
Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Exploiting Linux and PaX ASLR’s weaknesses
on 32- and 64-bit systems

Hector Marco-Gisbert, Ismael Ripoll
Universitat Politècnica de València (Spain)

http://cybersecurity.upv.es

Black Hat Asia

March 29 - April 1, 2016

1 / 42

http://cybersecurity.upv.es

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Table of contents

1 ASLR overview & background

2 Linux and PaX ASLR weaknesses
Too low entropy
Non-uniform distribution
Correlation between objects
Inheritance

3 Exploiting the Correlation weakness: offset2lib
Example: Offset2lib in stack buffer overflows
Demo: Root shell in < 1 sec.
Mitigations

4 ASLR-NG: ASLR Next Generation
New randomisation forms
ASLRA: ASLR Analyzer
Linux vs PaX vs ASLR-NG

5 Conclusions

2 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

ASLR overview & background

What have we done ?

We have deeply analyzed the ASLR of Linux and PaX and:

Found some weaknesses and limitations on the current implementations:

1 Too low entropy
2 Non-uniform distribution
3 Correlation between objects
4 Inheritance

Built attacks which exploit these weaknesses:

Offset2lib: bypasses the NX, SSP and ASLR in in < 1 sec.
Also, other attack vectors (exploiting other weaknesses)

We have contributed to Linux kernel by:

Fixing the Offset2lib weakness.
Sketches a working in progress version of the ASLR → ASLR-NG.
Also some mitigation techniques will be presented (RenewSSP)

We present ASLRA, a suit tool to analyze the entropy of Linux ASLR
implementations.

3 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

ASLR overview & background

ASLR Background

ASLR does not remove vulnerabilities but make more difficult to
exploit them.

ASLR deters exploits which relays on knowing the memory map.

ASLR is effective when all memory areas are randomise. Otherwise,
the attacker can use these non-random areas.

Full ASLR is achieved when:
Applications are compiled with PIE (-fpie -pie).
The kernel is configured with randomize va space = 2
(stack, VDSO, shared memory, data segment)

4 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

ASLR overview & background

What is ASLR ?

ASLR is a protection provided by the kernel
to applications which:

It loads the stack, executable, libraries
and heap at random locations.

It tries to deter attacks that rely on
knowing the location of the target data
or code.

It makes vulnerabilities more difficult to
exploit.

stack

lib1

lib2

mmap files

heap

exec

LOW

HIGH
VM space

F
l o

w
 r

e d
i re

ct

5 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

ASLR overview & background

How the ASLR works: A simple example

The attacker redirects the execution to the
exec() library function (lib1):

Trivial if ASLR is off.

But it fails when the ASLR is on.

Not only the libraries but all other memory
areas are randomized:
→ How difficult is to predict the target ?
• Depends on the entropy.

→ Are there other attack vectors ?
• Yes, We have found new weaknesses.

stack

lib1

lib2

mmap files

heap

exec

LOW

HIGH
VM space

F
l o

w
 r

e d
i re

ct

6 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

ASLR overview & background

How the ASLR works: A simple example

The attacker redirects the execution to the
exec() library function (lib1):

Trivial if ASLR is off.

But it fails when the ASLR is on.

Not only the libraries but all other memory
areas are randomized:
→ How difficult is to predict the target ?
• Depends on the entropy.

→ Are there other attack vectors ?
• Yes, We have found new weaknesses.

stack

lib1

lib2

mmap files

heap

exec

LOW

HIGH
VM space

F
l o

w
 r

e d
i re

ct

6 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

ASLR overview & background

How the ASLR works: A simple example

The attacker redirects the execution to the
exec() library function (lib1):

Trivial if ASLR is off.

But it fails when the ASLR is on.

Not only the libraries but all other memory
areas are randomized:
→ How difficult is to predict the target ?
• Depends on the entropy.

→ Are there other attack vectors ?
• Yes, We have found new weaknesses.

stack

lib1

lib2

mmap files

heap

exec

LOW

HIGH
VM space

F
l o

w
 r

e d
i re

ct

6 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

ASLR overview & background

How the ASLR works: A simple example

The attacker redirects the execution to the
exec() library function (lib1):

Trivial if ASLR is off.

But it fails when the ASLR is on.

Not only the libraries but all other memory
areas are randomized:
→ How difficult is to predict the target ?
• Depends on the entropy.

→ Are there other attack vectors ?
• Yes, We have found new weaknesses.

stack

lib1

lib2

mmap files

heap

exec

LOW

HIGH
VM space

F
l o

w
 r

e d
i re

ct

6 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Linux and PaX ASLR weaknesses

Linux and PaX ASLR weaknesses

Current ASLR was designed considering that
some zones are growable but:

Cannot be used safely because collisions

with other allocations cannot be avoided.

Currently, only used in the Stack and the

Heap.

Growable objects impose strong limitations
on ASLR design:

Linux places each object as separately as

possible (Stack and Heap)

Unfortunately, this introduce weaknesses.

stack

lib1

lib2

mmap files

heap

exec

LOW

HIGH
VM space

F
l o

w
 r

e d
i re

ct

7 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Linux and PaX ASLR weaknesses

Weakness 1) Too low entropy

Brute force attacks to bypass ASLR:

x86 Entropy 100% Mean

L
in

u
x 32-bit 28 (256) < 1 sec < 1 sec

64-bit 228 (260M.) 74 Hours 37 Hours

ASLR entropy and cost time (1000 trials/sec).

→ ASLR in 32-bit is almost useless (very low entropy).

→ In 64-bit the attack is feasible in some scenarios.

→ The weakness is present since the first Linux ASLR.

F
l o

w
 r

e d
i re

ct

stack

lib1

lib2

mmap files

heap

exec

LOW

HIGH
VM space

?

8 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Linux and PaX ASLR weaknesses

Weakness 2) Non-uniform distribution

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0 20 40 60 80 100

P
ro

b
a
b
ili

ty

Bins

Expected
i386

PaX Libraries distribution in i386

 0

 0.005

 0.01

 0.015

 0.02

 0 20 40 60 80 100

P
ro

b
a
b
ili

ty

Bins

Expected
x86_64

PaX Libraries distribution in x86 64

Libraries are not uniformly distributed:

Faster attacks by focusing on the most frequent (likely) addresses.

Other objects are also affected.

9 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Linux and PaX ASLR weaknesses

Weakness 3) Correlation between objects

Instead of de-randomizing the target object, first de-randomize an
intermediate object and then use it to de-randomize the target
→ We made the first demonstration [Offset2lib]

The Offset2lib attack vector:

It bypass the full Linux ASLR on any architecture in < 1 sec.

It does not use the GOT or PLT.

It works even with NX and SSP enabled.

It exploits a stack buffer overflow.

10 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Linux and PaX ASLR weaknesses

Weakness 3) Correlation between objects

We have developed a PoC to exploit the
Offset2lib weakness:

1 De-randomize the executable exploiting a

stack buffer overflow.

2 Calculate (offline) the constant distance to

the target libraries.

