including processor’s register state, I/O port permis-

sions, stack pointers, etc. The call gate descriptor, or call-

gate, stores information to invoke codes across the privilege

modes, such as address, number of arguments, and types.

The GDT register (GDTR) and the LDT register (LDTR)

point to GDT and LDT, respectively. The values of GDTR,

LDTR have to be handled properly via controlled and care-

fully designed procedures, and should not be altered with

malicious intention. Light-box investigates the values of

those registers and confirms if those values have not altered

in an unauthorized manner, in the event-driven way by us-

ing CPU VT. Whereas GDTR and LDTR store values that

are immutable, GDT and LDT store mutable values that are

updated whenever task switching occurs. Light-box period-

ically traverses the descriptors stored in GDT and LDT, and

tests the properties like the type and address range of each

descriptor. By doing so, Light-box would recognize if tables

are altered unexpectedly by malware.

IDTR Protection: The IDT register (IDTR) stores the ad-

dress and size of interrupt descriptor table (IDT) that has

vectors to the handlers, called interrupt gates and trap gates

that handle interrupts and exceptions, respectively. Interrupts

and exceptions are handled in the kernel mode, and affect

the state of security. For example, handling int 0x80 sys-

tem call accords with privilege escalation. IDTR is protected

by the event-driven way, similarly to GDTR and LDTR. Dif-

ferently from GDT and LDT, the value of IDT is fixed once

after it is set in the booting process. Light-box prohibits IDT

from being altered, by setting up the memory area read-only.

MSR Protection: System calls are interfaces enabling user-

level applications to access system resources. Traditionally,

operating systems have provided a way of system call invo-

cation via interrupts, although context switching overheads

arise while handling interrupts.

Recent CPUs provide a better way of implementing sys-

tem call interfaces being equipped with new instruction sets

of SYSENTER/SYSEXIT and SYSCALL/SYSRET. The follow-

ing Mode Specific Registers (MSRs) are needed to be set

for using the new instructions sets. The SYSENTER_CS,

SYSENTER_ESP, and SYSENTER_EIP registers are used

to initiate kernel-mode execution and set up entry points of

SYSENTER/SYSEXIT instructions. The STAR, LSTAR, and

FMASK registers need to be prepared for SYSCALL/SYSRET

instructions. By monitoring the values of MSRs, Light-box

eliminates unauthorized mode transitions.

�✁✂✄☎

✆✝✞✟ ✠✡☛✞☞✌✍✎

✏✑✑✒✓✞✞

✔✞✓✒✕

✔✖✍✎✎✝✌✍✟✓✑

✏✒✓✍

✗✘✙✘✚

✛✟✍✟☞✌

✜✓✒✖✓✎

✢✣✤✓✌✟

✏✒✓✍

✗✘✚ ✥✦ ✗

✛✡✍✑✝✧★✩✝✪

✏✒✓✍

✫✬✭

✮✢✯✯✔

✰✱✱✲✳✴

✰✱✱✲✳✵

✰✱✱✲✳✶

✷✸✹✳ ✰✺✺✳

✻✓✼✓✎ ✽

✻✓✼✓✎ ✾

✻✓✼✓✎ ✿

✻✓✼✓✎ ❀

✷✸✹✳ ✰✺✺✳

❁❁❁

❂❃❄

✯✯✔ ✝❅ ❆❇

❈❉❊❋● ❍■❏❋❑▲▼◆
❖PP◗❊❋❋

❘❙❖ ❖PP◗❊❋❋

❚❯❱❲❳❱ ❨❩❬❭❪❩❭❬❫ ❴❵ ❛❜❝❫❬❞❲❡❴❬ ❢❣❣❤✐ ❯❳❥

❦❣❧ ♠❫♥❯❝❝❲❳❱ ♦❯♣q❫ ❢rs❣❣❤✐

Figure 4. Event-driven access mitigation mechanism

4.1.4 OS Independent Execution Flow

To implement monitoring procedures, we need to spawn

control flows that are independent to the guest OS. Kernel

threads could be used to create such control flows, but other

kernel-level processes of the guest OS may intervene the

threads. Instead, Light-box spawns OS independent control

flows using the VMX preemption timer supported by CPU

[11]. The VMX preemption timer can activate our monitor-

ing logic periodically and give the control back to CPU after-

hand. It is free from the guest’s intervention, being running

in the host machine.

4.2 Shadow-Watcher Design

For retaining control on the system permanently, malicious

codes, such as rootkits, try to modify the critical kernel

objects enlisted in Section 2. Protections on those objects are

performed in an event-driven way and also a periodic way.

