blé'c’:k hat Ars

ASIA 2017

MARCHZ28-31,=201~7

MARINA BAY SANDS / SINGAPORE

Shadow-Box:

Lightweight Hypervisor-Based
Kernel Protector

Seunghun Han, Jungwhan Kang
(hanseunghun || ultract)@nsr.re.kr

Who are we ?

- Senior security researcher at NSR (National
Security Research Institute of South Korea)

) - Speaker at Black Hat Asia 2017 and
HITBSecConf 2016

- Author of the book series titled “64-bit multi-
core OS principles and structure, Vol.1&2"
- a.k.a kkamagui, @kkamaguil

- Researcher at NSR
- Speaker at Black Hat Asia 2017
- Participated final round of some CTFs
| (Codegate, ISEC... held in South Korea)
| _;’ - Interested in OS security and reading write-up of CTFs
’ . . - Got married last year ©
%% - ak.a ultract, @ultractt

Linux Kernel Is Everywhere!

Security Threats of Linux Kernel

- The Linux kernel suffers from rootkits and

security vulnerabilities

- Rootkits: EnyelLKM, Adore-ng, Sebek, suckit,
kbeast, and so many descendants

- Vulnerabillities: CVE-2014-3153, CVE-2015-3636,
CVE-2016-4557, CVE-2017-6074, etc.

Devices which use Linux kernel
share security threats

Melee Combats at the Kernel-level

- Kernel-level (Ring 0) protections are not

enough

- Lots of rootkits and exploits work in the Ring O level
- Protections against them are often easily bypassed
and neutralized
- Kernel Object Hooking (KOH)
- Direct Kernel Object Manipulation (DKOM)

Protections need
an even lower level (Ring -1)

Taking the Higher Ground

- Leveraging virtualization technology (VT)
- VT separates a machine into a host (secure world)
and a guest (normal world)
- The host in Ring -1 can freely access/control
the guest in Ring O (the converse doesn’t hold)
- VT-equipped HW: Intel VT-x, AMD AMD-v,
ARM TrustZone

Well-known Rootkits

Name

Modified Kernel Object

Type

Attribute

Note

EnyeLKM 1.3

syscall_trace_entry

sysenter_entry

module->list
init_net->proc_net->subdir->tcp_data->tcp4_seq_show

Code
Code
Data
Function pointer

Static
Static
Dynamic
Dynamic

code change,

syscall hook,

direct kernel object
manipulation (DKOM)

Adore-ng 0.56

vfs_root->f_op->write
vfs_root->f_op->readdir
vfs_proc->f_dentry->d_inode->i_op->lookup
socket_udp->ops->recvmsg

Function pointer
Function pointer
Function pointer
Function pointer

Dynamic
Dynamic
Dynamic
Dynamic

function pointer hook

sys_call_table
vfs_proc_net_dev->get_info
vfs_proc_net_packet->proc_fops
module->list

System table
Function pointer
Function pointer
Data

Static

Dynamic
Dynamic
Dynamic

syscall hook,
function pointer hook,
DKOM

Suckit 2.0

idt_table
sys_call_table

System table
System table

Static
Static

idt hook,
syscall hook

kbeast vl

sys_call_table
init_net->proc_net->subdir->tcp_data->tcp4_seq_show
module->list

System table
Function pointer
Data

Static
Dynamic
Dynamic

syscall hook,
function pointer hook,
DKOM

Other rootkits also have
similar patterns

Previous Researches...

Guest-Transparent Prevention of Kernel Rootkits with VMM-based
Memory Shadowing

SecVisor: A Tiny Hypervisor to Provide
Lifetime Kernel Code Integrity for Commodity OSes:

Ryan Riley
Purdue University
rileyrd@cs.purdue.edu

: : Xuxian Jiang Dongyan Xu
Arvind Seshadri
George Mason University Purdue University

xjiang@gmu.edu dxu@cs purdue.edu

Mark Luk Ning Qu Adrian Perrig

CyLab/CMU CyLab/CMU CyLab/CMU CyLab/CMU
Pittsburgh, PA, USA Pittsburgh, PA, USA Pittsburgh, PA, USA Pittsburgh, PA, USA

arvinds@cs.cmu.edu mluk@ece.cmu.edu quning@cmu.edu perrig@cmu.edu

ABSTRACT 1. INTRODUCTION Abstract

We propose SecVisor, a tiny hypervisor that ensures code integrity
for commodity OS kernels. In particular, SecVisor ensures that
only user-approved code can execute in kernel mode over the en-
tire system lifetime. This protects the kernel against code injection
attacks, such as kemnel rootkits. SecVisor can achieve this prop-
erty even against an attacker who controls everything but the CPU,
the memory controller, and system memory chips. Further, SecVi-
sor can even defend against attackers with knowledge of zero-day
kernel exploits.

Our goal is to make SecVisor amenable to formal verification

Computing platforms are steadily increasing in complexity, in-
corporating an ever-growing range of hardware and supporting an
ever-growing range of applicati C quently, the plex-
ity of OS kernels is steadily increasing. The increased complexity
of OS kernels also increases the number of security vulnerabili-
ties. The effect of these vulnerabilities is compounded by the fact
that, despite many efforts to make kernels modular, most kemels in
common use today are monolithic in their design. A compromise of
any part of a monolithic kemel could compromise the entire kernel.

