black hat ASIA 2017

MARCH28-31,2017

MARINA BAY SANDS / SINGAPORE

-

3G/4G Intranet Scanning and its Application on the WormHole Vulnerability

Zhang Qing

Bai Guangdong

Self Introduction

- Zhang Qing
 - Senior Android security researcher from Xiaomi Inc., China
 - Research on Android security and payment security
- Bai Guangdong
 - Lecturer from Singapore Institute of Technology (SIT), Singapore
 - Research on mobile security and protocol analysis
 - Presented "Authenticator leakage in Android" on Black Hat Europe 2015

Agenda

- Introduction and Background
 - o 3G/4G intranet
 - Attack surface of 3G/4G intranet
- Scanning 3G/4G intranet
 - o Scanner Setup
 - Introduction to WormHole vulnerability
 - Scanning Results and Statistics
 - Countermeasures

- A Honeypot on 3G/4G intranet
 - \circ Findings
- Summary and Take-aways

Introduction and Background

- ✤ 3G/4G intranet
- Attack surface of 3G/4G intranet

Cellular Networks: Where are We?

- 1st Generation Analog Systems
 - Analog Telecommunication
 - No data transmission, only voice transmission
- 2nd Generation Digital Systems
 - Purely digital technology
 - **Circuit switching:** dedicated point-to-point connections during calls
 - o TDMA, GSM, CDMA
 - Circuit-switched data services (HSCSD)
 - Very slow data transmission

Cellular Networks: Where are We?

- \geq 2.5 3rd Generation
 - Mix of circuit switching and packet-switching Ο
 - Packet-switched data Ο
 - Allows mobile networks to transmit IP packets to the Internet Ο
 - GPRS, EDGE, CDMA2000 Ο
- 4th Generation
- Generation All IP-based secured packet switched new ork (IPv6 supported) Ο
 - Voice also transmitted over IP Ο
 - LTE, WIMAX Ο

LTE System Architecture

- ✓ E-UTRAN consists of eNodeBs (i.e., base stations).
- ✓ It manages the radio communication between eNodeB and UE and facilitates communication between the UE and EPC

- ✓ S-GW: All user IP packets are transferred through the S-GW, which serves as the local **mobility anchor** when the UE moves between eNodeBs.
- ✓ P-GW: The PDN (packet data network) Gateway is responsible for IP address allocation for the UE, QoS enforcement and flowbased charging. 8

Abstraction of 3G/4G intranet

When a UE is connected to 3G/4G network, it is assigned a private IP address.

Example of a Private IP Address

🥸 🍨 🖬	🔌 1 👯 📶 ^G 📶 90% 🗎 14:37
← Status	
👖 SIM 1	2 SIM 2
IMEISV 01	
IP address	
WLAN MAC add	dress
Bluetooth addre	255
Serial number	
Up time 2:07:03	

When a mobile phone is connected to 3G/4G network, it is assigned a private IP address within the range of 10.0.0.0 – 10.255.255.255

Security in LAN and WLAN

- ✓ Nodes are physically close
- ✓ Used in a limited area such as a residence, laboratory and office, which is relatively more trustworthy and easier to audit

- ✓ Various security countermeasures, e.g., Wired Equivalent Privacy (WEP) and Wi-Fi Protected Access (WPA)
- ✓ Protected by authentication on APs
 - Difficult for malicious nodes to connect into the intranet

Security in LAN and WLAN

- ✓ Nodes are physically close
- Used in a limited area such as a residence, laboratory and office, which is relatively more trustworthy and easier to audit

- ✓ Various security countermeasures, e.g., Wired Equivalent Privacy (WEP) and Wi-Fi Protected Access (WPA)
- ✓ Protected by authentication on APs
- Insecurity of open WiFi becomes more and more realized

3G/4G > Open WiFi?

