
Android Spyware Disease and Medication
Mustafa Hassan Saad,

Department Of Computer Engineering
MTC

Cairo, Egypt
eng.mustafa.h.saad@gmail.com

Abstract—Android-based smartphones are gaining significant
advantages on its counterparts in terms of market share among
users. The increasing usage of Android OS make it ideal target
for attackers. There is an urgent need to develop solutions that
guard the user’s privacy and can monitor, detect and block
these Eavesdropping applications. In this paper, two proposed
paradigm are presented. The first proposed paradigm is a spy-
ware application to highlight the security weaknesses “disease”.
The spy-ware application has been used to deeply understand
the vulnerabilities in the Android operating system, and to study
how the spy-ware can be developed to abuse these vulnerabilities
for intercepting victim’s privacy such as received SMS, incoming
calls and outgoing calls. The spy-ware abuses the Internet service
to transfer the intercepted information from victim’s cell phone
illegally to a cloud database. The Android OS permission subsys-
tem and the broadcast receiver subsystem contribute to form a
haven for the spy-ware by granting it absolute control to listen,
intercept and track the victim’s privacy. The second proposed
paradigm is a new detection paradigm “medication” based on
fuzz testing technique to mitigate known vulnerabilities. In this
proposal, anti-spy-ware solution “DroidSmartFuzzer” has been
designed. The implementation of the anti-spy-ware application
has been used to mitigate the risks of the mentioned attacks.

It should be noted that the proposed paradigm “DroidSmart-
Fuzzer” and its fuzzing test cases are designed not only to catch
the proposed spy-ware application but also to catch any similar
malicious application designed to intercept one or more of the
listed privacies.

Keywords—Android spyware, fuzz testing, malware behavior
analysis, android smart fuzzer, anti spy-ware.

I. INTRODUCTION

ANDROID is a Linux-based operating system designed
primarily for mobile smartphones and tablet computers.

Initially developed by Open Handset Alliance which Google
backed financially and later purchased in 2005. Android has
expanded beyond its roots as a mobile phone operating system,
providing a consistent platform for application development
across an increasingly wide range of hardware (smartphones,
tablets, smart TVs, android wear).

Android offers new possibilities for mobile applications
by offering an open development environment built on an
open-source Linux kernel. As an application-neutral platform,
Android gives you the opportunity to create applications that
are as much a part of the phone as anything provided out-of-
the-box through a series of API libraries, and this openness
attract large number of attackers which use this platform to
implement a malicious applications, but here comes the risk

that user may download and use these malicious applications
which cause privacy leakage allowing attackers to put man-
in-middle (MiTM) visibility into every user transaction like
the proposed spy-ware in this paper. The application layer
has the largest attack surface where maximum damage to
security occurs. In this paper an exploit to the broadcast
receiver has been presented for intercepting Received SMS,
Incoming, and Outgoing calls information and silently transfer
these information to the developed cloud database using the
mobile Internet capabilities. Hence to keep a check on the
malwares and the authenticity of the application, a medication
solution is needed to dynamically analyze the behavior of
the already installed applications, and to work as a spy-ware
alarm system. This alarm system will warn the user about any
running application eavesdropping his privacy.

In this paper, The formulation to the problem of sensitive
privacy leakage has been presented as a two side game
problem. The first side presents an indication about how these
sensitive information can be intercepted and transmitted out
to a cloud database with the help of Broadcast receivers sub-
system. A spy-ware application will be presented to illustrate
the techniques of attackers in intercepting these privacies and
will lead to stand on weakness points. The other side game
introduces an automated fuzzing approach solution referenced
here as DroidSmartFuzzer. Based on the deep understanding
of the previous spy-ware behavior, DroidSmartFuzzer is a
light-weight, yet effective, technique for fuzz-testing security
protocols. The proposed technique is modular. It generates
valid inputs, and mutate the inputs using a set of fuzz operators.
A dynamic Internet usage analysis execution as a reaction of
fuzz test cases will detect the vulnerabilities exposed by the
Application Under Test (AUT).

