
Rapid Radio Reversing

Michael Ossmann
Great Scott Gadgets

Abstract

Over the past several years, Software Defined Radio
(SDR) has rendered a new generation of wireless security
researchers capable of reverse engineering and exploring
the attack surfaces of digital radio technologies that now
pervade the world around us. While SDR is certainly
the single greatest tool for reverse engineering wireless
signals, a variety of non-SDR tools based on wireless
transceiver Integrated Circuits (ICs) may also be found
in the toolbox of the wireless reverse engineer. The use
of a combination of both SDR and non-SDR tools of-
ten enables the quickest and easiest way to reverse a new
wireless communication system. I provide an example
method employing this hybrid approach.

1 Introduction

A Software Defined Radio is a truly universal radio. Re-
gardless of the modulation and encoding of the target
system, you can use an SDR platform with sufficient
bandwidth and operating frequency to capture a signal.
After acquiring the radio waveform, you can quickly dis-
cover the target’s precise operating frequency and modu-
lation characteristics. Additionally, you can use this cap-
tured waveform to execute a replay attack without any
effort to understand the modulation and encoding.

While the initial steps of reverse engineering a signal
with SDR go very quickly, subsequent efforts to deter-
mine data encoding, byte alignment, forward error cor-
rection, checksums, encryption, and whitening often take
much longer. A reverse engineer is just as likely to turn
to pen and paper as to SDR tools during this phase of
the project. Efforts to analyze the data encoding may be
hampered, for example, by difficulty with recovery of the
transmitter’s symbol clock, causing a frustrating inability
to reliably convert a waveform into bits.

Much of this frustration can be overcome by improv-
ing your SDR skills [7]. To become an expert wireless

reverse engineer capable of analyzing rare or technolog-
ically advanced wireless systems, there is no substitute
for becoming proficient in SDR development. However,
SDR has a steep learning curve; it can take years to learn
the Digital Signal Processing (DSP) and SDR techniques
necessary to reverse engineer arbitrary wireless commu-
nication systems with a pure SDR approach. Fortunately,
for many target wireless systems, the most significant ad-
vantages of SDR for reverse engineering are accessible
through techniques that can be learned very quickly.

Instead of using SDR alone, for many reverse engi-
neering efforts I recommend a hybrid approach using
both SDR and non-SDR tools. Platforms such as YARD
Stick One [5] provide a wireless transceiver IC that in-
cludes a digital modem implemented in hardware in-
stead of software. Although these tools are less flexible
than software implementations enabled by SDR, they are
compatible with a wide range of digital radio systems,
particularly low cost, low speed systems.

Wireless transceiver ICs do the job of clock recov-
ery and can instantly provide binary symbol data. This
makes it easy for the reverse engineer to capture multiple
packets, compare them with one another, and explore the
data encoding characteristics of the target system. These
advantages are particularly attractive when considering
the easier learning curve compared to SDR.

A hybrid approach of using both SDR and non-SDR
tools has been employed for as long as wireless security
researchers have used SDR. Despite SDR’s increasing
popularity, the use of non-SDR tools has not fallen out
of favor. New advances in wireless security are just as
likely to be made by a hybrid approach now as they were
several years ago. Within the past year, for example,
Samy Kamkar used the approach in reverse engineering
remote keyless entry systems [6], and Mike Ryan and Ri-
cho Healey used it to reverse electric skateboard control
interfaces [9].



Figure 1: osmocom fft capturing an OOK signal

2 Signal Acquisition

To use the hybrid approach, you only need to know a lit-
tle about SDR. The most important thing to understand
is that an SDR receiver captures a contiguous range of
radio frequencies for the duration of the acquisition. Just
as a sound card captures any and all sounds in the au-
dible range of frequencies while recording, an SDR re-
ceiver captures every radio signal present in the range
of frequencies it is tuned to. Everything that happens in
that chunk of spectrum is described by the digital wave-
form produced by the receiver. This is best demonstrated
by storing a captured waveform and visualizing it with a
spectrogram as we will do in this example.