4.2.1 Event-driven Access Mitigation

Kernel objects including kernel codes, the system call table,

the IDT table, and the hypercall table, reside in read-only

kernel memory. The values of the objects are static, thus im-

mutable at runtime. The codes and read-only data of LKMs

also fall into the same category. Shadow-watcher protects

those objects by using physical page locking. As well as the

locking, Shadow-watcher also uses physical page hiding for

keeping the important objects safe.

When CPU or a DMA controller tries to access particu-

lar addresses, MMU and IOMMU translate given logical ad-

dresses to host physical addresses (HPA) using page tables

shown in Figure 4. HPA may belong to a memory area allo-

cated for static kernel objects, or a memory area used by the

user or Shadow-box. Unintentionally or intentionally, HPA

could also point to an unallocated memory area. Shadow-

watcher sorts out those anomalies in memory accesses by

re-setting proper access privileges in the pages tables.

• The static kernel objects (listed in Section 2) correspond

to codes and data. Shadow-watcher sets read (R) and

6



�✁✂�✁

✎ ✄☎✆✝✞✟✠☎✡ ☛☞✞✌✍☞✞✝

✏✞✝☞✑✒✓✠☎✟

✔ ✕✓☎✠✟✓✞✠☎✡

✖ ✗ ✘✙✙✙

✚✛✜✢

✣✤✛✥

✚✛✜✢ ✚✛✜✢

✣✤✛✥ ✣✤✛✥

✦☞✆✑ ☞☎✌ ✕✓✌✧★✝ ✩✠✆✟ ✠☎

✪✧✝✆✟
✫ ✬✞✝☞✟✠☎✡ ✠☎✠✟✠☞★ ✌☞✟☞

✭✮✯✰ ✱ ✲✳✴✵✶✷

✸✹✷✮✺✷ ✘✵✻✼✺✽✳✻

✾✿❀❁✿❂❃❄❅ ✿❂

❆✿❇✾❀❈✿✾❉❆❊❄❅

❋

●❂❊❇❍❊❀✿■❏❊●❍❄❅❑

❈✿✾▲❁▼❀❆▲◆❍❄❅❑ ❖

P

✭✮✯✰ ✱ ✲✳✴✵✶✷

◗✷✶✷✺✷ ✘✵✻✼✺✽✳✻

❂❊❆❊❇◆❊❀❍❇◆❃❄❅ ✿❂

✾❊❆❊❍❊❀❈✿✾❉❆❊❄❅

❋

✾❊❆❊❍❊❀✿■❏❊●❍❄❅❑

❈✿✾▲❁▼❀❆▲◆❍❄❅❑ ❖

P

❘ ❙☛☞✌✓✍✠☎✡

★✠✆✟ ✌☞✟☞

✖ ✗ ✘✙✙✙

✚✛✜✢

✣✤✛✥

✚✛✜✢ ✚✛✜✢

✣✤✛✥ ✣✤✛✥

✦☞✆✑ ☞☎✌ ✕✓✌✧★✝ ✩✠✆✟ ✠☎

❙☛☞✌✓✍❚❯☞✟❱☛✝✞

❲ ✬✓❳✒☞✞✠☎✡ ✌☞✟☞

Figure 5. Operation of list shadowing

execution (X) rights for where the codes in, and only read

(R) for read-only data.

• Shadow-watcher does not provide mapping to where

Shadow-box codes and data are.

• No access limit is on user-area and unallocated area.

All of read (R), write (W), execution (X) accesses are

allowed.

4.2.2 Periodic Security Monitor

The dynamic kernel objects listed in Section 2 store muta-

ble values frequently updated in runtime, therefore it is not

practical to make them to read-only.

List Shadowing: Rootkits tend to modify system manage-

ment data, such as the task list and the module list. They can

hide out by deleting themselves in the double-linked lists,

while running. Since rootkits turn themselves into the stealth

mode on-demand, it is not predictable at all when they mod-

ify the relevant data. For detecting rootkits, Shadow-watcher

makes copies of the lists, and compares periodically the cur-

rent status of the lists and the stored copy. The copies of the

lists are made utilizing H/W breakpoints. H/W breakpoints

can be set on any location in code and data area, and do not

require kernel code modifications.

Figure 5 shows how Shadow-watcher shadow important

lists. When Shadow-box is loaded, it duplicates the cur-

rent task list and the module list. H/W breakpoints are set

on the operations that manipulate those lists, for example,

creating/terminating a task, loading/unloading a module. If

a change occurs in the lists, the exception (0x01 #DB) is

raised by a H/W breakpoint, and the Shadow-watcher re-

flects the change into the copy of the list. Having an OS

independent running cycle (See Section 4.1), the Shadow-

watcher finds inconsistencies between the current lists and

their back-ups. It allows detecting when malware tries to

modify the system resources.