The Dark Forest of 3G/4G Intranet

- A UE has no idea that
 - which intranet it is connected in, and
 - o its **neighbors** are trustworthy or not
- > An 3G/4G intranet is dynamic
 - UEs in a intranet are not necessarily connected to the same base station, and vice versa
 - A UE may join and exit dynamically
 - A UE may not be connected to the same intranet each time

Scanning 3G/4G Intranets

- Scanner Setup
- Introduction to WormHole vulnerability
- Scanning Results and Statistics
- Countermeasures

Devices

- > 4G Wireless Router
 - which allows us to conduct scanning on a desktop
 - Huawei EC3372-871 4G FDD TD-LTE
 Cat4 USB Dongle
 - Scalability
- A desktop
- 4G Sim Card and Android Smart Phone
 - which allows us to conduct scanning on various places
 - Mobility

Case Study: WormHole Vulnerabilities

- Android/PUP.WormHole.A ¹,²
 - Was reported in Oct 21st, 2015
 - Was found in Baidu's SDK Moplus (Port 6592 and 45310)
 - \circ 14,000+ apps got infected ³, 100M users were at risk ⁴
- > Other vulnerabilities of the same type are found in other major apps
 - 360 Browser (6587, 3851, etc.)
 - Gaode maps (6677)
 - Yingyongbao (14087)

Case Study: WormHole Vulnerabilities

- Why do we target WormHole?
 - This vulnerability is caused by "ImmortalService" a customized HTTP service used for cross-app communication
 - A proxy acts as a server, and opens a port for client to invoke it for (maliciously or for functionalities?)
 - Adding contact information silently
 - Starting any applications by remote control
 - Installing any applications silently
 - Uploading local files to a remote server
 - Getting personal information such as GPS location, IMEI, and an installed applications list

Benign or Malicious?

mobile terminal and returning a calling result to the Web application program after the native application program receives the Web request containing the information needed by the calling. Therefore, the running method of the Web application program and the mobile terminal enable function requirements and transportability requirements of the mobile application program to be met simultaneously.

application program in the mobile terminal; and calling the bottom interface of the

Benign or Malicious?

Once the proxy opens a port, not only its

companions can access it, but also

malicious apps on the same device and a

network attacker outside the device can

abuse it

Our Approach

We tested on three telecom operators in China (anonymized below)

Operator A	Operator B	Operator C
10.163.69.0/24	100.112.0.0/16	10.26.0.0/16
10.93.111.0/24	100.101.0.0/16	10.26.0.0/16
10.245.219.0/24	100.101.0.0/16	10.28.0.0/16
10.10.240.0/24	100.119.0.0/16	10.29.0.0/16
	100.119.0.0/16	10.9.0.0/16
	100.101.0.0/16	10.1.0.0/16
	100.97.0.0/16	10.26.0.0/16
	100.114.0.0/16	10.7.0.0/16

- Different time, different locations
- We did not test liveness (discuss shortly)

Our Approach

- Tool: nmap
 - ./nmap -sT -p6677,6587,38517,6259,40310,14087,14088 -T1 -vv -n -PN open --script test_nmap -oN lt1026.txt 10.26.0.0/16
 - Challenge: avoid being blocked by firewall and IDS

Parameter	Description
-PN (Treat all hosts as online skip host discovery)	Necessary when scanning the Operator B network and multithreading is not suggested. It will be detected by IDS if 'PN' is not specified or multithreading is used.
-n	Suggested, Never do DNS resolution
-T 0 or 1 (Set timing template <0-5>, higher is faster)	Have to use this parameter to control the pace , in order to avoid the IDS detection when scanning the Operator B network

Script Snippet

Scanning using Android Devices *

- Step 1: push *nmap* to Android's */data/nmap* folder
- Step 2: assign it execution permission using *chmod*
- Step 3: push the script file 'test_nmp.nse' to /data/nmap/scripts
- Step 4: use nmap under the */data/nmap* folder

Scanning Result

	360 Browser	360 Zhushou	Baidu	Baidu IME	Gaode Maps	Yingyongbao
Operator B	61	163	116	253	68	483
Operator C	53	295	161	494	255	539
Operator A	Blocked					