To capture a signal, plug in a HackRF One [4] or other
SDR platform and launch osmocom fft, a simple soft-
ware tool for real-time visualization and acquisition [11].
Set the frequency and sample rate such that your signal
of interest is within the displayed bandwidth. The total
captured bandwidth is equal to the sample rate, so there
is some benefit in setting the sample rate as high as pos-
sible, especially if you are not certain of the target fre-
quency and need to hunt for it. (To avoid hunting, you
can often learn the frequency from online resources such
as the FCC Equipment Authorization database [10].)
Note that the acquisition bandwidth is entirely controlled
by the sample rate setting; the separate bandwidth setting
controls filtering in the analog domain, and you typically
don’t need to change it.

With osmocom fft tuned appropriately, initiate a trans-
mission on your target device and observe the signal in
the FFT plot. If it isn’t obvious right away, try placing

your receive antenna very close to the target transmit-
ter. Signals at very close range are received with much
greater power than signals from more distant transmit-
ters. Once you’ve found the signal of interest, spend
some time adjusting the gain settings to give you the
cleanest acquisition. If your gain is too low, the signal
will be lost in the noise. If your gain is too high, the
signal will be distorted, resulting in extra peaks showing
up at frequencies other than the signal’s true frequency.
I usually try to arrange things so that the target signal is
about -10 dB with respect to the highest power the SDR
receiver can handle, but the most important thing to op-
timize is the signal to noise ratio.

Like many SDR receivers, HackRF One has an archi-
tecture that results in a spike in the center of the captured
bandwidth. Even if this spike has been hidden from you
by hardware or software, it can affect the received signal.
For this reason it is good to develop a habit of tuning to
one side of your target frequency. You’ll notice the im-
portance of visualization as you go through the process
of tuning the frequency and setting gains. These things
are very difficult to do blindly!

Once everything is set up for optimal signal acquisi-
tion, click the record button in the lower right corner. A
file containing the received waveform will be saved un-
til you click stop. During acquisition, the file grows at
a rate of 8 bytes per sample, so your maximum capture
duration and sample rate may be limited by your storage
medium.

3 Signal Visualization and Analysis

My favorite tool for visualizing a saved waveform is in-
spectrum, a new software tool for signal analysis [12].
The primary feature of inspectrum is a spectrogram that
allows you to explore everything that took place in the re-
ceived bandwidth during the acquisition period. A spec-
trogram displays time on one axis and frequency on an-
other. Signal power is indicated by color or brightness
of pixels in this two-dimensional domain. You’ve proba-
bly seen a spectrogram in the form of a waterfall display.
Unlike most waterfalls, the spectrogram in inspectrum
has a continuous time axis showing every signal detected
during the acquisition, even very brief events. Recent
versions of inspectrum display frequency on the verti-
cal axis, so it will appear sideways compared to the fre-
quency domain plot in osmocom fft.

Using inspectrum, try to identify the precise operat-
ing frequency, modulation, and symbol rate of the tar-
get transmission. The frequency is displayed relative to
osmocom fft’s configured center frequency. The modu-
lation and symbol rate can usually be identified visually
for transmissions with lower data rates. Put the cursor in
multi-bit mode and drag it over the signal to measure the

2



Figure 2: inspectrum with multi-bit cursor measuring
OOK/PWM symbol periods

Figure 3: spectrogram comparison of OOK, ASK, and
FSK, top to bottom

symbol rate.
Some modulations are easier to identify than others,

but most can be determined by answering a couple of
questions: Does the amplitude change over time? Does
the frequency change over time?

On-Off Keying (OOK) is one of the most common
modulations of low speed digital wireless systems, and
it is also the easiest to identify. It looks like a train of
distinct pulses, all at a constant frequency. Amplitude
Shift Keying (ASK) looks similar except the intervals be-
tween pulses have low amplitude instead of zero ampli-
tude. A Frequency Shift Keying (FSK) signal typically
has constant amplitude, but it wiggles back and forth be-
tween distinct frequencies. If you suspect FSK but the
frequency deviations appear blurred together, try reduc-
ing inspectrum’s FFT size.