3 The libraries are now de-randomized.

stack

lib1

lib2

exec

heap

LOW

HIGH
VM space

F
l o

w
 r

e d
i re

ct
C
o
n
s
t
a
n
t

!

11 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Linux and PaX ASLR weaknesses

Weakness 3) Correlation between objects

Memory map of an application PIE compiled.

The ld is loaded consecutively to the app.: 0x7f36c6feb000
12 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Linux and PaX ASLR weaknesses

Weakness 4) Inheritance

Again, all child processes share the same
memory layout !

New allocations belonging only to a
child can be predicted by its parent and
siblings !

Example: Child 1 can easily guess where
the private file 2 has been
mapped.

stack

lib1

lib2

private file 1

heap

exec

LOW

HIGH
VM space

F
l o

w
 r

e d
i re

ct

Child 1

stack

lib1

lib2

private file 2

heap

exec

LOW

HIGH
VM space

F
l o

w
 r

e d
i re

ct

Child n
13 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Exploiting the Correlation weakness: offset2lib

Loading shared objects

The problem appears when the application is compiled with PIE because the
GNU/Linux algorithm for loading shared objects works as follows:

The first shared object is loaded at a random position.

The next object is located right below (lower addresses) the last object.

...

libc-2.19.so

ld-2.19.so

server 64 PIE

...

Stack
...

All libraries are located ”side by side” at a single random place.

0x000000000000

0x7FFFFFFFFFFF

mmap base

Executable Base

Dynamic Linker Base

Libc Base

14 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Exploiting the Correlation weakness: offset2lib

Offset2lib

$ cat /proc/<pid>/server 64 PIE

7fd1b414f000-7fd1b430a000 r-xp /lib/.../libc-2.19.so

7fd1b430a000-7fd1b450a000 ---p /lib/.../libc-2.19.so
7fd1b450a000-7fd1b450e000 r--p /lib/.../libc-2.19.so
7fd1b450e000-7fd1b4510000 rw-p /lib/.../libc-2.19.so
7fd1b4510000-7fd1b4515000 rw-p

7fd1b4515000-7fd1b4538000 r-xp /lib/.../ld-2.19.so

7fd1b4718000-7fd1b471b000 rw-p
7fd1b4734000-7fd1b4737000 rw-p
7fd1b4737000-7fd1b4738000 r--p /lib/.../ld-2.19.so
7fd1b4738000-7fd1b4739000 rw-p /lib/.../ld-2.19.so
7fd1b4739000-7fd1b473a000 rw-p

7fd1b473a000-7fd1b473c000 r-xp /root/server 64 PIE

7fd1b493b000-7fd1b493c000 r--p /root/server_64_PIE
7fd1b493c000-7fd1b493d000 rw-p /root/server_64_PIE
7fff981fa000-7fff9821b000 rw-p [stack]
7fff983fe000-7fff98400000 r-xp [vdso]

0
x
5
e
b
0
0
0

0
x
2
2
5
0
0
0

15 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Exploiting the Correlation weakness: offset2lib

Offset2lib

$ cat /proc/<pid>/server 64 PIE

7fd1b414f000-7fd1b430a000 r-xp /lib/.../libc-2.19.so

7fd1b430a000-7fd1b450a000 ---p /lib/.../libc-2.19.so
7fd1b450a000-7fd1b450e000 r--p /lib/.../libc-2.19.so
7fd1b450e000-7fd1b4510000 rw-p /lib/.../libc-2.19.so
7fd1b4510000-7fd1b4515000 rw-p

7fd1b4515000-7fd1b4538000 r-xp /lib/.../ld-2.19.so

7fd1b4718000-7fd1b471b000 rw-p
7fd1b4734000-7fd1b4737000 rw-p
7fd1b4737000-7fd1b4738000 r--p /lib/.../ld-2.19.so
7fd1b4738000-7fd1b4739000 rw-p /lib/.../ld-2.19.so
7fd1b4739000-7fd1b473a000 rw-p

7fd1b473a000-7fd1b473c000 r-xp /root/server 64 PIE

7fd1b493b000-7fd1b493c000 r--p /root/server_64_PIE
7fd1b493c000-7fd1b493d000 rw-p /root/server_64_PIE
7fff981fa000-7fff9821b000 rw-p [stack]
7fff983fe000-7fff98400000 r-xp [vdso]

0
x
5
e
b
0
0
0

0
x
2
2
5
0
0
0

15 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Exploiting the Correlation weakness: offset2lib

Offset2lib

$ cat /proc/<pid>/server 64 PIE

7fd1b414f000-7fd1b430a000 r-xp /lib/.../libc-2.19.so

7fd1b430a000-7fd1b450a000 ---p /lib/.../libc-2.19.so
7fd1b450a000-7fd1b450e000 r--p /lib/.../libc-2.19.so
7fd1b450e000-7fd1b4510000 rw-p /lib/.../libc-2.19.so
7fd1b4510000-7fd1b4515000 rw-p

7fd1b4515000-7fd1b4538000 r-xp /lib/.../ld-2.19.so

7fd1b4718000-7fd1b471b000 rw-p
7fd1b4734000-7fd1b4737000 rw-p
7fd1b4737000-7fd1b4738000 r--p /lib/.../ld-2.19.so
7fd1b4738000-7fd1b4739000 rw-p /lib/.../ld-2.19.so
7fd1b4739000-7fd1b473a000 rw-p

7fd1b473a000-7fd1b473c000 r-xp /root/server 64 PIE

7fd1b493b000-7fd1b493c000 r--p /root/server_64_PIE
7fd1b493c000-7fd1b493d000 rw-p /root/server_64_PIE
7fff981fa000-7fff9821b000 rw-p [stack]
7fff983fe000-7fff98400000 r-xp [vdso]

0
x
5
e
b
0
0
0

0
x
2
2
5
0
0
0

15 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Exploiting the Correlation weakness: offset2lib

Offset2lib

7fd1b414f000-7fd1b430a000 r-xp /lib/.../libc-2.19.so

7fd1b430a000-7fd1b450a000 ---p /lib/.../libc-2.19.so
7fd1b450a000-7fd1b450e000 r--p /lib/.../libc-2.19.so
7fd1b450e000-7fd1b4510000 rw-p /lib/.../libc-2.19.so
7fd1b4510000-7fd1b4515000 rw-p

7fd1b4515000-7fd1b4538000 r-xp /lib/.../ld-2.19.so

7fd1b4718000-7fd1b471b000 rw-p
7fd1b4734000-7fd1b4737000 rw-p
7fd1b4737000-7fd1b4738000 r--p /lib/.../ld-2.19.so
7fd1b4738000-7fd1b4739000 rw-p /lib/.../ld-2.19.so
7fd1b4739000-7fd1b473a000 rw-p

7fd1b473a000-7fd1b473c000 r-xp /root/server 64 PIE

7fd1b493b000-7fd1b493c000 r--p /root/server_64_PIE
7fd1b493c000-7fd1b493d000 rw-p /root/server_64_PIE
7fff981fa000-7fff9821b000 rw-p [stack]
7fff983fe000-7fff98400000 r-xp [vdso]

o
f
f
s
e
t
2
l
i
b

o
f
f
s
e
t
2
l
i
b

We named this invariant distance offset2lib which:

It is a constant distance between two shared objects even in different
executions of the application.

