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February 10, 2015, Patch Tuesday - Microsoft pushed many system-level patches in-

cluding CVE-2015-0057/MS15-010[1]. On the same day, Udi Yavo, the CTO of enSilo

and the discoverer of the vulnerability, released a technical blog[5] on that topic. Udi

described the CVE-2015-0057 vulnerability in detail and demonstrated the process of

exploiting the vulnerability on the 64-bit Windows 10 Technical Preview Operating

System. Four months later, on the 17th of June, a new variant of the Dyre Banking

Trojan[3] was detected by FireEye. This variant of Dyre attempts to exploit CVE-

2013-3660[12] and CVE-2015-0057 in order to obtain system privileges. This is the

first time CVE-2015-0057 was found to be exploited in the wild. Then, on July 8th,

NCC Group published their technical blog[6], describing their exploit technique in

detail, which allows the exploit to work reliably on all 32 and 64-bit Windows - from

Windows XP to Windows 8.1.

It is worth noting that in this year, we have repeatedly caught APT class zero-day

attacks[2] [4] - all of which target the Win32K subsystem’s User Mode Callback mech-

anism. This leads us to re-visit this old-school kernel attack surface[7] [9] [11]. This

paper will focus on CVE-2015-0057 and the User Mode Callback mechanism. We will

examine the User Mode Callback mechanism from two aspects: exploit methodology

and vulnerability detection. Additionally, from an attacker’s perspective, this paper

will also reveal some new exploit techniques.
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Background of the Vulnerability

CVE-2015-0057 is a traditional Use-After-Free vulnerability, which is introduced by

the User Mode Callback mechanism. There are actually two options available to trigger

a USE operation after the call to DestroyWindow, namely SET and UNSET. Let us

follow Udi Yavo’s ideas, and follow the SET code branches, use tagPROPLIST objects

as memory placeholders[10] and set off on our exploitation journey.

Opting to use the tagPROPLIST structure as the Use-After-Free memory place-

holder is primarily based on the following considerations:

1. tagPROPLIST object and vulnerability related object tagSBINFO, are all

allocated from the Win32K Desktop Heap.

2. Inside the tagPROPLIST object, there is an array named tagPROP. This array’s

size can be adjusted to meet the needs of the exploit.

3. The contents of the tagPROPLIST object can be manipulated through User32

APIs, such as SetProp routine.

4. Crucially, the behavior of SET after the Use-After-Free vulnerability will

overwrite tagPROPLIST’s cEntries field, which means that any subsequent

operations on this tagPROPLIST object can result in another Out-Of-Bounds access.

Further analysis of the vulnerability and the tagPROPLIST object’s properties

reveals that, in order to achieve arbitrary kernel memory read and write, we have to

overcome two obstacles, namely:

1. The write ability of the tagPROPLIST object’s SetProp method is restricted, due

to the implementation of InternalSetProp.

2. Since the write, and hence repair, capability is limited, continuous memory

corruption is unacceptable. Our next step in this journey would be to solve the

problems listed above to achieve precise memory writes using SetProp.

1 typedef struct tagPROP {

2 KHANDLE hData;

3 ATOM atomKey;

4 WORD fs;

5 } PROP , *PPROP;

tagPROP
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1 BOOL InternalSetProp(LPWSTR pszKey , HANDLE hData , DWORD dwFlags)

2 {

3 PPROP pprop = FindorCreateProp ();

4
5 ......

6
7 pprop ->atomKey = PTR_TO_ID(pszKey);

8 pprop ->fs = dwFlags; /* cannot be controlled (0/2) */

9 pprop ->hData = hData;

10
11 ......

12 }

InternalSetProp Pseudocode

Obstacle 1 as shown in pseudocode InternalSetProp. Due to the characteristics

of this routine, we cannot control the fs field of the tagPROP structure. In other

words, from the perspective of exploitation, for every eight bits there are two bits out

of control on 32-bit platforms. On 64-bit platforms, out of every sixteen bits there are

six bits out of our control.

0: kd> dd bc65b468 lc

bc65b468 00060006 00080100 00000004 00000004

bc65b478 00bc1040 0000a918 00000000 00002141

bc65b488 00000000 00003141 deadbeef 0002c01a /* 2 bytes are out of control */

32-Bit SetProp Restrictions

0: kd> dq fffff900‘c0841898 l6

fffff900‘c0841898 08000003‘00010003 00000002‘00000002

fffff900‘c08418a8 00000000‘02f47580 00000000‘0000a918

fffff900‘c08418b8 deadbeef‘deadbeef 00000000‘0002c04d /* 6 bytes are out of control */

64-Bit SetProp Restrictions

Let us take a look at how NCC Group’s Aaron Adams worked to overcome this

obstacle.