Most modulations supported by wireless transceiver
ICs can be identified visually in a spectrogram. If you
can’t tell what the modulation is in inspectrum, it is prob-
ably FSK with a very fast symbol rate or a more sophis-
ticated modulation that is unlikely to be supported by a
general purpose wireless transceiver IC. You might have
better luck capturing at a higher sample rate, but you may

have to abandon the hybrid approach and use SDR alone.
At this point you should look for characteristics that

indicate how data bits are encoded into raw symbols. The
most trivial encoding is Non-Return-to-Zero (NRZ) in
which high symbols represent a one and low symbols
represent a zero. (It can be the other way around, of
course, but an incorrect assumption can be fixed later by
simply inverting all bits. That goes for all the encoding
schemes below as well.) NRZ is a common scheme for
FSK, but it is quite uncommon for OOK. One of the rea-
sons NRZ is unpopular for OOK is that it makes a long
sequence of zeros indistinguishable from a gap between
packets.

A common encoding, especially for OOK, is Pulse
Width Modulation (PWM) in which a short pulse rep-
resents a zero and a long pulse represents a one. Some
PWM systems always use the same interval duration be-
tween every pulse, but it is more common to see long
intervals follow short pulses and short intervals follow
long pulses, resulting in a consistent total time per data
bit.

A slightly more sophisticated but less common
scheme is Pulse Interval and Width Modulation (PIWM)
in which the duration of both pulses and the intervals be-
tween pulses carry data. If pulses and intervals both vary
in duration but there is no correlation between the length
of intervals and the length of adjacent pulses, then PIWM
is likely. Unlike most modulations, PIWM does not fea-
ture a consistent time per data bit.

Another encoding scheme sometimes seen in OOK
transmissions is Pulse Position Modulation (PPM) in
which pulses of a consistent duration appear early to rep-
resent a zero or late to represent a one. In some cases
this might look like inverted PWM, but PPM often in-
cludes unmodulated reference pulses between the modu-
lated pulses, making it distinct from any PWM variation.

Manchester (or bi-phase) encoding is popular for FSK
and is also often found in OOK and ASK systems. In
Manchester encoding, a data bit is encoded by a pair
of differing symbols. For example, the binary symbol
pair 10 may represent a zero while 01 represents a one.
You can quickly recognize Manchester encoding because
it looks like NRZ but has the particular characteristic
that you never see more than two like symbols in a row.
It is possible for other encoding schemes to result in
this characteristic, however, so it is important to check
for valid Manchester. For example, the symbol stream
0110010110 (data bits 1, 0, 1, 1, 0) is valid but the sym-
bol stream 0110110100 is not. If you see something that
looks at first like Manchester but isn’t valid Manchester,
it might consist of Manchester encoded payloads sepa-
rated by non-Manchester framing, or it might be some-
thing completely different such as PIWM.

After identifying the encoding scheme, make note of

3



Figure 4: data bits (1, 0, 1, 1, 0) encoded with NRZ,
PWM, PIWM, PPM, and Manchester, top to bottom

the difference between the symbol rate and the data rate.
In NRZ, the symbol rate, also called a baud rate, is equal
to the data rate. In Manchester encoding, the symbol
rate is twice the data rate. PWM and other encodings
are typically made up of shorter symbol periods with a
consistent duration. For example, a long pulse might be
encoded as the three symbols 110 while a short pulse is
encoded as 100. (The word “symbol” may be used to
describe the entire pulse that is three time units long, but
I often find it more useful to use the word to describe the
features of the encoding having the shortest observable
time unit.) The multi-bit cursor in inspectrum is quite
handy for this. I can usually find an integer number of
symbols between three and eight that makes PWM pulses
line up perfectly.

The only other thing you’ll need to observe in inspec-
trum is how packets start and can be recognized. In most
cases there will be an obvious preamble of alternating
ones and zeros at the beginning of a packet. How many
symbols long is the preamble? Is it made up of alternat-
ing symbols at the rate you observed earlier (e.g. where
three symbols 110 make up a PWM pulse period)? If so,
then you may be able to use a preamble detection feature
of your wireless IC.