Any address of the app. → de-randomize all mmapped areas !!!

16 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Exploiting the Correlation weakness: offset2lib

Offset2lib

7fd1b414f000-7fd1b430a000 r-xp /lib/.../libc-2.19.so

7fd1b430a000-7fd1b450a000 ---p /lib/.../libc-2.19.so
7fd1b450a000-7fd1b450e000 r--p /lib/.../libc-2.19.so
7fd1b450e000-7fd1b4510000 rw-p /lib/.../libc-2.19.so
7fd1b4510000-7fd1b4515000 rw-p

7fd1b4515000-7fd1b4538000 r-xp /lib/.../ld-2.19.so

7fd1b4718000-7fd1b471b000 rw-p
7fd1b4734000-7fd1b4737000 rw-p
7fd1b4737000-7fd1b4738000 r--p /lib/.../ld-2.19.so
7fd1b4738000-7fd1b4739000 rw-p /lib/.../ld-2.19.so
7fd1b4739000-7fd1b473a000 rw-p

7fd1b473a000-7fd1b473c000 r-xp /root/server 64 PIE

7fd1b493b000-7fd1b493c000 r--p /root/server_64_PIE
7fd1b493c000-7fd1b493d000 rw-p /root/server_64_PIE
7fff981fa000-7fff9821b000 rw-p [stack]
7fff983fe000-7fff98400000 r-xp [vdso]

o
f
f
s
e
t
2
l
i
b

o
f
f
s
e
t
2
l
i
b

We named this invariant distance offset2lib which:

It is a constant distance between two shared objects even in different
executions of the application.

Any address of the app. → de-randomize all mmapped areas !!!
16 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Exploiting the Correlation weakness: offset2lib

Why the Offset2lib is dangerous ?

Offset2lib scope:

Realistic; applications are more prone than libraries to errors.

Makes some vulnerabilities faster, easier and more reliable to
exploit them.

It is not a self-exploitable vulnerability but an ASLR-design weakness
exploitable.

It opens new (and old) attack vectors.

Next example:
Offset2lib on a standard stack buffer overflow.

17 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Exploiting the Correlation weakness: offset2lib

Why the Offset2lib is dangerous ?

Offset2lib scope:

Realistic; applications are more prone than libraries to errors.

Makes some vulnerabilities faster, easier and more reliable to
exploit them.

It is not a self-exploitable vulnerability but an ASLR-design weakness
exploitable.

It opens new (and old) attack vectors.

Next example:
Offset2lib on a standard stack buffer overflow.

17 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Exploiting the Correlation weakness: offset2lib

Building the attack

The steps to build the attack are:

1 Extracting static information

2 Brute force part of saved-IP

3 Calculate base app. address

4 Calculate library offsets

5 Obtain mmapped areas

18 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Exploiting the Correlation weakness: offset2lib

1) Extracting static information

→ Our goal is to obtain an address belonging to the application.
→ We are going to obtain the saved-IP of vulnerable function caller.

Offset2lib with saved-IP ⇒ all mmapped areas.

STACK

0000000000001063 <attend_client>:
1063: 55 push %rbp
1064: 48 89 e5 mov %rsp,%rbp
1067: 48 81 ec 60 04 00 00 sub $0x460,%rsp
106e: 64 48 8b 04 25 28 00 mov %fs:0x28,%rax
1075: 00 00
.....
12d7: 48 89 c7 mov %rax,%rdi
12da: e8 1c fc ff ff callq efb <vuln func>
12df: 48 8d 85 c0 fb ff ff lea -0x440(%rbp),%rax
12e6: 48 89 c7 mov %rax,%rdi
.....

...

BUFFER

RBP

0x???????????????
...

S
t
a
c
k

g
r
o
w
s

d
o
w
n

19 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Exploiting the Correlation weakness: offset2lib

1) Extracting static information

→ Our goal is to obtain an address belonging to the application.
→ We are going to obtain the saved-IP of vulnerable function caller.

Offset2lib with saved-IP ⇒ all mmapped areas.

STACK

0000000000001063 <attend_client>:
1063: 55 push %rbp
1064: 48 89 e5 mov %rsp,%rbp
1067: 48 81 ec 60 04 00 00 sub $0x460,%rsp
106e: 64 48 8b 04 25 28 00 mov %fs:0x28,%rax
1075: 00 00
.....
12d7: 48 89 c7 mov %rax,%rdi
12da: e8 1c fc ff ff callq efb <vuln func>
12df: 48 8d 85 c0 fb ff ff lea -0x440(%rbp),%rax
12e6: 48 89 c7 mov %rax,%rdi
.....

...

BUFFER

RBP

0x???????????????
...

S
t
a
c
k

g
r
o
w
s

d
o
w
n

19 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Exploiting the Correlation weakness: offset2lib

1) Extracting static information

→ Our goal is to obtain an address belonging to the application.
→ We are going to obtain the saved-IP of vulnerable function caller.

Offset2lib with saved-IP ⇒ all mmapped areas.

STACK

0000000000001063 <attend_client>:
1063: 55 push %rbp
1064: 48 89 e5 mov %rsp,%rbp
1067: 48 81 ec 60 04 00 00 sub $0x460,%rsp
106e: 64 48 8b 04 25 28 00 mov %fs:0x28,%rax
1075: 00 00
.....
12d7: 48 89 c7 mov %rax,%rdi
12da: e8 1c fc ff ff callq efb <vuln func>
12df: 48 8d 85 c0 fb ff ff lea -0x440(%rbp),%rax
12e6: 48 89 c7 mov %rax,%rdi
.....

...

BUFFER

RBP

0x???????????????
...

S
t
a
c
k

g
r
o
w
s

d
o
w
n

Next IP

19 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Exploiting the Correlation weakness: offset2lib

1) Extracting static information

→ Our goal is to obtain an address belonging to the application.
→ We are going to obtain the saved-IP of vulnerable function caller.

Offset2lib with saved-IP ⇒ all mmapped areas.

STACK

0000000000001063 <attend_client>:
1063: 55 push %rbp
1064: 48 89 e5 mov %rsp,%rbp
1067: 48 81 ec 60 04 00 00 sub $0x460,%rsp
106e: 64 48 8b 04 25 28 00 mov %fs:0x28,%rax
1075: 00 00
.....
12d7: 48 89 c7 mov %rax,%rdi
12da: e8 1c fc ff ff callq efb <vuln func>
12df: 48 8d 85 c0 fb ff ff lea -0x440(%rbp),%rax
12e6: 48 89 c7 mov %rax,%rdi
.....

...

BUFFER

RBP

0x???????????????
...