Kernel rootkits pose a significant threat to computer systems as they run at the highest privilege level

and have unrestricted access to the resources of their victims. Many current efforts in kernel rootkit de-
fense focus on the detection of kernel rootkits — after a rootkit attack has taken place, while the smaller
number of efforts in kernel rootkit prevention exhibit limitations in their capability or deployability. In
this paper we present a kernel rootkit prevention system called NICKLE which addresses a common, fun-
damental characteristic of most kernel rootkits: the need for executing their own kernel code. NICKLE
is a lightweight, virtual machine monitor (VMM) based system that transparently prevents unauthorized

Since the kemel occupies a privileged position in the software stack kernel code execution for unmodified commodity (guest) OSes. NICKLE is based on a new scheme

Lares: An Architecture for Secure Active Monitoring Using Virtualization Ensuring Operating System Kernel Integrity with OSck

. . . Owen S. Hofmann ~ Alan M. Dunn Sangman Kim Indrajit Roy* Emmett Witchel
Bryan D. Payne Martim Carbone Monirul Sharif Wenke Lee

School of Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332-0765
{bdpayne,mcarbone,msharif,wenke} @cc.gatech.edu

The University of Texas at Austin *HP Labs
{osh,adunn,sangmank,witchel } @cs.utexas.edu indrajitr@hp.com

Abstract

Host-based security tools such as anti-virus and intru-
sion detection systems are not adequately protected on to-
day’s computers. Malware is often designed to immedi-
ately disable any security tools upon installation, render-
ing them useless. While current research has focused on
moving these vulnerable security tools into an isolated vir-
tual machine, this approach cripples security tools by pre-

ing
sio
tyE
ple
wa

pla
exc

= A System Approach for Kernel Rootkit

Abstract

mo NumcChecker:

Detection and Identification

Xueyang Wang, Ph.D.
Xiaofei (Rex) Guo, Ph.D.

(xueyang.wang | | xiaofei.rex.guo) *noSPAM* intel.com

change the state of operating system data structures in order to gain
unauthorized access to computer resources and to prevent detec-
tion. OSck detects when the state of kernel data structures violates
the integrity properties specified to the hypervisor. If a rootkit com-
promises kernel integrity, the hypervisor can take appropriate ac-
tion, such as terminating the operating system or alerting an ad-
ministrator.

We extend previous work in hypervisor-based monitoring in
four important directions:

1. OSck verifies type-safety properties for the kernel heap through
a linear scan of memory, rather than traversing a data structure
graph. This approach is based on extracting assumptions about
kernel memory layout from memory management data struc-
tures. It is more efficient than graph traversal in both time and
space, and facilitates inci | verifi

Restrictions on Previous Researches (1)

- Many researches have preconditions
- They usually change kernel code or hypervisor
- They also need well-known hashes of LKM,
well-known value of kernel data, secure VM
for analyzing target VM, etc.

= I\/Iany researches consume much resource
- The host and the guest run each OS
- They allocate resources independently!
- The host consumes many CPU cycles to introspect
the guest because of semantic gap

Restrictions on Previous Researches (2)

- In conclusion, previous researches are

considered for laboratory environment only

- They assume they can control environment!
- But, real world environment is totally different from

laboratory environment! WELCOME TO
- You even don't know the s
actual environment before .

the software Is Iinstalled!

"(4 ;L

e :
9.4 ’
. 3 L . A!
4 LI .
) L {)
o ¥ “d
(223 :
f 4 - J { o
o { i Koim.
’ AL S b) b 207
= 2o et > 3 - Y ¥
Tp e e «
T

EAL WORLD!

Therefore,

PRACTICAL and LIGHTWEIGHT

mechanism Is needed for

REAL WORLD ENVIRONMENT!

Design Goals of Kernel Protector

- Lightweight
- Focus on rootkit detection and protection
- Simple and extensible architecture
- Small memory footprint
- No secure VMs and no multiple OSes

- Practical
- Out-of-box approach
- No modification of kernel code and data
- Dynamic injection
- Load any time from boot to runtime

Security Architecture in Shadow Play

—

=P
- f\\ ~g \ % ,/'

» | p— VA
x Ny -1 A B |
- “\\\-\ ‘ N - a 4 =
\ / Ve "W
| v o R I
' (W9

Audience

Security Architecture in Shadow Play

| We named this architecture
“Shadow-box” |

3 . " s
, . "",,?" y/ ' = \\ , .
4 = “ A7 @ @
\'r’fﬂ W W
Security Monitor
N (Shadow-Watcher)

Activities in OS
7

+— Ring -1 Monitoring Mechanism (Light-Box)

Architecture of Shadow-Box

Host (Ring -1)

Watcher
(Monitor)

@t‘fﬁ'/

Shadow- oty

Guest (Ring 0~3)

User

Monitor, contr>

(Read/Write
Permission)

Shared Kernel

(Read/Write
Permission)

Shared
Area

Shared Kernel

(Read-only
Permission)

Shared Kernel Only

Light-Box
(Lightweight Hypervisor)

Rootkit Detection

- All rootkits are detected

Name Detected? Detected Point

code change,

EnyeLKM module hide

function pointer change,

Adore-ng 0.56 module hide

system table change,

skl module hide

Suckit 2.0 system table change

system table change,

kbeast module hide

Performance Measurements of Prototype

- Application benchmarks show 1% ~ 10%

performance overhead
- 5.3% at kernel compile in single-core processor
- 6.2% at kernel compile in multi-core processor

[JBare-me tal W@ Shadow-box

SPEC INT SPEC FP PARSEC Kernel Compile PARSEC Kernel Compile

Single-core processor Multi-core processor

Results of Application Benchmark. Lower is better.
(Intel 17-4790 4core 8thread 3.6GHz, 32GB RAM, 512GB SSD)

DEMO
SHADOW-BOX

Lightweight Hypervisor-Based Kernel Protector

Question?

Project Link:
github.com/kkamagui/shadow-box-for-x86

)

¥ - .
gr T sl X1 -
- d W 34 o —
£
Ve P D 7
- -
o -k ¥
- -

hanseunghun@nsr.re.kr, @kkamaguil
ultract@nsr.re.kr, @ultractt

