
Seunghun Han, Jungwhan Kang
(hanseunghun || ultract)@nsr.re.kr

Shadow-Box:
Lightweight Hypervisor-Based

Kernel Protector

Arsenal

- Senior security researcher at NSR (National

 Security Research Institute of South Korea)

- Speaker at Black Hat Asia 2017 and

 HITBSecConf 2016

- Author of the book series titled “64-bit multi-

 core OS principles and structure, Vol.1&2”

- a.k.a kkamagui, @kkamagui1

 Who are we ?

- Researcher at NSR

- Speaker at Black Hat Asia 2017

- Participated final round of some CTFs

 (Codegate, ISEC… held in South Korea)

- Interested in OS security and reading write-up of CTFs

- Got married last year

- a.k.a ultract, @ultractt

 Linux Kernel Is Everywhere!

 Security Threats of Linux Kernel

- The Linux kernel suffers from rootkits and

 security vulnerabilities

 - Rootkits: EnyeLKM, Adore-ng, Sebek, suckit,

 kbeast, and so many descendants

 - Vulnerabilities: CVE-2014-3153, CVE-2015-3636,

 CVE-2016-4557, CVE-2017-6074, etc.

Devices which use Linux kernel

share security threats

 Melee Combats at the Kernel-level

- Kernel-level (Ring 0) protections are not

 enough

 - Lots of rootkits and exploits work in the Ring 0 level

 - Protections against them are often easily bypassed

 and neutralized

 - Kernel Object Hooking (KOH)

 - Direct Kernel Object Manipulation (DKOM)

Protections need

an even lower level (Ring -1)

 Taking the Higher Ground

- Leveraging virtualization technology (VT)

 - VT separates a machine into a host (secure world)

 and a guest (normal world)

 - The host in Ring -1 can freely access/control

 the guest in Ring 0 (the converse doesn’t hold)

 - VT-equipped HW: Intel VT-x, AMD AMD-v,

 ARM TrustZone

 Well-known Rootkits

Other rootkits also have

similar patterns

 Previous Researches…

- Many researches have preconditions

 - They usually change kernel code or hypervisor

 - They also need well-known hashes of LKM,

 well-known value of kernel data, secure VM

 for analyzing target VM, etc.

- Many researches consume much resource

 - The host and the guest run each OS

 - They allocate resources independently!

 - The host consumes many CPU cycles to introspect

 the guest because of semantic gap

 Restrictions on Previous Researches (1)

 Restrictions on Previous Researches (2)

- In conclusion, previous researches are

 considered for laboratory environment only

 - They assume they can control environment!

 - But, real world environment is totally different from

 laboratory environment!

 - You even don’t know the

 actual environment before

 the software is installed!

REAL WORLD!

WELCOME TO

Therefore,

PRACTICAL and LIGHTWEIGHT

mechanism is needed for

REAL WORLD ENVIRONMENT!

 Design Goals of Kernel Protector

- Lightweight

 - Focus on rootkit detection and protection

 - Simple and extensible architecture

 - Small memory footprint

 - No secure VMs and no multiple OSes

- Practical

 - Out-of-box approach

 - No modification of kernel code and data

 - Dynamic injection

 - Load any time from boot to runtime

 Security Architecture in Shadow Play

Bulb

Actors

Audience

 Security Architecture in Shadow Play

Ring -1 Monitoring Mechanism

Activities in OS

Security Monitor

We named this architecture

“Shadow-box”

(Light-Box)

(Shadow-Watcher)

User

Shared

Area

Light-Box

(Lightweight Hypervisor)

 Architecture of Shadow-Box

User
(Read/Write

Permission)

Shared Kernel
(Read-only

Permission)

Guest (Ring 0~3) Host (Ring -1)

Shared Kernel Only Shared Kernel and User

Shared Kernel
(Read/Write

Permission)

Shadow-

Watcher

(Monitor)

Monitor, control

 Rootkit Detection

- All rootkits are detected

Name Detected? Detected Point

EnyeLKM √
code change,

module hide

Adore-ng 0.56 √
function pointer change,

module hide

Sebek 2.0 √
system table change,

module hide

Suckit 2.0 √ system table change

kbeast √
system table change,

module hide

 Performance Measurements of Prototype

- Application benchmarks show 1% ~ 10%

 performance overhead

 - 5.3% at kernel compile in single-core processor

 - 6.2% at kernel compile in multi-core processor

Results of Application Benchmark. Lower is better.

(Intel i7-4790 4core 8thread 3.6GHz, 32GB RAM, 512GB SSD)

Single-core processor Multi-core processor

DEMO

hanseunghun@nsr.re.kr, @kkamagui1

ultract@nsr.re.kr, @ultractt

Project Link:
github.com/kkamagui/shadow-box-for-x86

 Question?

EMAIL!