S
t
a
c
k

g
r
o
w
s

d
o
w
n

Next IP

Address point to

19 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Exploiting the Correlation weakness: offset2lib

1) Extracting static information

Memory map STACK

7fd1b414f000-7fd1b430a000 r-xp /lib/.../libc-2.19.so
7fd1b430a000-7fd1b450a000 ---p /lib/.../libc-2.19.so
7fd1b450a000-7fd1b450e000 r--p /lib/.../libc-2.19.so
7fd1b450e000-7fd1b4510000 rw-p /lib/.../libc-2.19.so
7fd1b4510000-7fd1b4515000 rw-p
7fd1b4515000-7fd1b4538000 r-xp /lib/.../ld-2.19.so
7fd1b4718000-7fd1b471b000 rw-p
7fd1b4734000-7fd1b4737000 rw-p
7fd1b4737000-7fd1b4738000 r--p /lib/.../ld-2.19.so
7fd1b4738000-7fd1b4739000 rw-p /lib/.../ld-2.19.so
7fd1b4739000-7fd1b473a000 rw-p

7fd1b473a000-7fd1b473c000 r-xp /root/server 64 PIE

7fd1b493b000-7fd1b493c000 r--p /root/server 64 PIE

7fd1b493c000-7fd1b493d000 rw-p /root/server 64 PIE

7fff981fa000-7fff9821b000 rw-p [stack]
7fff983fe000-7fff98400000 r-xp [vdso]

...

BUFFER

RBP

0x????????????????
...

S
t
a
c
k

g
r
o
w
s

d
o
w
n

This value (0x00007F) can be obtained:

1 Running the application and showing the memory map.

2 Checking the source code if set any limit to stack.

20 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Exploiting the Correlation weakness: offset2lib

1) Extracting static information

Memory map STACK

7fd1b414f000-7fd1b430a000 r-xp /lib/.../libc-2.19.so
7fd1b430a000-7fd1b450a000 ---p /lib/.../libc-2.19.so
7fd1b450a000-7fd1b450e000 r--p /lib/.../libc-2.19.so
7fd1b450e000-7fd1b4510000 rw-p /lib/.../libc-2.19.so
7fd1b4510000-7fd1b4515000 rw-p
7fd1b4515000-7fd1b4538000 r-xp /lib/.../ld-2.19.so
7fd1b4718000-7fd1b471b000 rw-p
7fd1b4734000-7fd1b4737000 rw-p
7fd1b4737000-7fd1b4738000 r--p /lib/.../ld-2.19.so
7fd1b4738000-7fd1b4739000 rw-p /lib/.../ld-2.19.so
7fd1b4739000-7fd1b473a000 rw-p

7fd1b473a000-7fd1b473c000 r-xp /root/server 64 PIE

7fd1b493b000-7fd1b493c000 r--p /root/server 64 PIE

7fd1b493c000-7fd1b493d000 rw-p /root/server 64 PIE

7fff981fa000-7fff9821b000 rw-p [stack]
7fff983fe000-7fff98400000 r-xp [vdso]

...

BUFFER

RBP

0x00007F??????????
...

S
t
a
c
k

g
r
o
w
s

d
o
w
n

Highest 24 bits

This value (0x00007F) can be obtained:

1 Running the application and showing the memory map.

2 Checking the source code if set any limit to stack.

20 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Exploiting the Correlation weakness: offset2lib

1) Extracting static information

Since the executable has to be PAGE SIZE aligned, the 12 lower bits will
not change when the executable is randomly loaded.

ASM Code STACK

0000000000001063 <attend_client>:
1063: 55 push %rbp
1064: 48 89 e5 mov %rsp,%rbp
1067: 48 81 ec 60 04 00 00 sub $0x460,%rsp
106e: 64 48 8b 04 25 28 00 mov %fs:0x28,%rax
1075: 00 00
1077: 48 89 45 f8 mov %rax,-0x8(%rbp)
107b: 31 c0 xor %eax,%eax
.....
12d7: 48 89 c7 mov %rax,%rdi
12da: e8 1c fc ff ff callq efb <vuln_func>
12df: 48 8d 85 c0 fb ff ff lea -0x440(%rbp),%rax
12e6: 48 89 c7 mov %rax,%rdi
..... [From the ELF]

...

BUFFER

RBP

0x0007F??????????
... S

t
a
c
k

g
r
o
w
s

d
o
w
n

21 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Exploiting the Correlation weakness: offset2lib

1) Extracting static information

Since the executable has to be PAGE SIZE aligned, the 12 lower bits will
not change when the executable is randomly loaded.

ASM Code STACK

0000000000001063 <attend_client>:
1063: 55 push %rbp
1064: 48 89 e5 mov %rsp,%rbp
1067: 48 81 ec 60 04 00 00 sub $0x460,%rsp
106e: 64 48 8b 04 25 28 00 mov %fs:0x28,%rax
1075: 00 00
1077: 48 89 45 f8 mov %rax,-0x8(%rbp)
107b: 31 c0 xor %eax,%eax
.....
12d7: 48 89 c7 mov %rax,%rdi
12da: e8 1c fc ff ff callq efb <vuln_func>
12df: 48 8d 85 c0 fb ff ff lea -0x440(%rbp),%rax
12e6: 48 89 c7 mov %rax,%rdi
..... [From the ELF]

...

BUFFER

RBP

0x0007F???????2DF
...

Lower
12 bits

S
t
a
c
k

g
r
o
w
s

d
o
w
n

21 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Exploiting the Correlation weakness: offset2lib

2) Brute forcing Saved-IP address

STACKvoid vuln_func(char *str, int lstr){
char buff[48];
int i = 0;
...
for (i = 0; i < lstr; i++) {

if (str[i] != ’\n’)
buff[lbuff++] = str[i];

...
}

The unknown 28 random bits: “byte-for-byte” attack.

The first byte is “special”, we know the lowest 4 bits:

0x?216 → ??102 → 24 = 16 attempts
{0x02, 0x12, 0x22 ... 0xC2, 0xD2, 0xE2, 0xF2}

The remaining 3 bytes → standard “byte-for-byte” attack

3x28 = 768 attempts.

...

BUFFER

RBP

0x0007F???????2DF
...

S
t
a
c
k

g
r
o
w
s

d
o
w
n

22 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Exploiting the Correlation weakness: offset2lib

2) Brute forcing Saved-IP address

STACKvoid vuln_func(char *str, int lstr){
char buff[48];
int i = 0;
...
for (i = 0; i < lstr; i++) {

if (str[i] != ’\n’)
buff[lbuff++] = str[i];

...
}

The unknown 28 random bits: “byte-for-byte” attack.

The first byte is “special”, we know the lowest 4 bits:

0x?216 → ??102 → 24 = 16 attempts
{0x02, 0x12, 0x22 ... 0xC2, 0xD2, 0xE2, 0xF2}

The remaining 3 bytes → standard “byte-for-byte” attack

3x28 = 768 attempts.

...

BUFFER

RBP

0x0007F??????C2DF
...

S
t
a
c
k

g
r
o
w
s

d
o
w
n

half-b
yte

22 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Exploiting the Correlation weakness: offset2lib

2) Brute forcing Saved-IP address

STACKvoid vuln_func(char *str, int lstr){
char buff[48];
int i = 0;
...
for (i = 0; i < lstr; i++) {

if (str[i] != ’\n’)
buff[lbuff++] = str[i];

...
}

The unknown 28 random bits: “byte-for-byte” attack.