Function Pointer Validation: Each of virtual file system

(VFS) objects and socket objects holds a series of function

�✁✂�✄

☎✆✝ ✞✟✠ ✝✡☛☞✌✍ ✎✏✑✌☛✍✒

✡✓ ✔✕✌✒✍

✖✗

✗✘✙✚✛✜✢

✣✡✒✍ ✤✥✦✒✧☛✞★

✩✠✠✪✌✒✒

✝✥✞✠✡✫✬✭✡✮

✩✪✌✞

✯✒✌✪

✩✪✌✞

✯✟✞★★✡☛✞✍✌✠

✩✪✌✞

✰✱✲✳

✆✕✟☛✍✧✡✟ ✤✡✧✟✍✌✪

✝✍✪✕☛✍✕✪✌

✴✲✵✶

✷✸✹✺✲

✻✼✽✾✲

✝✍✞✍✧☛ ✿✌✪✟✌★

✎✏✑✌☛✍ ✩✪✌✞

❀✟❁✞★✧✠

☎✞★✧✠

❀✟❁✞★✧✠

❂❂❂

Figure 6. Operation of function pointer validation

pointers which defines the possible operations on the object.

Calls to those functions can be hooked by malware and be

redirected to the codes that an attacker implanted. Those

hooks are used to forge and intercept invocation parameters

and return values. Shadow-watcher periodically validates the

integrity of those function pointer.

As shown in Figure 6, VFS objects and socket objects

store possible methods on the objects in a data structure,

called function pointer structure. Each of the operation struc-

ture entry stores the entry point of handlers. The validity of

those function pointers can be guaranteed if their addresses

fall into the static kernel objects. Assuming Shadow-box is

loaded securely to the memory, the entry points of the han-

dlers should be inside the static kernel object (kernel code).

Having entry points that point out unallocated area or user

area, we can conclude that a malware came into the system

and fabricated the function pointers.

5. Implementation

We explain how we implemented the Light-box and the

Shadow-watcher, which are the key parts of the Shadow-box.

It is implemented on an Intel machine for this paper, but also

is feasible on any hardware that has the similar virtualization

supports (e.g., recent AMD chips).

5.1 Light-Box Implementation

Light-box isolates the guest from the host, employing on-

access shadowing, physical page locking and hiding, priv-

ileged register protection, and OS independent execution

flow. How we implement those techniques are explained be-

low.

On-access Shadowing: The shadow page table structure

separating the host and the guest can be structured by

init_level4_pgt. The init_level4_pgt stores the ad-

dress of the top-most page table structure for the init process,

called swapper. The init process stores only the mapping in-

formation of the kernel, so it is a good place to construct the

shadow page table of Shadow-box. The constructed page ta-

7



ble is stored in Host CR3 field of VMCS, so that the host

will have a separated address space from the guest.

After the address spaces are separated, changes in the

guest’s page table would not be automatically reflected to

the host’s table. For the host to access the guest memory, we

require mappings between the host’s shadow page table and

the GPA. The guest’s top-most page table is stored in Guest

CR3 fields of VMCS. This can be utilized by the host to look

up GPA and update it to the host’s shadow page table.

Physical Page Locking and Hiding: Physical page protec-

tion technique leverages the extended page table (EPT) of

CPU VT and the second level page table (SLPT) of I/O VT.

EPT is used to convert GPA to HPA, and its address is stored

in the EPT Pointerfield of VMCS. We activate EPT setting

the Enable EPT bit in the Secondary Processor-Based

VM-execution Controls field in

VMCS. We set EPT could map the whole addresses to

the guest, because the host and guest share the memory

space. Similarly, we create SLPT to map the whole space

of RAM. We activate SLPT using DMA remapping report-

ing (DMAR) tables in advanced configuration and power

interface (ACPI).

After we create EPT and SLPT, we can set access privi-

leges to 4KB units of physical pages and decide whether the

pages can be mapped. We implemented physical page lock-

ing by giving read-only access privileges which depends on

the characteristics of the pages, as mentioned in Section 4.1.

We implemented physical page hiding technique by giving

no access privilege on the pages.

Privileged Register Protection: CPU VT passes events to

the hypervisor on VM exits, when the guest tries to ac-

cess the privileged registers which include GDTR, LDTR,

IDTR, and MSRs. The hypervisor can examine every ac-

cess on GDTR, LDTR, and IDTR, receiving the access

events by setting up the Secondary Processor-Based

VM-execution Controls field in VMCS. We can also re-

ceive events when values of MSRs are changed. What we

need to do is turning on the Use MSR bitmaps bit (bit

28) of Primary Processor-based VM-execution

Controls field, and setting IA32_SYSENTER_CS MSR

(0x174), IA32_SYSENTER_ESP MSR (0x176), IA32_

SYSENTER_EIP MSR (0x175), IA32_STAR MSR (0xC00

00081), IA32_LSTAR (0xC0000082), IA32_FMASK (0xC0

000084) to 1 in MSR bitmaps. Table 2 summarizes how

Light-box protects privileged registers and tables.