NCC Group’s 32-bit Exploit Method

Aaron Adams’s 32-bit exploit method uses tagPROPLIST and the tagWND objects

as heap Feng Shui[13] layouts. Aaron’s exploit sprays tagPROPLIST twice. The

first tagPROPLIST spray is used to create a placeholder object when the Use-After-

Free happens. In order to facilitate the distinction, let’s call it U-A-F tagPROPLIST

object. The second tagPROPLIST spray is used to create a stepping stone object

used to achieve relative memory reading and writing. We can call it the Zombie
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tagPROPLIST object. Lastly, tagWND is the host object ultimately used to achieve

arbitrary kernel memory reading and writing. Aaron chose it because the tagWND’s

strName.Buffer field has ability to read and write bytes in kernel memory.

The exploit process begins from the U-A-F tagPROPLIST object. By calling the

SetProp routine on the U-A-F tagPROPLIST object, we can effectively control the

adjacent cEntries and iFirstFree fields of the Zombie tagPROPLIST object. With

reference to obstacle 1, although we are unable to fully control the value of iFirstFree,

it is still enough to jumpstart the whole exploit process. Thereafter, the subsequent

invocations of SetProp on the Zombie tagPROPLIST object actually let the exploit

code gain the ability to write kernel memory accurately.

Even if SetProp’s limited write capability did not prevent us from directly control-

ling the Zombie tagPROPLIST.iFirstFree field, SetProp’s limitations will be evident

when the exploit attempts to control the tagWND.strName.Buffer field. In order to

solve this problem Aaron came up with a clever set of complex schemes. First, he ma-

nipulates the tagWND.pSBInfo field, which can be completely controlled, by pointing

it to the tagWND.strName field. Aaron then rewrites the tagWND’s strName.Buffer

field indirectly through the SetScrollInfo routine - this roundabout scheme finally al-

lows him to bypass the write restrictions we faced earlier and achieve arbitrary read

and write capabilities.

32-bit exploitation process can be summarized as follows:

1. Use the U-A-F tagPROPLIST object’s Out-Of-Bounds write capabilities to

manipulate Zombie tagPROPLIST’s properties.

2. Use the corrupted Zombie tagPROPLIST object to rewrite the adjacent tagWND

object’s pSBInfo field.

3. Rewrite tagWND object’s strName.Buffer field indirectly through the

SetScrollInfo routine.

4. tagWND’s strName.Buffer field fully under control means that the exploit code

achieves arbitrary kernel memory read and write.

Obstacles solutions also can be summarized as follows:
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1. Manipulating the tagWND.pSBInfo field by pointing it to the tagWND.strName,

and then rewriting tagWND’s strName.Buffer field indirectly through SetScrollInfo

means obstacle 1 is solved.

2. The full control of the Zombie tagPROPLIST object means obstacle 2 is solved.

32-bit exploit process as shown below:

NCC Group’s 32-Bit Exploit Logic

NCC Group’s 64-bit Exploit Method

Note that the heap header ( HEAP ENTRY) will be completely overwritten when

calling SetProp on a 64-bit Operating System. Aaron Adams’s 64-bit exploit method

changes to use U-A-F tagPROPLIST, Window Text 1, tagWND and plus Window

Text 2 objects for heap Feng Shui.

The exploit process still begins from the U-A-F tagPROPLIST object. SetProp’s

Out-Of-Bounds write capability is used to overwrite Window Text 1’s HEAP ENTRY

with a specially crafted replacement HEAP ENTRY. In order to maintain a valid heap

layout[8], a fake HEAP ENTRY is also stored in Window Text 2.
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This solution not only solved the problem of a system crash caused by heap head-

er corruption, it also has the side effect that the tagWND object will be completely

merged into the Window Text 1 heap block. This is a very important point because

freeing the Window Text 1 also means that the tagWND object will be freed at the

same time. Additionally, due to the User32!gSharedInfo information disclosure prob-

lem, an exploit can easily forge a new tagWND object. The difference between the new

(forged) tagWND object and the old one is tagWND’s strName.Buffer field is fully

under an attacker’s control. From another point of view, this exploit process can also

be seen as a user-created or forced Use-After-Free. The semantics of the tagWND’s

strName.Buffer field changes when memory free operation is triggered.