After the preamble, packets typically start with a syn-
chronization word, sometimes called an access code or
start of frame delimiter. Unlike the preamble, the sync
word is composed of non-repeating groups of bits, al-
though sometimes you may find that an entire sync word
is repeated. Sync words give the receiver the opportunity
to determine precisely which symbol contains the start
of the packet data. In most systems, all transmitters and
receivers use the same sync word, but occasionally you
may find a system which uses a device’s unique address
instead of a global sync word. Either way, you’ll need to
manually decode the sync word once so that you can use
it to configure your wireless IC to detect similar packets.

4 Receiving with a Wireless IC

Once you have made notes about the frequency, modu-
lation, symbol rate, preamble, and sync word, you can
configure your wireless transceiver IC to receive packets
from the target system. If you use YARD Stick One or
another RfCat-compatible wireless IC dongle, your next
steps can be done rapidly in an interactive Python shell.

Plug in your YARD Stick One and start RfCat [1] with:

rfcat -r

RfCat will check to make sure that there is a compati-
ble USB dongle plugged in, and then it will drop you into
an interactive Python shell. You’ll have an object called
“d” that gives you an interface to control the dongle. You
can access help with:

help(d)

Set the frequency in Hz with:

d.setFreq(314980000)

In this example command and others below, I am using
values taken from a live demonstration I’ve done with a
particular target device [8]. Choose values for different
targets based on your analysis in inspectrum.

For OOK or ASK, set the modulation with:

d.setMdmModulation(MOD_ASK_OOK)

For FSK, instead use:

d.setMdmModulation(MOD_2FSK)

Set the symbol rate in symbols per second:

d.setMdmDRate(2450)

If a compatible preamble is not present at the start of
the packets you are trying to detect, set the preamble
quality threshold to zero, disabling preamble checking
entirely:

d.setPktPQT(0)

Specify the synchronization word with:

d.setMdmSyncWord(0b0000011011011011)

Choosing the best sync word is often the most diffi-
cult part of the configuration. With YARD Stick One
(and other platforms based on the CC11xx wireless
transceiver IC), the sync word must be either 16 bits (the
default) or 32 bits long, and the 32 bit mode only works
as a 16 bit sync word repeated. Sometimes these modes
are compatible with a target system, and sometimes they

4



aren’t. Fortunately there are some tricks you can use to
handle situations where the supported modes don’t ex-
actly meet your needs.

If the target has a 24 bit sync word, for example, it is
straightforward to configure only 16 out of those 24 bits
as the sync word in RfCat. This increases the probability
of false positive matches but otherwise works well.

If the target has a sync word shorter than 16 bits,
you can configure the sync word to include some of
the preamble. For example, if the target uses an eleven
bit sync word of 0b11100010010, configure RfCat with
a sixteen bit sync word of 0b0101011100010010. If
there is no preamble prior to the sync word, you can use
0b0000011100010010 instead.

If the target does not have a consistent sync word, or
if you haven’t yet been able to identify it, you can em-
ploy the Goodspeed method [3] by configuring your sync
word to match the preamble. For example, you might set
it to 0b1010101010101010 if the preamble is at least 16
bits long. Unless the preamble is much longer than 16
bits, you may need to disable preamble quality checking
when using this technique. If nothing else works, you
can even disable sync word checking entirely and detect
packets solely on the basis of carrier detection with:

d.setMdmSyncMode(SYNCM_CARRIER)

Some of these tricks will result in the detection of
false positive packets or packets that are inconsistently
aligned, but they can still be quite useful. In some cases
your configuration might only detect a small percentage
of packets, but that can be enough to capture a few pack-
ets from which you can learn better settings.

Once you have RfCat configured for your target, try
detecting packets with:

d.RFlisten()

Detected packets will be dumped in hexadecimal,
making it easy to compare one against another and ver-
ify that you are receiving what you intend. By default,
RfCat assumes that all packets are 255 bytes long. This
is longer than the packets of most targets, so you’ll see
some garbage (or maybe subsequent packets) at the end
of each packet. Once you’ve learned the actual maxi-
mum packet length of your target, you can set that length
in bytes with:

d.makePktFLEN(30)

At this point you should be able to reliably receive
packets with RfCat, displaying the raw symbol data in
hexadecimal. If the target is using an encoding such as
PWM, PIWM, PPM, or Manchester, you can now make
a small Python function to turn those raw symbols into
bits.