The fuzzer provided with the necessary keys and algorithms
in order to properly mutate SMS messages, Incoming Calls and
Outgoing Calls. According to high rate installation of Com-
mercial Spy-ware which has increased in 2014 as mentioned
in Google Android Security report [1] , Lacoon research team
report [2], ALCATEL-LUCENT mobile malware reports [3],
[4], [5], [6], and Joshua Dalman and Valerie Hantke research
on Black Hat USA 2015 [7]. DroidSmartFuzzer has been tested
against the top 15 commercial spy-ware [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22],
two free spy applications on Google Play[23], [24], two free
spy applications on Amazon store [25], [26] and the proposed
spy-ware application.

An adaptive, modular, and real time design of the fuzzing



test protocol has been used for generating valid inputs to the
AUT and then monitoring its malicious behavior dynamically.
For example, to test the behavior for a doubtful spy application
according to eavesdropping on Received SMS , we use the
PDUs format to generate a valid SMS [27] and inject it dy-
namically from the DroidSmartFuzzer to the Android mobile.
The evidence for the AUT Internet usage behavior according
to SMS injector will be accurate as will be illustrated in the
experimental evaluation section.

A. Contributions

To summarize, our contributions are fourfold. First, we
developed a real android spy application to deeply understand
the attacks that we will resist. Second, we proposed a dynamic
modular fuzz-testing technique for monitoring and detecting
the unexpected behavior for the installed applications . Third,
we implemented a set of fuzz operators that are effectively
constructed a real environment for finding malicious behavior
for the AUT. Finally, we empirically evaluated the effective-
ness of our proposed fuzzer against the proposed spy-ware
application, and set of free and commercial spy applications.

B. Related Works

Researchers have already done a good efforts in malicious
application analysis. Felt et al. [28] analyzed a total of 46
Android, iOS and Symbian malware samples in detail to
provide us with surveys on mobile malware. Along with
the processed information, the authors also provide us with
dangerous permissions these apps used. ProfileDroid [29] is
a behavior profiling system for Android applications which is
also not suitable for analyzing internal behavior logic for the
running applications. DroidScope [30] is an analysis platform
designed for Android that belongs to static analysis techniques
to cover Java semantics. However, the problem of analyzing
Android application is not simple as how to capture behaviors
from different language implementations. It is hard to achieve
effective analysis without considering the Android security
architecture. Permission Event Graph [31], represents the re-
lationship between Android actions and permission requests,
it is proposed to characterize unintended sensitive behaviors.
However, this technique could not capture the internal logic of
permission usage. Zhou et al. [32] proposed DroidRanger to
detect malicious applications by doing pre-filtering step based
on authenticated permissions by an application. It then analyze
the application code structure, as well as other properties
of applications. Finally, an heuristics based detection engine
is run with the data gathered about applications. With this
approach, the authors were able to find malware on the official
Android market, and two zero-day malware. In addition, the
authors of [33], captured and evaluated 1,260 Android mal-
ware samples. The main focus was the mechanisms through
which the malware propagate, the activation procedures, the
permissions required, and the events also known as the broad-
casted intents that will be listened to by the malware and this
is our concern. Results have shown that 21 malware families
of the 49 captured listen for Received SMS messages, also find

that malware are actively intercepting various information on
the infected phones, including SMS messages, phone numbers
as well as user accounts. In particular, there are 13 malware
families (138 samples) in this dataset collect and upload SMS
messages and 15 families (563 samples) gather incoming and
outgoing phone numbers, and 3 families (43 samples) obtain
and upload the information about user accounts.

This paper is organized as follows, Section II illustrates
an overview of android OS and Android malware, Section
III explains proposed spy-ware application model, Section IV
explains our DroidSmartFuzzer approach, Section V discusses
the results of various experiments and Section VI concludes
the paper with future possible work.

II. OVERVIEW OF ANDROID OS & MALWARE

A. Android OS Architecture

Fig. 1. Android Operating System Layers

Android operating system comprise of different software
layers as shown in Figure 1:
• Linux kernel: Is the Bottom layer of android operating

system which provides the basic system functionality
such as process management, memory management,
device management and device drivers which make our
task easier while interfacing the android with other
devices.

• Libraries and Android Run Time : Libraries are Java
libraries build specific for android operating system. It
provides the different libraries useful for well function-
ing of android operating system. Android Run Time
placed in second layer from bottom and It provides
most important part of the Android called Dalvik Virtual
Machine which is similar to Java Virtual Machine (JVM)
but only difference is that it is designed and optimized
for Android. Dalvik Virtual machine uses core func-
tions of Linux such as memory management and multi-
threading and enables each android application to run
on its sandbox.