OS Independent Execution Flow: The VMX-preemption

timer passes the control to the hypervisor periodically.

VMX-preemption timer is activated by setting up the ticks

on the VMX-preemption timer value field of VMCS,

and by turning on Activate VMX-preemption timer

bit (bit 6) of the Pin-Based VM-execution Con-

trol field in VMCS.

Name Protection method

GDTR/LDTR event-driven mitigation

IDTR/MSRs (using the VM-execution control)

GDT/LDT periodic monitor

(verifying descriptors in the table)

IDT event-driven mitigation

(locking physical pages)

Table 2. Methods of privileged register protection

5.2 Shadow-Watcher Implementation

Shadow-watcher provides protections on the static kernel

objects and the dynamic kernel objects, employing event-

driven access mitigation and periodic security monitor. The

implementation of those techniques explained below.

Event-driven Access Mitigation: Figure 7 shows the static

kernel objects that we concern. The static kernel objects

in the kernel space include the kernel codes, exception ta-

bles, and read-only data, as depicted in the shaded area.

Those memory areas can be calculated using kernel sym-

bols; the code area can be calculated by _text/_etext, the

exception tables can be located by __start___ex_table/

__stop___ex_table, and read-only data can be found by

__start_rodata/__end_rodata. The kall_syms_

lookup_name() function in the kernel returns the address

of the symbols. The physical page locking technique defeats

unauthorized accesses to those areas.

In case of loadable kernel modules (LKMs), a protection

needs to be provided for the codes and read-only data of

modules and their initializers, as shown in Figure 7. LKMs

are connected in the form of linked-list and the modules

symbol points to the head of the list. Each module of the

list has the base address fields that point to start address and

the size fields of the area. For example, the module_init

field and the module_core field have the base address of

area, and the init_ro_size field and core_ro_size field

have the size of the read-only area. Note that the initializer

codes are freed right after a module is initialized, so there

is no need of protection for those codes. We only protect

module_core area by using physical page locking.

Periodic Security Monitor: The H/W breakpoints for

shadowing the task list and the module list are installed

on exported functions that manipulate those lists, as fol-

lows: do_fork() and release_task() functions add

and delete tasks. In do_fork(), a H/W breakpoint is set

on wake_up_new_task() function which is invoked in

do_fork() function. In release_task(), a breakpoint is

set on proc_flush_task() which remove the task from

/proc directory. Similarly, H/W breakpoints were set on the

functions that add and delete a module to the module list. In

load_module(), a breakpoint is set on ftrace_module_

init() which is invoked after a module is added to the

8



��✁�✂

✄☎✆✝☎✞

✟✠✡☛

☞✌☛✍✌

☞☛✌☛✍✌

✎✍✏☛✑✌✒✠✓

✔✕✖✗☛

☞☞✘✌✕✙✌

☞☞☞☛✍☞✌✕✖✗☛

☞☞✘✌✠✑

☞☞☞☛✍☞✌✕✖✗☛

✚☛✕✡✛✠✓✗✜ ✢✕✌✕

☞☞✘✌✕✙✌

☞✙✠✡✕✌✕

☞☞☛✓✡

☞✙✠✡✕✌✕

✚☛✕✡✣✤✙✒✌☛ ✢✕✌✕

✥✦✧★✞☎

✩✓✒✌✒✕✗ ✟✠✡☛ ✕✓✡

✚☛✕✡✛✠✓✗✜ ✢✕✌✕

✪✠✡✫✗☛☞✒✓✒✌

✬ ✒✓✒✌☞✙✠☞✘✒✭☛

✟✠✡☛ ✕✓✡

✚☛✕✡✛✠✓✗✜ ✢✕✌✕

✪✠✡✫✗☛☞✏✠✙☛

✬ ✏✠✙☛☞✙✠☞✘✒✭☛

✚☛✕✡✣✤✙✒✌☛ ✢✕✌✕

Figure 7. Static kernel objects in kernel area

list. In free_module(), a breakpoint is set on the start of

free_module().

We can trace changes in the task list and the module list

using the H/W break points. We update the copies of those

lists stored in Shadow-watcher, and then compare the actual

lists and the copies periodically using the OS independent

execution flow. The starting points of the task list and the

module list are defined in init_task and module symbols, re-

spectively. Those lists are double-linked list, easily retrieved

by following the next pointer.

