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HTTPS is broken

• BREACH broke HTTPS + RC4 in 2013

• People upgraded to AES – thought they were safe

Today...

• We show TLS + AES is still broken

• HTTPS can be decrypted - quick and easy

• We launch open source tool to do it here in Singapore
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Overview

• BREACH review

• Our contributions

• Statistical attacks

• Attacking block ciphers

• Attacking noise

• Optimization techniques

• Our tool: Rupture

• Mitigation recommendations
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Original BREACH research

Introduced in Black Hat USA 2013

Yoel GluckAngelo Prado Neal Harris

http://breachattack.com/resources/BREACH - SSL, gone in 30 seconds.pdf
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BREACH attack anatomy
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Original BREACH assumptions

Target website:

• Uses HTTPS

• Compresses response using gzip

• Uses stream cipher

• Response has zero noise

• Contains end-point that reflects URL parameter
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Original BREACH target

1. Steal secret in HTTPS response (CSRF tokens)

2. Use CSRF to impersonate victim client to victim server
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Length leaks

|E(A)| < |E(B)| ⇔ |A| < |B|
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Let’s attack Gmail

• m.gmail.com mobile Gmail view

• Mobile search functionality uses HTTP POST

– but HTTP GET still works :)

• CSRF token included in response – valid for all of Gmail



• Click to edit Master text styles

— Second level

• Third level

— Fourth level

» Fifth level

Noise

Reflection

Secret
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• Attacker guesses part of secret

• Uses it in reflection

• Compressed/encrypted response is shorter if right!
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Original BREACH methodology

• Guess part of secret and insert into reflection

• Match? → Shorter length due to compression

• No match? → Longer length

• Bootstrap by guessing 3-byte sequence

• Extend one character at a time

• O(n|Σ|) complexity

• n: length of secret

• Σ: alphabet of secret
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Can we really attack Gmail?

• Uses AES

• Has random bytes in response
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Our contributions
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Our contributions

We extend the BREACH attack

1. Attack noisy end-points

2. Attack block cipher end-points

3. Optimize attack

4. Propose novel mitigation techniques

The whole web is vulnerable
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Statistical methods
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Statistical methods

• We can attack noisy end-points

• Multiple requests per alphabet symbol

• Take mean response length

• m-sized noise → attack works in O(n|Σ|√m)

• m = (max response size) - (min response size)

• Length converges to correct results (LLN)
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Statistical methods against block ciphers

• Everyone uses block ciphers

• Statistical methods break them

• We introduce artificial noise

• Block ciphers round length to 128-bits

• In practice 16x more requests

• Blocks aligned → Length difference measurable



• Click to edit Master text styles

— Second level

• Third level

— Fourth level

» Fifth level

Experimental results

• AES_128 is vulnerable

• Popular web services are vulnerable:

• Gmail

• Facebook

• etc.
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Optimizations
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Optimizations overview

Block ciphers cause 16x slowdown. We need to optimize.

• Divide and conquer: 6x speed-up

• Request soup: 16x speed-up

• Browser parallelization: 6x speed-up

Total ~ 500x speed-up!
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Optimization: Divide & Conquer

• Each request tries multiple candidates from alphabet

• Partition alphabet using divide-and-conquer

• Binary search on alphabet partitions

• Reduces attack complexity from O(n|Σ|) to O(n lg|Σ|)

• Practically this gives 6x speed-up
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Binary search in alphabet space
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Optimization: Request soup

Problem:

• Need 16x samples for block ciphers

• But we only need the length mean

Solution:

• Responses come pipelined, can’t tell them apart

• We don’t care! Measure total length

• Divide by amount, extract mean
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Optimization: Browser parallelization

• Do 6x parallel requests; browsers support it

• Each parallel request cannot adapt based on previous

• But we need many samples of same candidates anyway

• No need to adapt before we collect enough



• Click to edit Master text styles

— Second level

• Third level

— Fourth level

» Fifth level

RUPTURE
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Today, we make BREACH easy

• Over the past months, we’ve developed rupture

• Today in Black Hat Asia 2016, we make it open source

https://github.com/dionyziz/rupture

ruptureit.com

https://github.com/dionyziz/rupture
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Rupture

• Extensible

• Modular analysis / optimizations / strategies

• Experiment with your own

• General web attack framework

• Can be adapted to work for CRIME, POODLE, …

• Persistent command & control channel

• Scalable architecture: Multiple attacks simultaneously

• Come help us make it better
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Robust, persistent command & control

• Automatically inject JS to HTTP

• All plaintext connections infected

• One tab at a time gets work from C&C server

• User closes tab? Different tab starts attacking

• User switches browsers? Works on different browser

• Data collection failed for a sample? Sample recollected

• User reboots computer? Attack continues
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Persistent attack data storage

• Collected data processed by Django middleware

• Attack historical data stored permanently in MySQL db

• Future analysis with new techniques possible



• Click to edit Master text styles

— Second level

• Third level

— Fourth level

» Fifth level

Rupture demo
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Mitigation
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First-party cookies

• Don’t send auth cookies cross-origin

• Backwards compatibility: Web server opts-in

• Mike West implemented it in Chrome 51

• Coming April 8th

Set-Cookie: SID=31d4d96e407aad42; First-Party
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Key takeaways

1. HTTPS + gzip = broken

2. Rupture framework is live – attacks are easy

3. Enable first-party cookies on your web app



• Click to edit Master text styles

— Second level

• Third level

— Fourth level

» Fifth level

Thank you! Questions?

twitter.com/dionyziz

45DC 00AE FDDF 5D5C B988 EC86 2DA4 50F3 AFB0 46C7

github.com/dimkarakostas

DF46 7AFF 3398 BB31 CEA7 1E77 F896 1969 A339 D2E9