64-bit exploitation process can be summarized as follows:

1. Overwrite Window Text 1 block’s HEAP ENTRY based on the U-A-F

tagPROPLIST object’s Out-Of-Bounds write.

2. Reconstruct an ideal heap layout by using a specially crafted HEAP ENTRY for

Window Text 1 and another faked HEAP ENTRY which is stored in the Window

Text 2.

3. Due to the fake HEAP ENTRY for Window Text 1, a free operation on Window

Text 1 causes following tagWND object to be freed as well.

4. Rebuild a new tagWND object based on information leaked from

User32!gSharedInfo. The difference between the new tagWND object and the old

object is that the new tagWND’s strName.Buffer field is fully under control. This

process can also be seen as a user forced Use-After-Free process.

5. Finally, having the tagWND’s strName.Buffer field under control means that the

exploit code is able to read and write arbitrary kernel memory.

Obstacles solutions also can be summarized as follows:

1. The faking of heap headers leading to the control of tagWND’s strName.Buffer

means that obstacle 1 is resolved.

2. The forced Use-After-Free technique and the re-creation of a new tagWND based

on kernel information disclosed by User32!gSharedInfo cleverly bypasses obstacle 2.
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64-bit exploit process as shown below:

NCC Group’s 64-Bit Exploit Logic

As can be seen, NCC Group’s 32-bit exploit technique converts a Use-After-Free

bug into a relative heap memory read and write primitive. They then extend this

exploit primitive to achieve full arbitrary kernel memory read and write. Their 64-bit

exploitation method starts off in a similar manner, also converting a Use-After-Free

bug into a relative heap memory read and write primitive. However, for 64-bit exploits,

they converted this read and write primitive into a forced Use-After-Free. This allows

them to achieve object hijacking which as we saw, finally led to having full kernel read

and write capabilities.

Both the 32 bit and 64 bit exploits ultimate aim was to corrupt the tagWND’s str-

Name.Buffer field and they both relied on information leaked through User32!gSharedInfo

to a some extent.
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A New CVE-2015-0057 Exploit Technology

As a response to Aaron Adams’s inquiry, I would like to share with you a few different

exploit techniques and as an expression of gratitude to Aaron Adams. The following

technique can work stably on both 32 and 64-bit platforms from Windows XP to

Windows 10 Technical Preview.

32-bit Exploit Method

Similar as the Aaron’s method, my 32-bit exploit method uses tagPROPLIST and

tagMENU objects to perform heap Feng Shui. The exploit also sprays tagPROPLIST

twice at least. Let’s call them U-A-F and Zombie tagPROPLIST object respectively.

tagMENU is the host object ultimately used to achieve arbitrary kernel memory read

and write. Similarly, I chose the tagMENU object because the tagMENU’s rgItems

field has ability to read and write bytes in kernel memory.

The exploit process begins from the U-A-F tagPROPLIST object. By calling

the SetProp routine on the U-A-F tagPROPLIST object, we can effectively control

the adjacent Zombie tagPROPLIST object. Thereafter, subsequent invocations of

SetProp on the Zombie tagPROPLIST object actually let the exploit code gain the

ability to write kernel memory accurately. Compared with Aaron Adams’s scheme,

the Zombie tagPROPLIST object gives us better control over the tagMENU.rgItems

and tagMENU.cItems fields. Thus the exploit process is relatively simple and works

without the help of User32!gSharedInfo’s kernel information disclosure.

32-bit exploitation process can be summarized as follows:

1. Use the U-A-F tagPROPLIST object’s Out-Of-Bounds write capabilities to

manipulate Zombie tagPROPLIST’s properties.

2. Use the corrupted Zombie tagPROPLIST object to rewrite the adjacent

tagMENU object’s rgItems and cItems fields.

3. tagWND’s rgItems field fully under control means that the exploit code achieves

arbitrary kernel memory read and write.

Obstacles solutions also can be summarized as follows:
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1. The full control of the tagMENU.rgItems and tagMENU.cItems fields means

obstacle 1 is solved.