• Application Framework : This layer directly interacts
with the Android applications and also manages the ba-
sic functions of android device such as location manage-
ment, voice call management and resource management.

• Applications : This is the final destination for the de-
veloper journey where his application installed and run
here. This layer communicate with the underlying layers
through different form of Inter Process Communication
(IPC) Endpoints.

B. IPC Endpoints
• Android Manifest: All Android Application Packages

(APKs) must include the AndroidManifest.xml file
which contains the core information about the applica-
tion, such as:
◦ Package and version name
◦ Permissions (restriction limiting access to a part of

the code or to data on the device)
◦ Application info (such as launcher icon , title and

the start point of the application)
◦ Activities, Services and Broadcast Receivers defi-

nitions
• Activity: Is the UI component built on the base Activity

class which takes care of creating a window for the
developer in which he can place his UI. While activities
are often presented to the user as full-screen windows,
they can also be used in other ways as floating windows
or embedded inside of another activity. Lower level man-
agements of activities handled by the Activity Manager
service which placed on application framework.

• Content Provider: Act as a programming interface to
common shared data stores. Contacts provider for ex-
ample manage centralized repositories of contact entries
which can be accessed by other applications with a
specific permissions. Applications may also design their
own content providers and may optionally exposed them
to other interested applications.

• Service: Is an application component without a UI
that perform long running operation in the background.
Another application component can start a service like
activities or broadcast receivers and it will continue
to run in the background even if the user switches
to another application. For example, a service might
handle network transactions, play music, or interact with
a content provider, all from the background.

• Broadcast Receivers : These are commonly found where
applications want to register for system or application
events or actions. All registered receivers for an event
are notified by the Android runtime once this event
happens. For example, applications can register for the
PROCESS OUTGOING CALL system event which is
fired once the Android user try to dial a number. The
registration for the broadcast receiver has two types, first
is static and mostly used when you want to listen to an
event all the time, second is dynamic and may be used
when one of the screen of your application is open and
unregister that receiver once application is closed.

C. What is Mobile Malware
Generally malware is a software designed to damage a

computer system without the owner’s knowledge or consent.
Malware is short for malicious software and includes viruses,
Trojan horses, spy-ware and or any other unwanted or ma-
licious software. Malware is a crime and the most common
path criminal’s use is through the Internet. Malware is being
produced at an increasingly alarming rate. Unfortunately, it is
well known that computers already attacked by a malware so
we are always looking forward to update our anti-virus appli-
cation, but what about the malwares which attack our mobile
devices? As we will discuss and implement our proposed spy-
ware application in the next section. We will see by practical
experiment that mobile malicious applications on the rise, and
the intercepted information from our cell phones are horrible.

For instance, we could accidentally download a malicious
application that hijacks our identity, personal photos, contacts,
SMS,emails and our private information and sends them to a
remote server. Or, we could download a dangerous application
that sends SMSs or dialing services numbers from our phone,
charging us with an expensive money on our mobile bill. Other
malicious programs can potentially malfunction our cell phone
basic functionality.

D. Types of Android Malware
The majority of Android malware can be classified in two

types:
• Trojans and Viruses: Trojans and Viruses infect Android

devices by attaching themselves to seemingly harmless
or legitimate programs, which are installed as third
parties with the application and then carry out malicious
actions. Such malicious actions hijack the browser, cause
the device to capture user login information from other
applications such as social media and mobile banking
and disastrously Android viruses can root the device and
gain access to files and flash memory like DroidKungFu
[37]. Trojans and viruses can become installed on the
device any number of ways and cause effects that
range from simply annoying to highly destructive and
irreparable.

• Spyware and Botnet: Another observed type of Android
malware is classified as spyware and has capabilities to
forward private data to a remote server. On the other
hand, the spy-ware could also receive orders from the
server to intercept specific privacy in which case it is
part of a botnet. spy-ware is likely to use some of
the IPC endpoints described in Section II-B. Broadcast
receivers are of particular interest as they can be used to
secretly intercept and forward incoming SMS, and Call
information to a remote server or to wait for BOOT
COMPLETED intent to start a background service as
soon as the device is started.

III. PROPOSED MODEL FOR SPY-WARE ”DISEASE”
Before examining the attacks and the proposed countermea-

sures in more detail, we outline the threat model that our work



is based on. So in this section we will demonstrate our spy-
ware application which we called it Chameleon, this name
coming from the invisibility of the application icon on the
launcher window like most of real detected spy-wares, now
let’s start with the Chameleon Application structure as shown
in Figure 2.