Function pointers are defined in VFS objects and socket

objects. Function pointers are defined as file_operations

structure and inode_operations structure, and stored in the

f_ops field and the i_ops field of VFS objects. Many rootk-

its try to modify such VFS objects as the root directory and

the proc directory. We periodically test if f_ops and i_ops

field of those VFS objects point to the static kernel objects.

Socket objects have the d_inode field and the ops field

where function pointers are stored. The d_inode field is

defined in tcp_seq_afinfo structure or udp_seq_afinfo struc-

ture. The ops field is defined in proto_ops structure. We

periodically test if d_inode field and ops field of socket

objects point to the static kernel objects.

6. Evaluation

We tested how well Shadow-box detects rootkits, and we

also checked its performance. The performance evaluation

was done on a desktop computer equipped with Intel i7-4790

3.6GHz, 32GB RAM, and 512GB SSD.

6.1 Rootkit Detection

We installed 64bit Ubuntu Hardy Heron with the Linux

2.6.24 kernel to run all five rootkits that we have. After

running the rootkits, Shadow-box successfully detected all

of them when they alter a bit of the kernel, as shown in Table

3 and Table 4.

As previously described, Shadow-box protects the static

kernel objects in the event-driven way, while the dynamic

kernel objects are validated periodically. It entails that alter-

Name Detected? Detected point

EnyeLKM X code change

Adore-ng 0.56 X function pointer change

Sebek 2.0 X system table change

Suckit 2.0 X system table change

kbeast X system table change

Table 3. Rootkit detection results-static and dynamic kernel

object protection features are enabled

Name Detected? Detected point

EnyeLKM X module hide

Adore-ng 0.56 X function pointer change,

module hide

Sebek 2.0 X module hide

kbeast X module hide

Table 4. Rootkit detection results-only dynamic kernel ob-

ject protection feature is enabled

ation on the static objects are detected before dynamic ones

are forged. Consequently, when Shadow-box runs with the

proposed static and the dynamic kernel object protection, the

rootkits are likely detected by the static kernel protection, as

shown in Table 3. In order to show the effectiveness of the

periodic security monitor, we intentionally turned the static

kernel object protection off. Table 4 shows that Shadow-box

still detects the rootkits. Suckit 2.0 was exempted from the

test because it does not modify any dynamic kernel object.

Specifically, Table 3 shows that Adore-ng is detected as

it forged function pointers. In recent Linux kernels built-in

drivers, function pointer structures are declared by const,

and their instances are placed in read-only area. Attempts to

change the instances are captured by the static kernel object

protection. Besides, Adore-ng is also detected by the peri-

odic monitoring (dynamic kernel object protection), because

the pointers to the function instances are categorized into the

dynamic kernel objects.

6.2 Performance Measurements

We evaluated performance of Shadow-box on Fedora 21

with Linux 3.17.4 kernel, separately on single-core proces-

sor and multi-core processor settings. After repeating bench-

mark five times, we calculated an average of the results. Our

measurements were obtained using lmbench 3.0-a9, SPEC

CPU 2006, and PARSEC 3.0 [16]. Outcomes of application

benchmark tests are depicted in Figure 8.

Single-core processor benchmark: Table 5 and Table 6

shows the micro benchmark results conducted by lmbench

in the single-core processor setting.

Overheads came from protection mechanisms of Shadow-

box, as shown in Table 5. The mechanisms cause increased

latency in 22.2-38.2%. The latency causes overall perfor-

9



Name Bare-metal Shadow-box Overhead

2p/0K 0.614 0.792 29.0%

2p/16K 0.564 0.708 25.5%

2p/64K 0.516 0.686 32.9%

8p/16K 0.728 0.900 23.6%

8p/64K 0.956 1.280 33.9%

16p/16K 0.872 1.066 22.2%

16p/64K 0.938 1.296 38.2%

Table 5. Lmbench benchmark result-context switching la-

tency (microseconds)

Name Bare-metal Shadow-box Ratio

Pipe 8416.8 7832.8 93.1%

AF UNIX 9167.6 8730.2 95.2%

TCP (Local) 5952.6 4092.4 68.7%

File reread 9593.58 9511.5 99.1%

Mmap reread 15.72K 15.2K 96.7%

Bcopy (libc) 10.6K 10.46K 98.7%

Bcopy (hand) 6954.02 6868.7 98.8%

Mem read 15K 14K 93.3%

Mem write 10.26K 10.14K 98.8%

Table 6. Lmbench benchmark result-communication band-

width (MB/s)

mance overheads, and decreases the communication band-

width. As shown in Table 6, other than TCP (Local) Shadow-

box guaranteed at least 93% of network performance of the

bare-metal machine, albeit TCP (Local) bandwidth went

down about 32%. In order to find the reason, we placed H/W

breakpoints on bare-metal machine, and measured the TCP

bandwidth. Table 7 shows that how many overheads come

from H/W breakpoints. The first row of the table shows

about 6GB information could be transferred locally on the

bare-metal machine without setting any H/W breakpoint.