2. The full control of the Zombie tagPROPLIST object means obstacle 2 is solved.

32-bit exploit process which based on the tagMENU object as shown below:

Another Way to Exploit CVE-2015-0057 on 32-bit Windows

64-bit Exploit Method - The write control capability of the misaligned

tagPROPLIST object

With reference to obstacle 1, if we want to reuse the above scheme on 64-bit platforms

we will find that the U-A-F tagPROPLIST object actually can’t control the Zombie

tagPROPLIST’s iFirstFree field. This seems to be a fatal blow to the exploitation

of the vulnerability. Losing control of the iFirstFree field means that we are unable

to achieve exact offset writing based on SetProp and continuous memory corruption

seems to be inevitable. This is also the problem which was described in the obstacle 2.

In order to solve this problem, my 64-bit exploit method uses U-A-F tagPROPLIST,

Zombie tagPROPLIST, tagWND and tagMENU objects to perform heap Feng Shui.

It is understood that tagPROPLIST is pointed by the ppropList field of the tagWND

object. On 64-bit platforms, we happen to have full control over tagWND.ppropList.
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If it were possible to point the tagWND.ppropList field to our pre-constructed, fake

tagPROPLIST object, it will mean that we can achieve relative heap memory reads

and writes.

First, the areas controlled by the Zombie tagPROPLIST object is shown in blue:

0: kd> dq fffff900‘c085dfc8 l24

fffff900‘c085dfc8 08000004‘00010003 00000002‘0000000e /* U-A-F tagPROPLIST */

fffff900‘c085dfd8 00000000‘025300b0 00000000‘0000a918

fffff900‘c085dfe8 00000008‘00000008 00000000‘00004190

fffff900‘c085dff8 08000003‘00010003 00000007‘00000007 /* Zombie tagPROPLIST */

fffff900‘c085e008 00000000‘02510600 00000000‘0000a918

fffff900‘c085e018 00000000‘00000000 00000000‘00004131

fffff900‘c085e028 10000003‘00010014 00000000‘00020536 /* tagWND */

fffff900‘c085e038 00000000‘00000003 fffff900‘c0723490

fffff900‘c085e048 fffffa80‘0c3a91d0 fffff900‘c085e030

fffff900‘c085e058 80000700‘40000018 04cf0000‘00000100

fffff900‘c085e068 00000000‘00000000 00000000‘02a80000

fffff900‘c085e078 fffff900‘c085a3d0 fffff900‘c08070c0

fffff900‘c085e088 fffff900‘c0800b90 00000000‘00000000

fffff900‘c085e098 00000000‘00000000 00000000‘00000000

fffff900‘c085e0a8 00000026‘00000084 0000001e‘00000008

fffff900‘c085e0b8 0000001e‘0000007c 00000000‘7761946c

fffff900‘c085e0c8 fffff900‘c083ff70 00000000‘00000000

fffff900‘c085e0d8 fffff900‘c085dfe8 00000000‘000000aa /* tagWND.ppropList */

Control Area of the Zombie tagPROPLIST

Next, we see that the control capability of the fake tagPROPLIST and Zombie

tagPROPLIST complement each other well:

0: kd> dq fffff900‘c085dfc8 l24

fffff900‘c085dfc8 08000004‘00010003 00000002‘0000000e /* U-A-F tagPROPLIST */

fffff900‘c085dfd8 00000000‘025300b0 00000000‘0000a918

+--> fffff900‘c085dfe8 00000008‘00000008 00000000‘00004190

|

| fffff900‘c085dff8 08000003‘00010003 00000007‘00000007 /* Zombie tagPROPLIST */

| fffff900‘c085e008 00000000‘02510600 00000000‘0000a918

| fffff900‘c085e018 00000000‘00000000 00000000‘00004131

|

| fffff900‘c085e028 10000003‘00010014 00000000‘00020536 /* tagWND */

| fffff900‘c085e038 00000000‘00000003 fffff900‘c0723490

| fffff900‘c085e048 fffffa80‘0c3a91d0 fffff900‘c085e030

| fffff900‘c085e058 80000700‘40000018 04cf0000‘00000100

| fffff900‘c085e068 00000000‘00000000 00000000‘02a80000

| fffff900‘c085e078 fffff900‘c085a3d0 fffff900‘c08070c0

| fffff900‘c085e088 fffff900‘c0800b90 00000000‘00000000

| fffff900‘c085e098 00000000‘00000000 00000000‘00000000

| fffff900‘c085e0a8 00000026‘00000084 0000001e‘00000008

| fffff900‘c085e0b8 0000001e‘0000007c 00000000‘7761946c

| fffff900‘c085e0c8 fffff900‘c083ff70 00000000‘00000000

+--o fffff900‘c085e0d8 fffff900‘c085dfe8 00000000‘000000aa /* tagWND.ppropList */