The first byte is “special”, we know the lowest 4 bits:

0x?216 → ??102 → 24 = 16 attempts
{0x02, 0x12, 0x22 ... 0xC2, 0xD2, 0xE2, 0xF2}

The remaining 3 bytes → standard “byte-for-byte” attack

3x28 = 768 attempts.

After execute the byte-for-byte we obtained 0x36C6FE

...

BUFFER

RBP

0x0007F??????C2DF
...

S
t
a
c
k

g
r
o
w
s

d
o
w
n

22 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Exploiting the Correlation weakness: offset2lib

2) Brute forcing Saved-IP address

STACKvoid vuln_func(char *str, int lstr){
char buff[48];
int i = 0;
...
for (i = 0; i < lstr; i++) {

if (str[i] != ’\n’)
buff[lbuff++] = str[i];

...
}

The unknown 28 random bits: “byte-for-byte” attack.

The first byte is “special”, we know the lowest 4 bits:

0x?216 → ??102 → 24 = 16 attempts
{0x02, 0x12, 0x22 ... 0xC2, 0xD2, 0xE2, 0xF2}

The remaining 3 bytes → standard “byte-for-byte” attack

3x28 = 768 attempts.

After execute the byte-for-byte we obtained 0x36C6FE

...

BUFFER

RBP

0x0007F36C6FEC2DF
...

S
t
a
c
k

g
r
o
w
s

d
o
w
n

Br
ut
e
fo
rc
ed

by
te
s

22 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Exploiting the Correlation weakness: offset2lib

2) Brute forcing Saved-IP address

STACKvoid vuln_func(char *str, int lstr){
char buff[48];
int i = 0;
...
for (i = 0; i < lstr; i++) {

if (str[i] != ’\n’)
buff[lbuff++] = str[i];

...
}

The unknown 28 random bits: “byte-for-byte” attack.

The first byte is “special”, we know the lowest 4 bits:

0x?216 → ??102 → 24 = 16 attempts
{0x02, 0x12, 0x22 ... 0xC2, 0xD2, 0xE2, 0xF2}

The remaining 3 bytes → standard “byte-for-byte” attack

3x28 = 768 attempts.

After execute the byte-for-byte we obtained 0x36C6FE

We need to perform 24+3∗28

2
= 392 attempts on average.

...

BUFFER

RBP

0x0007F36C6FEC2DF
...

S
t
a
c
k

g
r
o
w
s

d
o
w
n

22 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Exploiting the Correlation weakness: offset2lib

3) Calculating base application address

STACK0000000000001063 <attend_client>:
1063: 55 push %rbp
1064: 48 89 e5 mov %rsp,%rbp
1067: 48 81 ec 60 04 00 00 sub $0x460,%rsp
106e: 64 48 8b 04 25 28 00 mov %fs:0x28,%rax
1075: 00 00
1077: 48 89 45 f8 mov %rax,-0x8(%rbp)
107b: 31 c0 xor %eax,%eax
.....
12d7: 48 89 c7 mov %rax,%rdi
12da: e8 1c fc ff ff callq efb <vuln_func>
12df: 48 8d 85 c0 fb ff ff lea -0x440(%rbp),%rax
12e6: 48 89 c7 mov %rax,%rdi
.....

App base=(savedIP & 0xFFF)-(CALLER PAGE OFFSET << 12)

evitar movientos entre animaciones

...

BUFFER

RBP

0x0007F36C6FEC2DF
...

S
t
a
c
k

g
r
o
w
s

d
o
w
n

23 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Exploiting the Correlation weakness: offset2lib

3) Calculating base application address

STACK0000000000001063 <attend_client>:
1063: 55 push %rbp
1064: 48 89 e5 mov %rsp,%rbp
1067: 48 81 ec 60 04 00 00 sub $0x460,%rsp
106e: 64 48 8b 04 25 28 00 mov %fs:0x28,%rax
1075: 00 00
1077: 48 89 45 f8 mov %rax,-0x8(%rbp)
107b: 31 c0 xor %eax,%eax
.....
12d7: 48 89 c7 mov %rax,%rdi
12da: e8 1c fc ff ff callq efb <vuln_func>
12df: 48 8d 85 c0 fb ff ff lea -0x440(%rbp),%rax
12e6: 48 89 c7 mov %rax,%rdi
.....

App base=(savedIP & 0xFFF)-(CALLER PAGE OFFSET << 12)

evitar movientos entre animaciones

...

BUFFER

RBP

0x0007F36C6FEC2DF
...

S
t
a
c
k

g
r
o
w
s

d
o
w
n

23 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Exploiting the Correlation weakness: offset2lib

3) Calculating base application address

STACK0000000000001063 <attend_client>:
1063: 55 push %rbp
1064: 48 89 e5 mov %rsp,%rbp
1067: 48 81 ec 60 04 00 00 sub $0x460,%rsp
106e: 64 48 8b 04 25 28 00 mov %fs:0x28,%rax
1075: 00 00
1077: 48 89 45 f8 mov %rax,-0x8(%rbp)
107b: 31 c0 xor %eax,%eax
.....
12d7: 48 89 c7 mov %rax,%rdi
12da: e8 1c fc ff ff callq efb <vuln_func>
12df: 48 8d 85 c0 fb ff ff lea -0x440(%rbp),%rax
12e6: 48 89 c7 mov %rax,%rdi
.....

App base=(savedIP & 0xFFF)-(CALLER PAGE OFFSET << 12)

0x7F36C6fEB000=(0x7f36C6FEC2DF & 0xFFF)-(0x1000)

...

BUFFER

RBP

0x0007F36C6FEC2DF
...

S
t
a
c
k

g
r
o
w
s

d
o
w
n

23 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Exploiting the Correlation weakness: offset2lib

3) Calculating base application address

STACK0000000000001063 <attend_client>:
1063: 55 push %rbp
1064: 48 89 e5 mov %rsp,%rbp
1067: 48 81 ec 60 04 00 00 sub $0x460,%rsp
106e: 64 48 8b 04 25 28 00 mov %fs:0x28,%rax
1075: 00 00
1077: 48 89 45 f8 mov %rax,-0x8(%rbp)
107b: 31 c0 xor %eax,%eax
.....
12d7: 48 89 c7 mov %rax,%rdi
12da: e8 1c fc ff ff callq efb <vuln_func>
12df: 48 8d 85 c0 fb ff ff lea -0x440(%rbp),%rax
12e6: 48 89 c7 mov %rax,%rdi
.....

App base=(savedIP & 0xFFF)-(CALLER PAGE OFFSET << 12)

0x7F36C6fEB000=(0x7f36C6FEC2DF & 0xFFF)-(0x1000)

App. Base = 0x7F36C6fEB000

...

BUFFER

RBP

0x0007F36C6FEC2DF
...

