go get my/vulnerabilities

- Green threads are not eco —
friendly threads

Who

e (Web|Mobile) penetration tester

e Code reviewer

e Programmer

B /secureeTwork

Your Protection, Our Mission

Roberto Clapis

@empijei |

Go

e Google's language

e Bornin 2007 (quite new)

e Widespread

Cool, but how do | break it?

e Memory safety, Garbage Collection
e Anti-XSS/SQLi sanitization

e Built-in thread-safe constructs

Let’s start the digging
J

e New features usually lead to new
vulnerabilities

e Goroutines are one of the main new
features introduced by Go

Goroutines are concurrent function calls

go fmt.Println(“Hello goroutines”)

Let’s try this

for 1 := 0; 1 <= 9; 1++ {

go func() {
fmt.Println(i)

+()

Expectation Reality

1 10
3 10
2 10
3 10
9 10

Wait...

Special functions #1: goroutines

e Concurrent

go func(){
e Lightweight //Code here

+()

e Multiplexed on OS Threads

10

Special functions #2: closures

freeVar := “Hello ”

f := func(s string){
fmt.Println(freeVar + s)
}

f(“Closures”)

// Hello Closures

11

Special functions #(1+2): closured goroutines
for 1 :=0; 1 <= 9; i++ {
go func() {
fmt.Println(i)
+()

}
// Here 1 == 10 >

Performance

e Writing to file is slow

e Aware scheduling

e Runtime waits only if necessary

13

The (odd) fix

for 1 := 0; 1 <= 9; i++ {

i =3

go func() {
fmt.Println(i)

+(O)

for req := range queue {
req := req // Create new instance of req for the goroutine.

14
s

Channels

for data := range ch {

15
s

Information Leakage
func Serve(queue chan *http.Request) {

for req := range queue {
go func() {
process(req)
14

responses to the wrong requests

16

Checkpoint

e Variable scoping is a nice point to focus
on

e Aware scheduling can make it easier to
abuse races

how aware is the scheduler?

AN

\

MPG model

S

S i

;‘

GOMAXPROCS Goroutines
Logical processors

OS Threads

18

Schedule me please

Scheduler calls are emitted at compile time

Consequences are weird

go func() {
for 1 := 0; true ; i++ {
}

+(0)

time.Sleep(2 * time.Second)
fmt.Println("Done")

20

Cores amount matter

21

Runs the same way everywhere...

runtime.GOMAXPROCS(1)

22

Statically Strongly Typed

go func() {
for 1 := range 1lst {
for ; 1 <= 255 ; i++ {
// Computation
}
¥
+(O)

Hidden problem: Garbage Collector

Garbage collector needs to stop goroutines

Garbage Collection?

GC politely asks goroutines to stop

25

Consequences are bad

go func() {
var 1 byte
for 1 = 0; 1 <= 255; i++ {
}

+H(O)

runtime.Gosched() //yield execution
runtime.GC()
fmt.Println("Done")

26

Here is the solution

Weird solution: use non-inlinable function calls in loops

The correct one: use channels

27

Checkpoint

e Scheduling must be taken into account

e Goroutines that don't yield have potential
for DoS

how do goroutines die?

A

\

28

Goroutines end

The only way for a
goroutine to terminate is
for it to return, or for the
program to end.

NUKE IT FROM ORBIT

Goroutines are not Garbage Collected

They must be signalled to end or they

constitute an insidious opening for DoS

30

select the right solution?

select {
case dl <- chil:
case d2, ok <- ch2:
default:

31

Max execution time in PHP

<?php
set _time 1limit(2);
for($i=0; ;%i++){
}
?>
// Maximum execution time of
// 2 seconds exceeded .

Max execution time in go

func TimeoutHandler
func TimeoutHandler(h Handler, dt time.Duration, msg string) Handler

TimeoutHandler returns a Handler that runs h with the given time limit.
The new Handler calls h.ServeHTTP to handle each request, but if a call runs for longer than its time limit, the

handler responds with a 503 Service Unavailable error and the given message in its body. (If msg is empty, a

suitable default message will be sent.) After such a timeout, writes by h to its ResponseWriter will return
ErrHandlerTimeout.

So is this magic?

33

This is NOT PHP

type simpleHandler struct {
}
func (t *simpleHandler) ServeHTTP(w http.ResponseWriter,
r *http.Request) {
time.Sleep(10 * time.Second)
fmt.Println("Got here")

}

func main() {
sh := &simpleHandler{}
tsh := http.TimeoutHandler(sh,
time.Second*2,
"Timeout!")
http.ListenAndServe(":8080", tsh)

34

Just a click away

func Timeouﬂandler 1
=
func TimeoutHandler(h Handler, dt time.Duration, msg string) Handler

TimeoutHandler returns a Handler that runs h with the given time limit.

The new Handler calls h.ServeHTTP to handle each request, but if a call runs for lo
handler responds with a 503 Service Unavailable error and the given message in its

suitable default message will be sent.) After such a timeout, writes by h to its Respo
ErrHandlerTimeout.

35

Dive into sources

// Create timer

go func() {
h.handler.ServeHTTP(tw, r)

// Signal done channel

10O

select {
case <-done:

// Handle HTTP stuff
case <-timeout:

// Write error

36

Mind the gap

The standard library isn't more powerful
than you are, if you can't kill a goroutine,
neither can the stdlib.

37

Some more problems with signals

// The worker goroutine

for {
select{ // The main goroutine:
case job <- jobs: go worker()
process(job) // Work needs to end:
case <-done: done <- true
return
}
}

38

Other (still not) correct fixes

go worker()
go worker()
go worker()
done <- true
done <- true
done <- true

case <-done:
done <- true
return

go worker()

done <-

true

39

Even worse

40

Other (still not) correct fixes

case <-done:
done <- true
return

go worker()
done <- true
<- done

41
s

Just close it

go wor
go wor
go wor

ker()
ker()

ker()

close(done)

42

Close channels

for data := range ch {

43
s

Conclusions

Mind race conditions

Dive into sources

Follow signals

Check for yielding calls

44

Thanks

Roberto Clapis
@empijei

e /secure eTWorK

Your Protection, Our Mission

45