Control Area of the Misaligned tagPROPLIST
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After rewriting the tagWND’s ppropList field to point to our crafted fake tag-

PROPLIST object, the only thing left to do is to use the fake tagPROPLIST and the

Zombie tagPROPLIST alternately. We can then achieve the relative heap memory

read and write primitive.

64-bit exploit process as shown below:

Another Way to Exploit CVE-2015-0057 on 64-bit Windows

64-bit exploitation process can be summarized as follows:

1. Use the U-A-F tagPROPLIST object’s Out-Of-Bounds write capabilities to

manipulate Zombie tagPROPLIST’s properties.

2. Use the corrupted Zombie tagPROPLIST object to rewrite the adjacent tagWND

object’s ppropList field.

3. Point the tagWND.ppropList field to a fake tagPROPLIST object containing

user-controlled ’misaligned’ values.

4. Use the Zombie tagPROPLIST and the misaligned tagPROPLIST object

alternately, this will allow the exploit code to have the ability to modify the rgItems

and cItems fields of the tagMENU object.



12

5. With tagMENU’s rgItems field fully under control, the exploit code achieves

arbitrary kernel memory read and write.

Obstacles solutions also can be summarized as follows:

1. Using the Zombie tagPROPLIST and the crafted fake tagPROPLIST object

alternately to modify the rgItems and cItems fields of tagMENU means that obstacle

1 is solved.

2. Having full control over the cEntries and iFirstFree fields of the Zombie

tagPROPLIST object means that obstacle 2 is solved.

The 32 and 64-bit exploit process described above both try to convert the Use-

After-Free into a relative heap memory read and write vulnerability. Next, exploit pro-

cess will convert the relative read and write vulnerability to achieve full arbitrary kernel

memory read and write. In both techniques, having control over tagMENU.rgItems

and tagMENU.cItems is the core of the exploit. That is because the structure ar-

ray rgItems and its corresponding methods are required in order to achieve our read

and write primitives. This is the same reason why the tagWND.strName.Buffer was

selected before.

The 32-bit exploit process is relatively simple and does not require using Us-

er32!gSharedInfo’s kernel information disclosure. The 64-bit exploit process is some-

what more complicated. By constructing tagWND.ppropList and pointing it to the

fake tagPROPLIST object, the exploit code eventually overcomes the restricted write

capability of SetProp.
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The Others

In order to achieve high reliability of the exploit, we also need to solve some small but

important problems, such as: heap data repair, interference from 64-bit platform’s

memory alignment, interference from the CThemeWnd:: AttachInstance and so on.

Let’s take the interference from memory alignment as an example. When trying

to perform heap Feng Shui, we will have a certain probability of facing the memory

alignment issue. This behavior will lead to a chain reaction, such as the changes in

HEAP ENTRY, the overwrite offsets, etc. Fortunately, based on kernel information

disclosed by the User32!gSharedInfo, we can predict the details of the current heap

memory layout and modify the exploit code’s logic dynamically.

0: kd> dq fffff900‘c0841f58 fffff900‘c0841ff0

fffff900‘c0841f58 08000003‘00010003 00000002‘00000002 /* chunk #01 */

fffff900‘c0841f68 00000000‘02f7ad30 00000000‘0000a918

fffff900‘c0841f78 00000000‘00000000 00000000‘00004136

fffff900‘c0841f88 18000003‘00010004 00000002‘00000002 /* chunk #02 */

fffff900‘c0841f98 00000000‘02f7b2c0 00000000‘0000a918

fffff900‘c0841fa8 00000000‘00000000 00000000‘00004137

fffff900‘c0841fb8 00000000‘00000000 00000000‘00000000 /* alignment */

fffff900‘c0841fc8 08000004‘00010003 00000002‘00000002 /* chunk #03 */

fffff900‘c0841fd8 00000000‘02f9b850 00000000‘0000a918

fffff900‘c0841fe8 00000000‘00000000 00000000‘00004190

0x10 Bytes Memory Alignment

In addition, there is a tiny flaw in the Udi Yavo’s CVE-2015-0057 technical blog[5],

which I will point out here. At the end of the blog, Udi mentioned that there is a

piece of dead-code residing in Win32k!xxxEnableWndSBArrows over 15-years:

”Looking at the code, there are two conditional calls to the function, xxxWindow-

Event. These calls are executed only if the old flags of the scrollbar information differ

from those of the new flags. However, by the time these conditions appear, the values

of the old flags and the new flags are always equal. Hence, the condition for calling

xxxWindowEvent is never met. This practically means that this dead-code was there

for about 15-years doing absolutely nothing.”