S
t
a
c
k

g
r
o
w
s

d
o
w
n

23 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Exploiting the Correlation weakness: offset2lib

4) Calculating library offsets

7fd1b414f000-7fd1b430a000 r-xp /lib/.../libc-2.19.so

7fd1b430a000-7fd1b450a000 ---p /lib/.../libc-2.19.so
7fd1b450a000-7fd1b450e000 r--p /lib/.../libc-2.19.so
7fd1b450e000-7fd1b4510000 rw-p /lib/.../libc-2.19.so
7fd1b4510000-7fd1b4515000 rw-p

7fd1b4515000-7fd1b4538000 r-xp /lib/.../ld-2.19.so

7fd1b4718000-7fd1b471b000 rw-p
7fd1b4734000-7fd1b4737000 rw-p
7fd1b4737000-7fd1b4738000 r--p /lib/.../ld-2.19.so
7fd1b4738000-7fd1b4739000 rw-p /lib/.../ld-2.19.so
7fd1b4739000-7fd1b473a000 rw-p

7fd1b473a000-7fd1b473c000 r-xp /root/server 64 PIE

7fd1b493b000-7fd1b493c000 r--p /root/server_64_PIE
7fd1b493c000-7fd1b493d000 rw-p /root/server_64_PIE
7fff981fa000-7fff9821b000 rw-p [stack]
7fff983fe000-7fff98400000 r-xp [vdso]

o
f
f
s
e
t
2
l
i
b

Distribution Libc version Offset2lib (bytes)
CentOS 6.5 2.12 0x5b6000
Debian 7.1 2.13 0x5ac000
Ubuntu 12.04 LTS 2.15 0x5e4000
Ubuntu 12.10 2.15 0x5e4000
Ubuntu 13.10 2.17 0x5ed000
openSUSE 13.1 2.18 0x5d1000
Ubuntu 14.04.1 LTS 2.19 0x5eb000

24 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Exploiting the Correlation weakness: offset2lib

5) Getting app. process mapping

Obtaining library base addresses:
Application Base = 0x7FD1B473A000
Offset2lib (libc) = 0x5eb000
Offset2lib (ld) = 0x225000

...

libc-2.19.so

ld-2.19.so

server 64 PIE
...

0x000000000000

0x7FFFFFFFFFFF

mmap base

Libc Base

ld Base

Application Base

25 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Exploiting the Correlation weakness: offset2lib

5) Getting app. process mapping

Obtaining library base addresses:
Application Base = 0x7FD1B473A000
Offset2lib (libc) = 0x5eb000
Offset2lib (ld) = 0x225000

...

libc-2.19.so

ld-2.19.so

server 64 PIE
...

Libc Base = 0x7FD1B473A000 - 0x5eb000 = 0x7FD1B414F000

0x5eb000

0x000000000000

0x7FFFFFFFFFFF

mmap base

Libc Base

ld Base

Application Base

25 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Exploiting the Correlation weakness: offset2lib

5) Getting app. process mapping

Obtaining library base addresses:
Application Base = 0x7FD1B473A000
Offset2lib (libc) = 0x5eb000
Offset2lib (ld) = 0x225000

...

libc-2.19.so

ld-2.19.so

server 64 PIE
...

Libc Base = 0x7FD1B473A000 - 0x5eb000 = 0x7FD1B414F000

0x5eb000

ld Base = 0x7FD1B473A000 - 0x225000 = 0x7fd1b4515000

0x2225000

0x000000000000

0x7FFFFFFFFFFF

mmap base

Libc Base

ld Base

Application Base

25 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Exploiting the Correlation weakness: offset2lib

The vulnerable server

To show a more realistic PoC:
Bypass NX, SSP, ASLR, FORTIFY or RELRO.

We do not use GOT neither PLT.

Valid for any application (Gadgets only from libraries)

We use a fully updated Linux.

Parameter Comment Configuration

App. relocatable Yes -fpie -pie
Lib. relocatable Yes -Fpic
ASLR config. Enabled randomize va space = 2
SSP Enabled -fstack-protector-all
Arch. 64 bits x86 64 GNU/Linux
NX Enabled PAE or x64
RELRO Full -wl,-z,-relro,-z,now
FORTIFY Yes -D FORTIFY SOURCE=2
Optimisation Yes -O2

26 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Exploiting the Correlation weakness: offset2lib

Bypassing NX, SSP and ASLR on 64-bit Linux

Demo: Bypass NX, SSP and ASLR in < 1 sec.

27 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Exploiting the Correlation weakness: offset2lib

How to prevent exploitation

There are many vectors to exploit this weakness: Imagination is the
limit. Basically, an attacker needs:

1 The knowledge (information leak).
2 A way to use it.

There are many solutions to address this weakness:

Avoid information leaks at once:

Don’t design weak applications/protocols.
Don’t write code with errors.
. . .

Make the leaked information useless:

PaX patch
Linux Kenrel >= 4.1
RenewSSP: Improve stack-smashing-protector.

28 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Exploiting the Correlation weakness: offset2lib

Solutions overview

PaX

The Offset2lib weakness

Solved with

RenewSSP
ASLR patch :
Linux >= 4.1

Solved with

The Offset2lib attack

All weaknesses are only solved by the ASLR-NG

29 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Exploiting the Correlation weakness: offset2lib

With Linux Kernel < 4.1

echo 2 > /proc/sys/kernel/randomize_va_space
hello_world_dynamic_pie
7f621ffbb000-7f6220176000 r-xp 00000000 00:02 5192 /lib/x86_64-linux-gnu/libc.so.6
7f6220176000-7f6220376000 ---p 001bb000 00:02 5192 /lib/x86_64-linux-gnu/libc.so.6
7f6220376000-7f622037a000 r--p 001bb000 00:02 5192 /lib/x86_64-linux-gnu/libc.so.6
7f622037a000-7f622037c000 rw-p 001bf000 00:02 5192 /lib/x86_64-linux-gnu/libc.so.6
7f622037c000-7f6220381000 rw-p 00000000 00:00 0
7f6220381000-7f62203a4000 r-xp 00000000 00:02 4917 /lib64/ld-linux-x86-64.so.2
7f622059c000-7f622059d000 rw-p 00000000 00:00 0
7f622059d000-7f622059e000 r-xp 00000000 00:00 0
7f622059e000-7f62205a3000 rw-p 00000000 00:00 0
7f62205a3000-7f62205a4000 r--p 00022000 00:02 4917 /lib64/ld-linux-x86-64.so.2
7f62205a4000-7f62205a5000 rw-p 00023000 00:02 4917 /lib64/ld-linux-x86-64.so.2
7f62205a5000-7f62205a6000 rw-p 00000000 00:00 0

7f62205a6000-7f62205a7000 r-xp 00000000 00:02 4896 /bin/hello world dynamic pie

7f62207a6000-7f62207a7000 r--p 00000000 00:02 4896 /bin/hello world dynamic pie

7f62207a7000-7f62207a8000 rw-p 00001000 00:02 4896 /bin/hello world dynamic pie

7fff47e15000-7fff47e36000 rw-p 00000000 00:00 0 [stack]
7fff47e63000-7fff47e65000 r--p 00000000 00:00 0 [vvar]
7fff47e65000-7fff47e67000 r-xp 00000000 00:00 0 [vdso]
ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall]