Fig. 2. Chameleon Application Structure

A. Chameleon Design

• Main Activity : This is the main class which will achieve
the following functionalities:

1) Get the victim cell phone name and IMSI of his
installed SIM card.

2) Run a background AsyncTask to insert the victim
intercepted data in the cloud DB.

3) Hide the application launcher icon by using the
application framework layer component Package-
Manager as seen in Figure 3. This component
has the methods ability to hide application icon
without killing our application process.

4) Hide the Main Activity view.
• Received SMS Registered Receiver : This class is a

sub class of android.content.BroadcastReceiver. It is
responsible for intercepting all received SMS through
the next implementation scenario:

1) Overriding the onReceive method which will be
called automatically when the intent filter action
android.provider.Telephony.SMS RECEIVED
fired by Android system instantaneously if any
SMS received.

2) Inside the onReceive method we intercept the
SMS information by getting the PDU (protocol
description unit) extra data loaded with the intent.

3) Converting this PDU format to a Unicode format
and then get out the sender number, the message
body and the time stamp of this message.

4) Finally we create a background AsyncTask to send
this SMS information to our cloud DB.

• Incoming Call Registered Receiver :
• This class is also a sub class of an-

droid.content.BroadcastReceiver. It is responsible
for intercepting the incoming calls information through
the next implementation scenario:

1) Overriding the onReceive method which will
be called automatically when the intent filter
action android.intent.action.PHONE STATE fired
by Android system instantaneously when any in-
coming calls received to the victim mobile.

2) The receiving intent will have an extra string vari-
able TelephonyManager.EXTRA STATE which
describes the phone state. If this state is Tele-
phonyManager.EXTRA STATE RINGING then
there will be another extra string variable Tele-
phonyManager.EXTRA INCOMING NUMBER.
This variable contains the incoming phone
number.

3) Finally we create a background AsyncTask to send
this incoming call information to the cloud DB.

• Outgoing Call Registered Receiver : This class is a
sub class of android.content.BroadcastReceiver. It is re-
sponsible for intercepting the outgoing calls information
through the next implementation scenario:

1) Overriding the onReceive method which will be
called automatically when the intent filter action
android.intent.action.NEW OUTGOING CALL
fired by Android system instantaneously when
the victim mobile receiving any outgoing calls.

2) The receiving intent will have an extra string
variable Intent.EXTRA PHONE NUMBER.This
variable contains the outgoing phone number.

3) Finally we create a background AsyncTask to send
these outgoing call information to the cloud DB.

• Connect To MySql : This is the JDBC helper class which
encapsulates the attributes and methods needed for the
cloud DB connection and Data Manipulation Language
(DML) commands.

• MySQL DB: We design a very simple relational cloud
DB consists of four tables. cell phone information, SMS,
outgoing call logs and incoming call logs using Google
SQL cloud service to host our DB, and created it using
razorSQL tool. It should be noted that AndroidMan-
ifest.xml already registered a static receivers for the
incoming SMS, outgoing calls, and incoming calls which
will listen to these events all the time as explained
in Section II-B. This will give us the opportunity to
intercept our preferred data even if the victim reboot
his cell phone. Also inside the AndroidManifest we
granted a permissions to access Internet, receive SMS,
read phone state and process outgoing calls.

B. Conclusion of the proposed spy-ware model
The proposed Chameleon application has already inter-
cepted and sent out received SMS messages, Outgoing



Fig. 3. Chameleon Application

and Incoming calls information from victim’s Android
mobile to our cloud database. We have registered a
Broadcast Receivers which respond to broadcast mes-
sages (Received SMS, Incoming Call, Outgoing Call)
from the system itself. These messages are sometimes
called events or intents. Now whenever the Android
device received SMS, started an out-call or received
incoming call event, it will be intercepted by Broad-
cast Receiver classes. This system events will fire the
implemented logic inside onReceive() method that will
be executed to send these information via the device In-
ternet capability out to our cloud database. This concept
of Broadcast Receiver working mechanism will lead us
to the medication process. Also will give us the idea to
uncover the behavior mask of any application intended
to eavesdrop our privacy.