These conclusions could be drawn based on the following logic:
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1 ......

2
3 /*

4 * update the display of the horizontal scroll bar

5 */

6
7 if (pw->WSBflags != wOldFlags) {

8 bRetValue = TRUE;

9 wOldFlags = pw->WSBflags;

10 if (TestWF(pwnd , WFHPRESENT) && !TestWF(pwnd , WFMINIMIZED) &&

11 IsVisible(pwnd)) {

12 xxxDrawScrollBar(pwnd , hdc , FALSE);

13 }

14 }

15
16 if (FWINABLE ()) {

17 /* left button */

18 if (( wOldFlags & ESB_DISABLE_LEFT) != (pw->WSBflags & ESB_DISABLE_LEFT)) {

19 xxxWindowEvent(EVENT_OBJECT_STATECHANGE , pwnd , OBJID_HSCROLL ,

20 INDEX_SCROLLBAR_UP , WEF_USEPWNDTHREAD); /* dead -code? */

21 }

22
23 /* right button */

24 if (( wOldFlags & ESB_DISABLE_RIGHT) != (pw->WSBflags & ESB_DISABLE_RIGHT)) {

25 xxxWindowEvent(EVENT_OBJECT_STATECHANGE , pwnd , OBJID_HSCROLL ,

26 INDEX_SCROLLBAR_DOWN , WEF_USEPWNDTHREAD); /* dead -code? */

27 }

28 }

29
30 ......

Win32k!xxxEnableWndSBArrows Pseudocode

The seventh line of the code (the conditional statement) and the ninth line of

the code (the assignment statement) are deceptive. It appears to assign WSBflags to

wOldFlags and so it seems that the conditions on the eighteenth line and the twenty-

fourth line will never be true. But, is this truly the case?

Please do not forget, User Mode Callback is the root cause of many state in-

consistency type vulnerabilities in Win32K. In this example, to activate the code

branch of xxxWindowEvent, attackers only need to enable the scroll bar within the

xxxDrawScrollBar callback. Not only is the xxxWindowEvent branch NOT dead code,

it is also another entry point of the vulnerability. If we can invoke SetWinEventHook

in the exploit and then call DestroyWindow during event callback, we can trigger

another Use-After-Free. The call stack as shown below:

0: kd> kb

ChildEBP RetAddr Args to Child

f52838e8 bf8faf21 bc675e20 0012fbcc f5283904 win32k!xxxDestroyWindow

f52838f8 8054160c 00030124 0012fc98 7c92eb94 win32k!NtUserDestroyWindow+0x21

f52838f8 7c92eb94 00030124 0012fc98 7c92eb94 nt!KiFastCallEntry+0xfc

0012fbbc 77d1e672 0042c7ad 00030124 0012fd58 ntdll!KiFastSystemCallRet

0012fc98 77d5906d 00130103 0000800a 00030124 USER32!NtUserDestroyWindow+0xc
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0012fcc8 7c92eae3 0012fcd8 00000020 0042a762 USER32! ClientCallWinEventProc+0x2a

0012fcc8 80501a60 0012fcd8 00000020 0042a762 ntdll!KiUserCallbackDispatcher+0x13

f5283bbc 805a1779 f5283c68 f5283c64 bf9a2ccc nt!KiCallUserMode+0x4

f5283c18 bf92c55a 00000050 f5283c44 00000020 nt!KeUserModeCallback+0x87

f5283c88 bf91ccb4 0042a762 e10740a0 bf9a2ccc win32k!xxxClientCallWinEventProc+0x68

f5283cb8 bf8081e8 bf9a2ccc bc675f18 bc675e20 win32k!xxxProcessNotifyWinEvent+0xb9