This scanning was conducted on January 25th, 2016

- o nmap is blocked by Operator A's firewall strategy. Alternative is discussed shortly
- Unfortunately, we cannot estimate infection rate, without knowing the device alive

Sampling of Scanning Speed

Command: nmap -sT -p6868,80,6259,38517,8822,43633 --open -vv \$subnet -n -PN

	Subnet	#IP Address	# up Host	Time (Second)
Operator P	100.119.100.0/24	256	1	64.65
Operator B	100.119.0.0/16	65,536	33	26,248.47
Operator A	10.93.111.0/24	256	0	310.41
Operator C	10.28.221.0/24	256	5	3,887.76

This scanning was conducted on January 7th, 2016

Alternative Scanner: scapy

- nmap failed to detected any up host on Operator A network
 - May be because of Operator A's firewall
- We use scapy as an alternative after exploration
 - Step 1: we use null scan to detect whether the port is open
 - Step 2: if the port is open, we use *sr()* to send our package and receive the response
- So far we are able to scan ip/24 of Operator A network

Alternative Scanner: scapy

Example of scapy script which probes port 38517/38518 of an IP address

```
stealth_scan_resp = sr1(IP(dst=dst_ip)/TCP(dport=(38517,38510),flags="S"),timeout=10)
print stealth_scan_resp
if(str(type(stealth_scan_resp))=="<type 'NoneType'>"):
    print "Filtered"
elif(stealth_scan_resp.haslayer(TCP)):
    if(stealth_scan_resp.getlayer(TCP).flags == 0x12):
        send_rst = sr(IP(dst=dst_ip)/TCP(dport=(38517,38518),flags="R"),timeout=10)
        print "Open"
    elif (stealth_scan_resp.getlayer(TCP).flags == 0x14):
        print "Close"
elif(stealth_scan_resp.haslayer(ICMP)):
    if(int(stealth_scan_resp.getlayer(ICMP).type)==3 and int(stealth_scan_resp.getlayer(ICMP).code) in [1,2,3,9,10,13]):
        print "Filt@red"
```


Ethical Consideration

- We collaborate with app developers to notify users for patching if possible
 - We conducted another round of scanning after 3 months
 - Infection number drops significantly

	360 Browser	360 Zhushou	Baidu	Baidu IME	Gaode Maps	Yingyongbao
Operator B	1/61	7 / 163	29 / 116	9 / 253	2 / 68	82 / 483
Operator C	17 / 53	55 / 295	54 / 161	154 / 494	73 / 255	189 / 539
Operator A	Skipped					

num after / is number of infection 3 months ago This scanning was conducted on April 22th, 2016

Ethical Consideration

- We collaborate with app developers to notify users for patching
 - We conducted another round of scanning after 3 months
 - Infection number drops significantly
- Vetting apps in the market (ongoing)
 - We have crawled 200,000 apps from an app market in China
 - We use a pattern matching to find apps using ServerSocket, DatagramScoket

d NanoHTTD		查询创建工具 查询编辑器
登询创建工具 空明海湖商 1 select count(*) as Serversocket from	查询编辑器 1 select count(*)as DatagramSocket from	<pre>1 select count(*)as NanoHTTPD from saomiao where NanoHTTPD='1'</pre>
	信目 结果1 概况 状本	信息 结果1 概况 状态
信息 结果1 概况 状态 Serversocket	DatagramSocket	► 595
32440	24472	

A Case Study

- A popular app in China, which has 11M installs
 - Anonymized for security of the users

0 💎 🖬 🍯		令 ⊿ 🛿 2:21	\triangleright
		C ::	
ALL	ESTABLISHED	LISTEN	
lojos <mark>r</mark>		UDP IPv6 UID 10076	
		LISTEN IPv6 UID 10076	
[::]:6666		LISTEN IPv6 UID 10095	