IV. PROPOSED MODEL FOR DROIDSMARTFUZZER
”MEDICATION”

In this section we will take into consideration our deep
understanding of the Chameleon behavior and technique for
intercepting the user’s privacy, so we will think like a white
hat vulnerability testers. The main target is to develop a full
automated fuzz testing solution, write a good test scenario,
design this scenario to be a real fuzz testing environment for
the AUT, analyze the AUT behavior as a response to our
fuzzing system, then create our pass fail report.

A. DroidSmartFuzzer Methodology
DroidSmartFuzzer methodology is based on Fuzz testing or

fuzzing which is an effective technique for finding security
vulnerabilities in software or computer systems. Traditionally,
fuzz testing is a software testing technique, often automated or
semi-automated, that involves providing invalid, unexpected, or
random data to the inputs of a computer program. The program
is then monitored for exceptions such as crashes, or failing
built-in code assertions or for finding unexpected behavior.
Applications under fuzzing test fail when they behave in a way
their developers did not intend or anticipate. In traditionally
applied fuzzing, failure modes come in four categories:

• Crashes
• Endless loops
• Resource leaks or shortages
• Unexpected behavior

These failure modes vary based on type of the system or soft-
ware being tested, the underlying operating system, and more.
Our DroidSmartFuzzer has been designed and implemented
according to the last failure mode category ”Unexpected be-
havior”. The consequences depend on the purpose and function
of the software, where and when it is operated, and so on.
In general, The key to catch the spy is to put it in an ideal
environment and give it the information that it waits and then
watching it’s behavior. The job of the DroidSmartFuzzer is
to detect Internet usage Unexpected behavior for the doubtful
applications which authorized to access the next permissions:
• RECEIVE SMS
• PROCESS OUTGOING CALLS
• READ PHONE STATE

And for sure these doubtful applications will be authorized to
access INTERNET permission. DroidSmartFuzzer test cases
scenario will be as follows:
• Preparing of SMS, Incoming Calls and Outgoing Calls

fuzzing models that will be injected to the application
layer.

• Reading all installed applications and their permissions.
• Filtering these applications by any or all of the autho-

rized permissions that we listed previously.
• Fuzzing the filtered applications with our prepared in-

jectors according to their authorized permissions.
• Monitoring the Internet usage for AUT during the injec-

tion life cycle.
• Reporting a Pass/Fail criteria for the applications under

fuzzing test according to its Internet usage behavior.

B. DroidSmartFuzzer Design
Based on the methodology presented above, we imple-

mented a new tool named DroidSmartFuzzer. The overview
of DroidSmartFuzzer design is shown in Figure 4.

DroidSmartFuzzer can test any running application on An-
droid real device dynamically once it was authorized to one
of the interested permissions and report its Internet usage
behavior instantaneously. To correctly capture the behaviors
of using permissions inside our proposed spy-ware application
or its similar spy-ware applications, we analyze the execution
flow of the DroidSmartFuzzer fuzzing scenario into two related
stages, the first stage is the manifest explorer and applications
packages information engine that will read all Androidmani-
fest.xml attached to the installed applications of the victim’s
cell phone and then filter them according to the interested
permissions: INTERNET, PROCESS OUTGOING CALLS,
READ PHONE STATE, and RECEIVE SMS. These selected
permissions gave us a vulnerability warning of spying issue on
our privacy like our proposed Chameleon application. Second
stage will be achieved by fuzzing these filtered applications one
by one by our prepared injectors for Received SMS, Outgoing
Calls and Incoming Calls. For the Received SMS injector we
implement a real SMS in PDU format.



Fig. 4. DroidSmartFuzzer Application Structure

This PDU contains the message ”Wake Up”, and this SMS
contains some meta-data about itself [34].

For the Incoming call injector we used a Cognalys Android
Library [35] which used commercially in mobile number veri-
fication. Integrating Congalys library in our DroidSmartFuzzer
project gave us a good opportunity to inject the AUT with
a real Incoming call environment. The last injector was for
Outgoing Call and we simply use ACTION CALL action to
trigger built-in phone call functionality available in Android
device.

According to the filtered applications of stage 1. We will
fuzzy them by the previous injectors, then monitoring and
recording the Internet usage behavior according to this fuzz
test scenario. The application that will pass stage one and gives
a positive impact in consuming Internet usage from any of the
fuzzy test cases will be reported to the user as a spy-ware
application to take a decision of uninstall it or not.