The second row presents the decrease of the bandwidth on

the same machine with setting four of H/W breakpoints on.

Comparing the results shown in Table 6 and Table 7, we can

see H/W breakpoints decrease the bandwidth on bare metal

as well. It seems H/W breakpoints consumes CPU cycles,

and resulting in TCP bandwidth decreased. However, it was

not significant in application benchmarks.

Host Bandwidth Normalized

Bare-metal 5952.6 1.00

Bare-metal with H/W BP 4197.8 0.71

Table 7. Comparisons of TCP (Local) bandwidth (MB/s)

Application benchmark tests were done using SPEC CPU

2006 and PARSEC 3.0, and we also measured compilation

time of a Linux kernel. As shown in Table 8, Shadow-box

introduces overheads of 6.4% on average (except PARSEC),

which seems to be acceptable in most cases.

SPEC CPU 2006 results

Host INT (Sec.) FP (Sec.)

Bare-metal 3129 4133

Shadow-box 3439 4304

Overhead 9.9% 4.1%

Kernel compile results

Host Time (Sec.)

Bare-metal 2391.0

Shadow-box 2517.8

Overhead 5.3%

PARSEC results

Host Time (Sec.)

Bare-metal 1750.6

Shadow-box 1773.9

Overhead 1.3%

Table 8. Application benchmark results-single-core proces-

sor

Multi-core processor benchmark: Application benchmark

was done on multi-core processor setting. Kernel compile

time and PARSEC were measured, as shown in Table 9.

On the multi-core processor setting, application benchmark

reports 6.2% of overheads (except PARSEC).

Kernel compile results

Host Time (Sec.)

Bare-metal 4396.5

Shadow-box 4670.7

Overhead 6.2%

PARSEC results

Host Time (Sec.)

Bare-metal 3071.5

Shadow-box 3097.1

Overhead 0.8%

Table 9. Application benchmark results-multi-core proces-

sor

VMX-preemption timer overhead: Figure 9 depicts the

changes in communication bandwidth along the frequency

of VMX preemption timer. As it shows, frequent monitoring

more than 10ms affects the performance of the system. In

other words, we can run periodic monitor every 10ms with-

out having significant performance decrease, but the optimal

frequency might vary along the settings.

7. Discussion

Shadow-box does not guarantee control-flow integrity, which

means that we do not provide an immediate countermeasure

10



✄ ✄ ✄ ✄ ✄ ✄

✄�✄✁
✄�✁✂ ✄�✁✄

✄�✁☎
✄�✁✄

✄�✁✆

✁

✁�✝

✁�✂

✁�✆

✁�✞

✄

✄�✝

✄�✂

✄�✆

✟✠✡☛ ☞✌✍ ✟✠✡☛ ✎✠ ✠✏✑✟✡☛ ✒✓✔✕✓✖ ✗✘✙✚✛✖✓ ✠✏✑✟✡☛ ✒✓✔✕✓✖ ✗✘✙✚✛✖✓

✟✛✕✜✖✓✢✗✘✔✓ ✚✔✘✗✓✣✣✘✔ ✤✥✖✦✛✢✗✘✔✓ ✚✔✘✗✓✣✣✘✔

✧
★
✩✪
✫
✬✭
✮✯
✰
✩✱
✲
✳✭
✪
✯

✴✵✔✓✢✙✓✦✵✖ ✟✶✵✷✘✸✢✹✘✺

Figure 8. Results of application benchmark. Lower is better.

0.44 

0.55 

0.66 
0.69 

0.72 
0.75 

0.79 

0.84 
0.86 0.87 0.88 

0.90 0.91 0.92 0.92 0.92 0.92 0.92 0.92 0.92 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1ms 2ms 4ms 6ms 8ms 10ms 20ms 40ms 60ms 80ms 100ms 500ms 1ms 10ms 50ms 100ms 250ms 500ms 1s 5s

N
o

rm
a

li
ze

d
 c

o
m

m
u

n
ic

a
ti

o
n

 b
a

n
d

w
id

th
 

Preemption period 

The starting point of convergent section 

Figure 9. Changes in communication bandwidth according to the frequency of VMX-preemption timer

to such recent attacks based on return-oriented program-

ming [20, 35]. However, if the attacks are aiming at forging

or stealing valuable information in a system, they end up

with modifying critical kernel objects. Shadow-box defeats

those modifications.

Shadow-box installs H/W breakpoints and it may in-

crease performance overheads as shown in Section 6. The

overheads can be reduced by replacing the breakpoints with

S/W breakpoints or syscall table hooks. S/W breakpoints

and syscall hooks, however, require kernel modification.