Figure 5: receiving packets with RfCat

5 Next Steps

A little Python knowledge can also help a great deal with
your next challenges:

• bit order

• checksum/CRC

• encryption

• whitening

• byte alignment

• Forward Error Correction (FEC)

These challenges are very similar to those you may
encounter when reverse engineering any digital commu-
nication protocol, regardless of medium. Now that you
have packet data at your fingertips, you can turn to tools
such as your favorite programming language to explore
the target protocol.

6 Conclusion

Reverse engineers of the future may find it easier to
use SDR alone rather than a hybrid approach, but it de-
pends upon the development of better software tools for
the task. We might have better spectrum monitoring
software, making it even easier to detect the frequency

5



of operation of a target system. We might have better
clock recovery implementations that more reliably syn-
chronize to symbols in packets, even if the packets have
no preamble. SDR software frameworks like GNU Ra-
dio [2] might make it just as convenient to experiment
with packet data as it is to manipulate stream data. Signal
visualization tools like inspectrum may include functions
to select and demodulate packets [13], and we may even
have software that automatically classifies modulations
and other parameters required for packet decoding.

In the future we may also have better software tools for
reverse engineering with wireless transceiver ICs. We
might have software that automatically detects modu-
lations, for example, by simply trying every supported
modulation and checking to see which yields the best re-
sults. Such tricks are certainly possible, but they will
always be more limited in capability than SDR.

Eventually, SDR will likely become the tool of choice
for almost every wireless reverse engineering task. Until
then it is best to have multiple tools in your toolbox.

7 Acknowledgments

I thank atlas, Mike Walters, Dimitri Stolnikov, and the
many other open source software developers who have
made these techniques possible. Thank you to the
denizens of #hackrf and #rfcat on freenode who have
shared many reverse engineering challenges and even
provided a waveform or two used in this paper.

References
[1] ATLAS. RfCat. https://bitbucket.org/atlas0fd00m/rfcat.

[2] FREE SOFTWARE FOUNDATION. GNU Radio.
http://gnuradio.org/.

[3] GOODSPEED, T. Promiscuity is the nRF24L01+’s Duty. Travis
Goodspeed’s Blog (2011).
http://travisgoodspeed.blogspot.com/2011/02/promiscuity-is-
nrf24l01s-duty.html.

[4] GREAT SCOTT GADGETS. HackRF One.
http://greatscottgadgets.com/hackrf/.

[5] GREAT SCOTT GADGETS. YARD Stick One.
http://greatscottgadgets.com/yardstickone/.

[6] KAMKAR, S. Drive It Like You Hacked It: New Attacks and
Tools to Wirelessly Steal Cars. DEF CON (2015).
https://www.defcon.org/html/defcon-23/dc-23-
speakers.html#Kamkar.

[7] OSSMANN, M. Software Defined Radio with HackRF.
http://greatscottgadgets.com/sdr/.

[8] OSSMANN, M. Rapid Radio Reversing. ToorCon (2015).
http://greatscottgadgets.com/2015/12-29-rapid-radio-reversing-
toorcon-2015/.

[9] RYAN, M., AND HEALEY, R. Hacking Electric Skateboards:
Vehicle Research For Mortals. DEF CON (2015).
https://www.defcon.org/html/defcon-23/dc-23-
speakers.html#Ryan.

[10] SPILL, D. fcc.io: FCC ID Search and Redirection.
https://fcc.io/.

[11] STOLNIKOV, D., ET AL. GrOsmoSDR.
http://sdr.osmocom.org/trac/wiki/GrOsmoSDR.

[12] WALTERS, M. inspectrum. https://github.com/miek/inspectrum.

[13] WALTERS, M. inspectrum tuner demo.
https://www.youtube.com/watch?v=9QyGKjt8zkE.

Great Scott Gadgets Technical Report 2016-1
Copyright 2016 Michael Ossmann

License: CC BY 4.0
http://greatscottgadgets.com/tr/

6