According to Figure 4 the proposed model for DroidSmart-
Fuzzer will consist of :

• Main Activity : This activity is the starting point and
main view for DroidSmartFuzzer. Main Activity acts as
a sensor to collect all Manifest permissions information
from all installed applications. The main task for this
module is to convert all installed applications to a list of
modeled Java objects. Each object will encapsulate all
needed information about this application and a modeled
list of its authenticated permissions. For example the
application model will have application name, package
name, list of assigned permissions, aliases, and required
fuzz actions.

• Permissions Analysis : This module acts as a filter layer
before the starting of fuzzing test cases. Simply it col-
lects all modeled application objects from the previous
list according to authenticated permissions filter. The ap-

plication model that contains permission name attribute
”Internet” and one or all of (”Received SMS”,”Incoming
Calls”,”Outgoing Calls”) will go through our filter and
be ready to the next stage.

• Fuzz Test Cases : Now we have a list of the doubtful
applications, So we implement a Fuzz Test Cases class
that will act as an abstract parent class for Fuzz Received
SMS, Fuzz Incoming Calls, and Fuzz Outgoing Calls
child classes. This class will encapsulate the intent
attributes and the abstract methods needed for the child
classes to perform their fuzzing functionalities.

• Fuzz Received SMS : The main functions of this child
class is to prepare a real PDU SMS ”Wake Up” and
its meta data, creating an intent which its action is
”android.provider.Telephony.SMS RECEIVED”, adding
the extra bundle data needed to this intent to perform as
a real Received SMS injector, and then broadcast this
injection to the android application layer. All doubtful
applications will receive this SMS as a real one coming
from the provider.

• Fuzz Incoming Calls : This child class implements
its Incoming Call injector with the help of Cognalys.
Cognalys provides a multi platform service which help
application developers in verifying the mobile number in
their applications. We integrate and implement Cognalys
API in this child class, creating an intent to initialize
Cognalys activity, adding the extra bundle data needed
to this intent, adding the verified mobile phone number
which is our target cell phone number, and then running
this intent. Our target cell phone will receive a real
incoming call from Cognalys provider within maximum
30 Seconds to verify its number.

• Fuzz Outgoing Calls : The main function of this child
class is to implement an Outgoing Call injector. The
easiest way to accomplish this call is to create an intent
which its action is ”Intent.ACTION CALL”, adding the
extra bundle data needed to this action to perform as a
real Outgoing call injector, and then start the activity of
this intent. We put the dialed phone number the same
as the target mobile phone number to process a call and
then stop it automatically after few seconds because it
will respond with busy number. So DroidSmartFuzzer
will start and stop a real outgoing call within maximum
6 seconds.

• Internet Usage Analysis : Now coming to the Internet
usage behavior analysis as a response to the fuzzing
injectors. This module is responsible for measuring the
Internet usage before and during the fuzzing process.
We keep track of Internet consuming for the AUT by
the help of android.net.TrafficStats built-in class. This
class provides network traffic statistics. These statistics
include bytes transmitted and received and network
packets transmitted and received, over all interfaces, over
the mobile interface, and on a per-UID basis.

• Pass Fail Report : The DroidSmartFuzzer testing results
accomplished via this module. After reading all installed
applications, filtering them to a list of doubtful appli-
cations, fuzzing this list, monitoring the Internet usage



during the fuzzing life cycle. Now this module will take
a decision regarding to the AUT and notify the user if
this AUT is PASS which means that no Internet usage
behavior changes during the whole fuzzing process life
cycle, or FAIL which means that the AUT Internet usage
behavior has changed during the fuzzing life cycle. In
the case of FAIL, this module will report in details which
privacy or fuzz test case has consumed the Internet as
shown in Figure 5. From this report the user can take
action to uninstall this application or not.

Fig. 5. DroidSmartFuzzer Application

V. EXPERIMENTAL EVALUATION
We run the DroidSmartFuzzer on Samsung Galaxy A3.

DroidSmartFuzzer installed on Android 4.4 ”Kitkat” because
of its large distribution among the Android users [36]. The
results of DroidSmartFuzzer against all the 20 spyware sam-
ples including the proposed spy-ware ”Chameleon” is sum-
marized in Table I, and the already installed applications are
summarized in Tables II. These tables show the Internet usage
behavior results of AUTs. Behavior chart which represents
sample of AUTs Vs Transmitted bytes during the fuzzing
process shown in Figure 6.