Shadow-box does not allow runtime changes in kernel.

Necessary self-modified codes or runtime kernel patches

should be applied before shadow-box is loaded, unless pro-

hibited.

8. Related Work

There are several approaches of guaranteeing kernel in-

tegrity employing VT. SecVisor [34] guarantees kernel in-

tegrity based on a tiny-size hypervisor, monitoring user-

mode to kernel-mode transitions and checking if the transi-

tions are initiated from unauthorized entry points. NICKLE

[30] detects kernel rootkits leveraging general purpose hy-

pervisors such as KVM and virtual box. NICKLE keeps

copies of kernel codes and the hash values of known LKMs,

so that it can identify unauthorized kernel codes and modi-

fied modules.

Lares [25], OSck [19], HUKO [39] and NumChecker [37]

also fall into the same category which uses a general pur-

pose hypervisor. Lares leverages Xen to protect kernel and

anti-virus software installed in the machine. OSck leverages

KVM to give protections on control flows and all sorts of

kernel data including the dynamic kernel objects. OSck can

protect rootkits effectively. HUKO leverages Xen to pro-

tect the static and dynamic kernel objects, and also guar-

antees control flow integrity. Their subject-aware protection

mechanism inspects control flows depending on whether

it executes kernel codes, kernel modules, or user applica-

tions, with a few overheads. Numchecker leverages KVM

11



and hardware performance counters (HPC) to detect kernel

rootkits. Their timing-based mechanism can detect rootkits

without kernel modification of guest OS, and has a few over-

heads.

Copilot [26], Vigilare [24], and KI-Mon [23] guarantee

kernel integrity by employing additional hardware. They

could impose less overheads and the hardware-based pro-

tection cannot be compromised, but increases cost and issue

compatibility problems.

9. Conclusion

A virtualization-based OS monitoring framework, Shadow-

box, is presented in this paper. It guarantees security by in-

vestigating accesses to protected kernel objects and also val-

idating the objects periodically. The security is enforced by a

lightweight hypervisor, Light-box, therefore security-related

functions would continue working even when the OS is com-

promised. Light-box is a sort of Type-2 hypervisor, which

imposes lower overheads than other virtualization tools and

can be applied to a system without OS re-installation. We

demonstrated the use of Light-box by implementing a ker-

nel integrity monitor, Shadow-watcher. It successfully neu-

tralized all well-known rootkits that we have tested, with low

overheads.

Acknowledgment

This work was supported by Institute for Information &

communications Technology Promotion (IITP) grant funded

by the Korea government (MSIP) (No.R0236-15-1006,

Open Source Software Promotion)

References

[1] VMware ESXi. https://www.vmware.com/products/

esxi-and-esx/overview.

[2] Microsoft Hyper-V. https://www.microsoft.com/

en-us/server-cloud/solutions/virtualization.

aspx.

[3] McAfee Labs Threats Report May 2015. McAfee, .

[4] McAfee Labs Threats Report March 2016. McAfee, .

[5] ARM TrustZone. http://www.arm.com/products/

processors/technologies/trustzone.

[6] Oracle VirtualBox. http://www.virtualbox.org.

[7] VMware Workstation. http://www.vmware.com/

products/workstation.

[8] Intel Virtualization Technology for Directed I/O. Intel, 2014.

[9] AMD64 Architecture Programmer’s Manual Volume 2: Sys-

tem Programming. Advanced Micro Devices, 2015.

[10] AMD I/O Virtualization Technology (IOMMU) Specification.

Advanced Micro Devices, 2015.

[11] Intel 64 and IA-32 Architectures Developer’s Manual: Com-

bined Vols. 1, 2, and 3. Intel, 2015.

[12] Intel Trusted Execution Technology. Intel, 2015.

https://software.intel.com/en-us/articles/

intel-trusted-execution-technology.

[13] Unified Extensible Firmware Interface Specification. Unified

EFI, Inc, 2016.

[14] A. Baliga, V. Ganapathy, and L. Iftode. Automatic inference

and enforcement of kernel data structure invariants. In Proc.

of Computer Security Applications Conference, pages 77–86.

IEEE, 2008.

[15] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,

R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of

virtualization. ACM SIGOPS Operating Systems Review, 37

(5):164–177, 2003.

[16] C. Bienia. Benchmarking Modern Multiprocessors. PhD

thesis, Princeton University, 2011.

[17] M. Gorobets, O. Bazhaniuk, A. Matrosov, A. Furtak, and

Y. Bulygin. Attacking hypervisors via firmware and hardware.

Black Hat USA, 2009.