- Open a ServerSocket and listen on port 6666
- Receive commands from any other clients
- JUMPTO_activity Jump to an activity
- VERSION Version number
- INFORMATION info of the phone
 - *****(anonymized) Start its normal functionality
- CANCEL**** Stop its normal functionality

••• •••

Ο

Ο

A Case Study

- In its newer version, it uses BASE64 to encode the commands and an "encryption" which XOR a number generated from a random seed N
 - \circ cipher = base64_encode(command) \oplus F(seed)
 - But, F() is not important at all
 - \circ command = base64_decode(cipher \oplus F(seed))
 - How should we get seed?
- Seed is generated by client and sent to server once client receives a command-in-plain-text "versionex"
- Security by obscurity: no security at all

A Honeypot on 3G/4G Intranets

- Honeypot Setup
- Findings

Honeypot Setup

4 Honeypots over 4 Cities

- 4G Wireless Router & Desktop
 - Huawei EC3372-871 4G FDD TD-LTE
 Cat4 USB Dongle
- Modern Honey Network¹
 - A free open source software which supports honeypot deployments

full ports mapping

Customized Pot on Mobile Device

 \geq

 \geq

public int onStartCommand(Intent intent, int flags, int startId) { // TODO Auto-generated method stub ChatRoomServer server = new ChatRoomServer(6677); //gaode server.startServer(); ChatRoomServer server1 = new ChatRoomServer(6259); //BaiDu input server1.startServer(); ChatRoomServer server2 = new ChatRoomServer(40310); //baidu browser server2.startServer(); ChatRoomServer server3 = new ChatRoomServer(14087); //tencent vingyongbao server3.startServer(); ChatRoomServer server4 = new ChatRoomServer(6587); //360 browser server4.startServer(); ChatRoomServer server5 = new ChatRoomServer(38517); //360 apps market server5.startServer(); //return START STICKY; //return super.onStartCommand(intent, flags, startId); Notification notification = new Notification(); startForeground(1, notification); return START STICKY;

	ALL
6 known WormHole	Honey4G *:6259
ports	Honey4G *:6587
Feed information the	
	Honey4G
attacker needs, while	*:6677
-	💿 Honey4G

recording the attacks

Honey4G 6259	LISTE IP\ UID 1009	/6 97
Honey4G 6587	LISTE IP UID 1009	N 76 97
Honey4G 6677	LISTE IP UID 1009	N 97
Honey4G 14087	LISTE IP UID 1009	N 76 97
Honey4G 38517	LISTE IP UID 1009	N 26
Honey4G 40310	LISTE IP UID 1009	N 76

ESTABLISHED

 \mathcal{S}

न्डल

LISTEN

Results

- Each honey pot is scanned once a day on average
 - 3G/4G intranet scanning has been used
 - Known WormHole vulnerabilities have been extensively exploited

Trace attackers

Trace attackers

- Under an open source project which offers anonymous web access, the owner of this IP asked a question why this x-wap-profile is added, in 2014
 - He/she was doing scanning in an anonymous way
 - He knew WormHole in **2014**?

An Attack Detected by our Honey Pot

- Someone uses a WormHole to install a spyware located in http://ada**dh.com/qr.apk
- The spyware reads the SMS messages and sends them to an email address
- The email address and password are found in the apk file

Summary and Take-aways

Summary & Take-aways

> 3G/4G intranet is more open and dynamic than LAN and WLAN

- \circ It is possible to conduct a large-scale scan over the 3G/4G intranet
- $\circ~$ It may have been exploited earlier
- $\circ~$ It is a potential risk for IoT devices
- Be ware of this attack surface
 - Operators: Intrusion Detection System required
 - App developers: authentication is necessary if open any service
 - More research on security of sockets in Android apps [CCS'16]

[CCS'16] Y. Shao, J. Ott, Y. J. Jia, Z. Qian, and Z. M. Mao. The Misuse of Android Unix Domain Sockets and Security Implications.⁴¹

Questions?

Zhang Qing Bai Guangdong