f5283cfc bf8d136b 0000800a 00000000 fffffffa win32k!xxxWindowEvent+0x182

f5283d2c bf91140e 00000003 00000003 00000003 win32k!xxxEnableWndSBArrows+0xaf

f5283d50 8054160c 00030124 00000003 00000003 win32k!NtUserEnableScrollBar+0x69

f5283d50 7c92eb94 00030124 00000003 00000003 nt!KiFastCallEntry+0xfc

0012fcc8 7c92eae3 0012fcd8 00000020 0042a762 ntdll!KiFastSystemCallRet

0012fcf4 77d6c6ee 5adeb71f 00030124 00000003 ntdll!KiUserCallbackDispatcher+0x13

0012fd14 77d67c01 00030124 00000003 00000003 USER32!NtUserEnableScrollBar+0xc

0012fd54 0042c663 00030124 00000003 00000003 USER32!EnableScrollBar+0x54

0012fe88 0042c807 00400000 80000001 0007ddb4 cve 2015 0057+0x2c663

0012ff60 0042ca4b 00400000 00000000 0015234b cve 2015 0057+0x2c807

0012ffb8 0042c91d 0012fff0 7c816d4f 80000001 cve 2015 0057+0x2ca4b

0012ffc0 7c816d4f 80000001 0007ddb4 7ffdf000 cve 2015 0057+0x2c91d

0012fff0 00000000 0042ad7a 00000000 78746341 kernel32!BaseProcessStart+0x23

xxxWindowEvent Use-After-Free Call Stack

Fortunately, Microsoft’s developers realized the problem. MS15-010 blocks five

possible entrances of the vulnerability in total, completely covering these seemingly

dead code branches.

Win32k!xxxEnableWndSBArrows, MS15-010
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Conclusion

From CVE-2015-0057, CVE-2015-1701 to CVE-2015-2360[15], the disclosure of Win32K

subsystem’s zero-day vulnerabilities reminds us that User Mode Callback, the old-

school Windows kernel attack surface, cannot be neglected. On the 8th of Septem-

ber 2015, the CVE-2015-2545 and the CVE-2015-2546 vulnerabilities were exposed[4].

These APT zero-day exploits leveraged the PostScript embedded Microsoft Office doc-

ument as an attack vector, and Use-After-Free vulnerability on the User Mode Callback

mechanism as the way of privilege escalation. Looking at the operation mechanism of

these vulnerabilities, I think of the following aspects worth pondering:

The legacy kernel code need to be re-audited carefully. Many of the above Use-

After-Free vulnerability history can be traced back to Windows 2000 or even Windows

NT era. Although, Microsoft corporation implemented a lot of improvements and

mitigations for Windows kernel security in recent years, However, we still see that there

is still a room for improvement. For instance, the design of Win32K subsystem’s lock

mechanism, the life cycle management of window related objects and the gSharedInfo

sharing mechanism and so on.

Let’s take gSharedInfo as an example, this mechanism should be reconsidered.

From the disclosure of zero-day vulnerabilities used by APT actors to the latest Open-

Type zero-day exploit code leaked by Hacking Team[16], we continuously saw the use

of User32!gSharedInfo mechanism. For the Desktop Heap and the Shared Heap, all

efforts of kernel randomization will come to naught due to the gSharedInfo sharing

mechanism. Even the kernel HEAP ENTRY random encoding[14] which was intro-

duced in Windows 8 will also be leaked to User Mode. If the mechanism cannot be

disabled due to compatibility issues, Microsoft should minimize the use of gSharedInfo.

In order to demonstrate the risk of the User32!gSharedInfo mechanism, I wrote a

demo tool. On 64-bit Windows 10 system, this tool will demonstrate that leaked kernel

data is not only limited to the following information. From an attacker’s perspective,

these leaked data will greatly facilitate additional kernel exploits:

• Kernel Routine Address Information

• Kernel Data Structure Information
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• Kernel Object Memory Layout Information

• Desktop Heap Information

• Kernel HEAP ENTRY Random Cookie Information

User32!gSharedInfo Information Disclosure

Finally, the activation of the Win32k!xxxWindowEvent code branch is a vivid

example of the complexity of User Mode Callback mechanism. Another wonderful

example comes from the CVE-2015-1701. It reminds us that unlike the traditional

Use-After-Free, NULL Pointer Dereference vulnerability, the inconsistency of User

Mode Callback is rather more mysterious side of the vulnerability. As a defender, we

must always maintain a clear understanding.
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