[18] J. Hartman. Verified Boot. 2009. https://www.chromium.

org/chromium-os/chromiumos-design-docs/

verified-boot.

[19] O. S. Hofmann, A. M. Dunn, S. Kim, I. Roy, and E. Witchel.

Ensuring operating system kernel integrity with osck. ACM

SIGPLAN Notices, 46(3):279–290, 2011.

[20] R. Hund, T. Holz, and F. C. Freiling. Return-oriented rootk-

its: Bypassing kernel code integrity protection mechanisms.

In Proc. of USENIX Security Symposium, pages 383–398.

USENIX Association, 2009.

[21] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori.

kvm: the linux virtual machine monitor. In Proc. of the Linux

Symposium, volume 1, pages 225–230. Linux Foundation,

2007.

[22] P. Kleissner. Stoned bootkit. Black Hat USA, 2009.

[23] H. Lee, H. Moon, D. Jang, K. Kim, J. Lee, Y. Paek, and B. B.

Kang. Ki-mon: A hardware-assisted event-triggered monitor-

ing platform for mutable kernel object. In Proc. of USENIX

Security Symposium, pages 511–526. USENIX Association,

2013.

[24] H. Moon, H. Lee, J. Lee, K. Kim, Y. Paek, and B. B. Kang.

Vigilare: toward snoop-based kernel integrity monitor. In

Proc. of ACM Conf. on Computer and communications secu-

rity, pages 28–37. ACM, 2012.

[25] B. D. Payne, M. Carbone, M. Sharif, and W. Lee. Lares: An

architecture for secure active monitoring using virtualization.

In Proc. of Security and Privacy, pages 233–247. IEEE, 2008.

[26] N. L. Petroni Jr, T. Fraser, J. Molina, and W. A. Arbaugh.

Copilot-a coprocessor-based kernel runtime integrity monitor.

In Proc. of USENIX Security Symposium, volume 13, pages

179–194. USENIX Association, 2004.

[27] G. J. Popek and R. P. Goldberg. Formal requirements for

virtualizable third generation architectures. Communications

of the ACM, 17(7):412–421, 1974.

[28] N. A. Quynh and Y. Takefuji. Towards a tamper-resistant ker-

nel rootkit detector. In Proc. of ACM symposium on Applied

computing, pages 276–283. ACM, 2007.

12



[29] D. X. R Riley, X Jiang. Multi-aspect profiling of kernel rootkit

behavior. In Proc. of ACM European Conf. on Computer

system, pages 47–60. ACM, 2009.

[30] R. Riley, X. Jiang, and D. Xu. Guest-transparent prevention

of kernel rootkits with vmm-based memory shadowing. In

Proc. of Recent Advances in Intrusion Detection, pages 1–20.

Springer, 2008.

[31] J. Rutkowska. Beyond the cpu: Defeating hardware based ram

acquisition. Black Hat DC, 2007.

[32] J. Rutkowska and A. Tereshkin. Bluepilling the xen hypervi-

sor. Black Hat USA, 2008.

[33] J. Rutkowska and R. Wojtczuk. Preventing and detecting xen

hypervisor subversions. Black Hat USA, 2008.

[34] A. Seshadri, M. Luk, N. Qu, and A. Perrig. Secvisor: A

tiny hypervisor to provide lifetime kernel code integrity for

commodity oses. ACM SIGOPS Operating Systems Review,

41(6):335–350, 2007.

[35] sqrkkyu and twzi. Attacking the Core : Kernel Exploiting

Notes. Phrack #64 file 6. http://phrack.org/issues/

64/6.html.

[36] P. Stewin and I. Bystrov. Understanding dma malware. In

Detection of Intrusions and Malware, and Vulnerability As-

sessment, pages 21–41. Springer, 2013.

[37] X. Wang and G. Xiaofei. Numchecker: A system approach

for kernel rootkit detection and identification. Black Hat Asia,

2016.

[38] Z. Wang, X. Jiang, W. Cui, and X. Wang. Countering per-

sistent kernel rootkits through systematic hook discovery. In

Proc. of Recent Advances in Intrusion Detection. Springer,

2008.

[39] X. Xiong, D. Tian, and P. Liu. Practical protection of kernel

integrity for commodity os from untrusted extensions. In

Proc. of Network and Distributed System Security Symposium,

2011.

[40] H. Yin, Z. Liang, and D. Song. Hookfinder: Identifying

and understanding malware hooking behaviors. In Proc. of

Network and Distributed System Security Symposium, 2008.

[41] X. Zhang, L. van Doorn, T. Jaeger, R. Perez, and R. Sailer.

Secure coprocessor-based intrusion detection. In Proc. of

ACM SIGOPS European workshop, pages 239–242. ACM,

2002.

13