• Evaluation 1 : All the studied commercial spy-ware
products Internet usage behaviors and also the free ones
on Google play or Amazon store are changing during our
fuzzing life cycle. They all are transmitting data packets
using the available mobile Internet media (WiFi Or
Mobile Data). All these spy-ware applications have been
reported by DroidSmartFuzzer as spying on (Received
SMS, Incoming Calls, and Outgoing Calls information).
Table I, shows a sample of these results.

• Evaluation 2 : Most of the commercial spy-ware
providers gave their customers the ability to try their spy
products from 2 to 7 days, as a full functioning demo
versions, But DroidSmartFuzzer detects that these demo
versions still transmitting out the victim’s privacy after
the trial period is running out. This gave us a big ques-
tion. Why these providers still spying on and sending
out the privacy information although their applications
are only demo versions?

• Evaluation 3 : As shown in Figure 6, the number of
transmitted bytes during the fuzzing process are differ
from application to application, this evaluation gave us a
moral incentive to analyze the AUT transmitted packets
in our future work.

• Evaluation 4 : As shown in Table II and behavior chart
shown in Figure 6, there is another future study on a sys-
tem application called ”NetworkLocation baidu.apk”,
and its package name is ”com.baidu.map.location”. This
application interested in Phone state permission which
tested by our DroidSmartFuzzer with the Incoming call
injector. The application Internet usage behave unex-
pectedly during the incoming call fuzzing test, and it
transmits 267 Bytes with every incoming call fuzz life
cycle, so it has been reported as a spy-ware application,
which means that this system application is spying on
our Incoming call information.

TABLE I. SAMPLE OF THE 20 TESTED SPY-WARE APPLICATIONS

App Name Installed Package Store/ Provider DroidSmartFuzzer
Rx
SMS

In.
Calls

Out.
Calls

Truth Spy com.systemservice thetruthspy.com 3 3 3
Ino Spy com.inospy inospy.com 3 3 3
Hello Spy com.hellospy.system hellospy.com 3 3 3
Ti Spy com.sce.display Amazon.com 3 3 3
SMS
Tracker

com.gizmoquip.smstracker Google Play 3 3 3

Chameleon com.google.sync Propsed Ap-
plication

3 3 3

TABLE II. SAMPLE OF INSTALLED ANDROID SYSTEM APPLICATIONS

App Name Installed Package Store/ Provider DroidSmartFuzzer
Rx
SMS

In.
Calls

Out.
Calls

Sys. App. com.baidu.map. location Samsung n 3 n
Sys. App. com.android.browser Samsung n 5 n
Sys. App. com.android.email Samsung 5 5 n
Sys. App. com.android.exchange Samsung 5 5 n
Sys. App. com.android.mms Samsung 5 5 n

VI. CONCLUSION AND FUTURE WORK

In this paper, we studied the Android spy-ware attacks
that led to user’s privacy leakage. We have proposed a spy-
ware application to understand the attacker’s strategy and
techniques with the help of the Android system permissions,
broadcast receivers and intents mechanism to intercept our
Received SMS, Incoming and Outgoing calls information.
According to this study, we propose a medication solution
which we called DroidSmartFuzzer, it based on the fuzz
testing concept to analyze the AUT behavior against the
Internet usage during the fuzzing life cycle. DroidSmartFuzzer
achieved the full automation fuzz testing techniques by driving
test on those spy-ware applications, cataloging the results and
warning the user immediately to take a decision against this
AUT. DroidSmartFuzzer has the ability to do fuzz testing on
all installed applications after filtering them relative to their
permissions. DroidSmartFuzzer efficiently detect 4 free and



Fig. 6. Internet Usage of AUTs During Fuzzing

top 15 commercial spy-ware applications sold in the market,
also DroidSmartFuzzer can actually give us an indication of
the Zero Day Attack like our Chameleon spy-ware detection.

By the end of 2015 Google announced that a new Android
6 Marshmallow, will be applicable with a pair of Nexues
phones. Marshmallow users will be able to agree to application
permissions as they are needed rather than as a long list
when software is installed. The catch is that as we illustrated
before the commercial spy-ware and our chameleon spy-ware
are hidden applications, also most of commercial spy-ware
applications installed physically to the target victim’s mobile.
DroidSmartFuzzer also will help Marshmallow users to take
a decisions of stopping one or more of the permissions after
fuzzing these Marshmallow’s applications. Our future work
will be designing a cloud database that will be connected
to our DroidSmartFuzzer for storing all spy-ware detected
applications and their attached information to be an applicable
reference to all researchers in this field.