30 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Exploiting the Correlation weakness: offset2lib

With Linux Kernel >= 4.1

hello_world_dynamic_pie

54859ccd6000-54859ccd7000 r-xp 00000000 00:02 4896 /bin/hello world dynamic pie

54859ced6000-54859ced7000 r--p 00000000 00:02 4896 /bin/hello world dynamic pie

54859ced7000-54859ced8000 rw-p 00001000 00:02 4896 /bin/hello world dynamic pie

7f75be764000-7f75be91f000 r-xp 00000000 00:02 5192 /lib/x86_64-linux-gnu/libc.so.6
7f75be91f000-7f75beb1f000 ---p 001bb000 00:02 5192 /lib/x86_64-linux-gnu/libc.so.6
7f75beb1f000-7f75beb23000 r--p 001bb000 00:02 5192 /lib/x86_64-linux-gnu/libc.so.6
7f75beb23000-7f75beb25000 rw-p 001bf000 00:02 5192 /lib/x86_64-linux-gnu/libc.so.6
7f75beb25000-7f75beb2a000 rw-p 00000000 00:00 0
7f75beb2a000-7f75beb4d000 r-xp 00000000 00:02 4917 /lib64/ld-linux-x86-64.so.2
7f75bed45000-7f75bed46000 rw-p 00000000 00:00 0
7f75bed46000-7f75bed47000 r-xp 00000000 00:00 0
7f75bed47000-7f75bed4c000 rw-p 00000000 00:00 0
7f75bed4c000-7f75bed4d000 r--p 00022000 00:02 4917 /lib64/ld-linux-x86-64.so.2
7f75bed4d000-7f75bed4e000 rw-p 00023000 00:02 4917 /lib64/ld-linux-x86-64.so.2
7f75bed4e000-7f75bed4f000 rw-p 00000000 00:00 0
7fffb3741000-7fffb3762000 rw-p 00000000 00:00 0 [stack]
7fffb377b000-7fffb377d000 r--p 00000000 00:00 0 [vvar]
7fffb377d000-7fffb377f000 r-xp 00000000 00:00 0 [vdso]
ffffffffff600000-ffffffffff601000 r-xp 00000000 00:00 0 [vsyscall]

31 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

ASLR-NG: ASLR Next Generation

Addressing the ASLR weaknesses

ASLR-NG addresses all these weaknesses but because of the urgency to
fix the Offset2lib weakness, it was fixed in current Linux.

It can be seen as a minor part of the ASLR-NG.

It does not remove the correlation problem between all objects.

How we addressed the Offset2lib weakness ?

32 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

ASLR-NG: ASLR Next Generation

The particular Offset2lib fix

Offset2lib fix:
We have removed the correlation between

the executable ↔ libraries

Attack rewarded by Packet Storm Security:
Offset2lib was classified as 1-day vulnerability

Linux Kernel 4.1 patch:
We have created and sent a patch to Linux,

which was considered urgent.

stack

lib1

lib2

exec

heap

LOW

HIGH
VM space

F
l o

w
 r

e d
i re

ct
C
o
n
s
t
a
n
t

!

stack

lib1

lib2

exec

heap

LOW

HIGH
VM space

F
l o

w
 r

e d
i re

ct R
a
n
d
o
m

!

33 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

ASLR-NG: ASLR Next Generation

The particular Offset2lib fix

Offset2lib fix:
We have removed the correlation between

the executable ↔ libraries

Attack rewarded by Packet Storm Security:
Offset2lib was classified as 1-day vulnerability

Linux Kernel 4.1 patch:
We have created and sent a patch to Linux,

which was considered urgent.

stack

lib1

lib2

exec

heap

LOW

HIGH
VM space

F
l o

w
 r

e d
i re

ct
C
o
n
s
t
a
n
t

!

stack

lib1

lib2

exec

heap

LOW

HIGH
VM space

F
l o

w
 r

e d
i re

ct R
a
n
d
o
m

!

33 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

ASLR-NG: ASLR Next Generation

The particular Offset2lib fix

Offset2lib fix:
We have removed the correlation between

the executable ↔ libraries

Attack rewarded by Packet Storm Security:
Offset2lib was classified as 1-day vulnerability

Linux Kernel 4.1 patch:
We have created and sent a patch to Linux,

which was considered urgent.

stack

lib1

lib2

exec

heap

LOW

HIGH
VM space

F
l o

w
 r

e d
i re

ct
C
o
n
s
t
a
n
t

!

stack

lib1

lib2

exec

heap

LOW

HIGH
VM space

F
l o

w
 r

e d
i re

ct R
a
n
d
o
m

!

33 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

ASLR-NG: ASLR Next Generation

ASLR-NG: Address Space Layout
Randomization Next Generation

34 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

ASLR-NG: ASLR Next Generation

ASLR-NG: The core ideas

A deep analysis of growable objects shows
that they (stack and heap) can be bounded.

This key idea allowed me to load objects:

Freely along the VM:

→ Huge increment of entropy.

Uniformly distributed:

→ No more likely addresses.

Uncorrelated:

→ No more correlated attacks.

Have different VM layout:

→ Forking model more secure.

stack

lib1

lib2

mmap files

heap

exec

LOW

HIGH
VM space

F
l o

w
 r

e d
i re

ct

Linux ASLR

stack

lib1

lib2

mmap files

heap

exec

LOW

HIGH
VM space

F
l o

w
 r

e d
i re

ct

Linux ASLR-NG

35 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

ASLR-NG: ASLR Next Generation

ASLR-NG: The core ideas

A deep analysis of growable objects shows
that they (stack and heap) can be bounded.

This key idea allowed me to load objects:

Freely along the VM:

→ Huge increment of entropy.

Uniformly distributed:

→ No more likely addresses.

Uncorrelated:

→ No more correlated attacks.

Have different VM layout:

→ Forking model more secure.

stack

lib1

lib2

mmap files

heap

exec

LOW

HIGH
VM space

F
l o

w
 r

e d
i re

ct

Linux ASLR

stack

lib1

lib2

mmap files

heap

exec

LOW

HIGH
VM space

F
l o

w
 r

e d
i re

ct

Linux ASLR-NG

35 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

ASLR-NG: ASLR Next Generation

ASLR-NG: The core ideas

A deep analysis of growable objects shows
that they (stack and heap) can be bounded.

This key idea allowed me to load objects:

Freely along the VM:

→ Huge increment of entropy.

Uniformly distributed:

→ No more likely addresses.

Uncorrelated:

→ No more correlated attacks.

Have different VM layout:

→ Forking model more secure.

stack

lib1

lib2

mmap files

heap

exec

LOW

HIGH
VM space

F
l o

w
 r

e d
i re

ct

Linux ASLR

stack

lib1

lib2

mmap files

heap

exec

LOW

HIGH
VM space

F
l o

w
 r

e d
i re

ct

Linux ASLR-NG

35 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

ASLR-NG: ASLR Next Generation

ASLR-NG: The core ideas

A deep analysis of growable objects shows
that they (stack and heap) can be bounded.