Implementing a new injectors for fuzzing more important
privacies like location, send SMS, call recording ... etc.

REFERENCES

[1] Google, ”Android Security 2014 Year in Review Report” Oct. 2014.
[2] Lacoon Mobile Security & Check Point, ”targeted attacks on enterprise

mobile Threat Research” Feb. 2015.
[3] Alcatel.lucent, ”Kindsight Security Labs Malware Report H1 2015”

Sep. 2015.
[4] Alcatel.lucent, ”Kindsight Security Labs Malware Report H2 2014”

Feb. 2015.
[5] Alcatel.lucent, ”Kindsight Security Labs Malware Report H1 2014”

Sep. 2014.
[6] Alcatel.lucent, ”Kindsight Security Labs Malware Report Q4 2013”

Jan. 2014.
[7] J. Dalman, V. Hantke ”Commercial Spyware-Detecting the

Undetectable,” Black Hat USA 2015, July. 2015.
[8] iKeyMonitor, Commercial Spy, http://ikeymonitor.com, 30-10-2015
[9] spy1dollar, Commercial Spy, http://spy1dollar.com, 30-10-2015
[10] spy-phone, Commercial Spy, http://spy-phone-app.com, 30-10-2015
[11] MxSpy, Commercial Spy, http://mxspy.com, 30-10-2015
[12] ExactSpy, Commercial Spy, http://exactspy.com, 30-10-2015

[13] Spyera, Commercial Spy, http://spyera.com, 30-10-2015
[14] Snoop, Commercial Spy, http://www.snoopvip.com, 30-10-2015
[15] Mobikids, Commercial Spy, http://mobikids.net, 30-10-2015
[16] MobileSpy, Commercial Spy, http://immobilespy.com, 30-10-2015
[17] HelloSpy, Commercial Spy, http://hellospy.com, 30-10-2015
[18] InoSpy, Commercial Spy, http://inospy.com, 30-10-2015
[19] MobileSpy, Commercial Spy, http://mobile-spy.com, 30-10-2015
[20] SMS Tracker, Commercial Spy, https://smstracker.com, 30-10-2015
[21] MaxxSpy, Commercial Spy, http://maxxspy.com, 30-10-2015
[22] TheTruthSpy, Commercial Spy, http://thetruthspy.com, 30-10-2015
[23] SMS Tracker, Google Play, http://play.google.com, 30-10-2015
[24] SMS Tracker Plus, Google Play, http://play.google.com, 30-10-2015
[25] Monitor Call SMS, Amazon Store, http://amazon.com, 30-10-2015
[26] Mobile Monitor, Amazon Store, http://amazon.com/, 30-10-2015
[27] PDU Format, Smart Position
[28] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner,”A survey

of mobile malware in the wild,” in SPSM 11. ACM, 2011, pp. 314.
[29] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos. Profiledroid:

multi-layer profiling of android applications. In Proc. of Mobicom12,
2012.

[30] L. K. Yan and H. Yin. Droidscope: seamlessly reconstructing the os
and dalvik semantic views for dynamic android malware analysis. In
Proc. of USENIX Security12, 2012.

[31] K. Z. Chen, N. Johnson, V. DSilva, S. Dai, K. MacNamara, T.
Magrino, E. X. Wu, M. Rinard, and D. Song. Contextual policy
enforcement in android applications with permission event graphs. In
Proc. of NDSS13, February 2013.

[32] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, Hey, you, get off of my
market: Detecting malicious apps in official and alternative android
markets, in NDSS12, 2012.

[33] Y. Zhou, X. Jiang, Dissecting Android Malware: Characterization and
Evolution, in IEEE Symposium on Security and Privacy, 2012.

[34] SMS and PDU format,
http://www.smartposition.nl/resources/sms pdu.html.

[35] Cognalys, Inc., https://www.cognalys.com.
[36] Android Developers, Dashboards,

https://developer.android.com/about/dashboards/ , Oct 2015.
[37] F-Secure Lab, Threat Description, DROIDKUNGFU.C , Nov 2012.