This key idea allowed me to load objects:

Freely along the VM:

→ Huge increment of entropy.

Uniformly distributed:

→ No more likely addresses.

Uncorrelated:

→ No more correlated attacks.

Have different VM layout:

→ Forking model more secure.

stack

lib1

lib2

mmap files

heap

exec

LOW

HIGH
VM space

F
l o

w
 r

e d
i re

ct

Linux ASLR

stack

lib1

lib2

mmap files

heap

exec

LOW

HIGH
VM space

F
l o

w
 r

e d
i re

ct

Linux ASLR-NG

35 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

ASLR-NG: ASLR Next Generation

ASLR-NG: The core ideas

A deep analysis of growable objects shows
that they (stack and heap) can be bounded.

This key idea allowed me to load objects:

Freely along the VM:

→ Huge increment of entropy.

Uniformly distributed:

→ No more likely addresses.

Uncorrelated:

→ No more correlated attacks.

Have different VM layout:

→ Forking model more secure.

stack

lib1

lib2

mmap files

heap

exec

LOW

HIGH
VM space

F
l o

w
 r

e d
i re

ct

Linux ASLR

stack

lib1

lib2

mmap files

heap

exec

LOW

HIGH
VM space

F
l o

w
 r

e d
i re

ct

Linux ASLR-NG

35 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

ASLR-NG: ASLR Next Generation

ASLR-NG: New randomisation forms

We have categorized and designed new randomization forms:
Feature Description

W
h

en

Per-boot Every time the system is booted.
Per-exec Every time a new image is executed.
Per-fork Every time a new process is spawned. new!
Per-object Every time a new object is created. new!

W
h

a
t

Stack Stack of the main process.
LD Dynamic linker/loader.
Executable Loadable segments (text, data, bss, ...).
Heap Old-fashioned dynamic memory of the process: brk(). improved !
vDSO/VVAR Objects exported by the kernel to the user space.
Mmaps/libs Objects allocated calling mmap(). improved !

H
o

w

Partial VM A sub-range of the VM space is used to map the object.
Full VM The full VM space is used to map the object. new!
Isolated-object The object is randomised independently from any other. new!
Sub-page Page offset bits are randomised. new!
Bit-slicing Different slices of the address are randomised at different times. Google!
Direction Topdown/downtop search side used on a first-fit allocation strategy. new!
Specific-zone A base address and a direction where objects are allocated together. new!

36 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

ASLR-NG: ASLR Next Generation

ASLR-NG: Profile modes

stack thread3

stack thread3

stack thread3

stack thread1
Libc.so

mmap file a

Executable

stack

Heap (brk)

ld.so

vDSO

stack thread2

VM space

mmap_base

stack thread1

Libc.so
mmap file a

Executable

stack

Heap (brk)

ld.so

vDSO

stack thread2

VM space

stack thread1

Libc.so
mmap file a

Executable

stack

Heap (brk)

ld.so

vDSO

stack thread2

VM space

stack thread1

Libc.so

mmap file a

Executable

stack

Heap (brk)

ld.so

vDSO

stack thread2

VM space

(a) Concentrated (b) Conservative (c) Extended (d) Paranoid
LOW_ADDR

HIGH_ADDR

ASLR-NG: Profile mode examples. 37 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

ASLR-NG: ASLR Next Generation

ASLR-NG: Evaluation

We have developed ASLRA, a test suit to analyze the entropy of objects.
ASLRA is composed of three tools:

1 Simulator:
→ Simulates several ASLRs, including the proposed ASLR-NG.

2 Sampler:
→ An application which generate million of samples (address of

mapped objects) and saves the raw data.

3 Analyzer:
→ Performs the statistical analysis.

→ Individual byte, Shannon entropy, flipping bits, etc.

↓
H(X) = −

∑
x∈X

p(x) log2 p(x)

The most interesting!

38 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

ASLR-NG: ASLR Next Generation

ASLR-NG: Evaluation

We have developed ASLRA, a test suit to analyze the entropy of objects.
ASLRA is composed of three tools:

1 Simulator:
→ Simulates several ASLRs, including the proposed ASLR-NG.

2 Sampler:
→ An application which generate million of samples (address of

mapped objects) and saves the raw data.

3 Analyzer:
→ Performs the statistical analysis.

→ Individual byte, Shannon entropy, flipping bits, etc.

↓
H(X) = −

∑
x∈X

p(x) log2 p(x)

The most interesting!

38 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

ASLR-NG: ASLR Next Generation

ASLR-NG: ASLR analyzer tool

ASLR analyser: Screenshot of a Heap (brk)

39 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

ASLR-NG: ASLR Next Generation

Linux vs PaX vs ASLR-NG

32-bits 64-bits
Object Linux PaX ASLR-NG Linux PaX ASLR-NG

ARGV 11 27 31.5 22 39 47
Main stack 19 23 27.5 30 35 43
Heap (brk) 13 23.3 27.5 28 35 43
Heap (mmap) 8 15.7 27.5 28 28.5 43
Thread stacks 8 15.7 27.5 28 28.5 43
Sub-page object - - 27.5 - - 43
Regular mmaps 8 15.7 19.5 28 28.5 35
Libraries 8 15.7 19.5 28 28.5 35
vDSO 8 15.7 19.5 21.4 28.5 35
Executable 8 15 19.5 28 27 35
Huge pages 0 5.7 9.5 19 19.5 26

Comparative summary of bits of entropy.

40 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Conclusions

ASLR-NG: Benefits

The main features of ASLR-NG are:

Uses full memory space to randomise objects, which in turn provides
maximum entropy.

A novel solution for reducing fragmentation, without reducing entropy.

Objects containing sensitive information are automatically isolated.

Sequentially loaded libraries are randomised.

It provides a strong protection against absolute and correlation attacks.

Effectively removes the four weaknesses previously identified.

During the design of the ASLR-NG we have fixed three vulnerabilities in the
Linux ASLR that were rewarded by Google.

The Offset2lib attack was rewarded by Packet Storm Security classified as a

1-day vulnerability.

41 / 42

Exploiting Linux and PaX ASLR’s weaknesses on 32- and 64-bit systems Hector Marco

Questions ?

* Hector Marco-Gisbert http://hmarco.org
* Ismael Ripoll Ripoll http://personales.upv.es/iripoll
* Cyber-security research group at http://cybersecurity.upv.es

42 / 42

	ASLR overview & background
	Linux and PaX ASLR weaknesses
	Too low entropy
	Non-uniform distribution
	Correlation between objects
	Inheritance

	Exploiting the Correlation weakness: offset2lib
	Example: Offset2lib in stack buffer overflows
	Demo: Root shell in < 1 sec.
	Mitigations

	ASLR-NG: ASLR Next Generation
	New randomisation forms
	ASLRA: ASLR Analyzer
	Linux vs PaX vs ASLR-NG

	Conclusions

