
NumChecker:

A System Approach for Kernel Rootkit
Detection and Identification

Xueyang Wang, Ph.D.
Xiaofei (Rex) Guo, Ph.D.

(xueyang.wang || xiaofei.rex.guo) *noSPAM* intel.com

We don’t speak for our employer. All the opinions
and information here are our responsibility
including mistakes and bad jokes.

Disclaimer

Executive Summary

• Malware continues to proliferate
— Increasing in number
— Stealthier

• Traditional software-level detection mechanisms have limited
effectiveness
— Most of them relies on the correct functioning of OS
— VMM-based approaches has semantic gap
— Performance constraints

• A new solution: NumChecker
— Analyzing software behaviors with rich hardware events
— Low performance overhead
— Focus on kernel rootkit

Agenda

• Kernel Rootkits

• Hardware Performance Counter

• NumChecker Design

• Kernel Rootkit Detection

• Kernel Rootkit Identification

• Conclusion

• Rootkit
— Toolkits injected by attackers to hide malicious

activities from the users and detection tools

• Kernel Rootkit

— Rootkits that subvert the operating system kernel

directly

— Have unrestricted access to system resources

— Used by attackers to hide their presence, open

backdoors, gain root privilege, and disable defense

mechanisms

Kernel Rootkit

• Direct kernel object manipulation
(DKOM)
— Subvert the kernel by directly

modifying data objects

• Kernel Object Hooking (KOH)
— Hijack the kernel control-flow
— A majority of Linux kernel rootkits

persistently violate control-flow
integrity

— Hijack the kernel static control
transfers (e.g., SucKIT rookit)

— Hijack the kernel dynamic control
transfers (e.g., Adore-ng)

Kernel Rootkit Behavior Classification

interrupt
handler

system call

original
 syscall_A()

modified
syscall_A()

interrupt
descriptor

table

original
syscall table

syscall table
(copy)

application User
mode

Kernel
mode

1
2 3

4

5

4

5

Known Kernel Rootkit Detection Approaches
Host-based rootkit detection
• Run inside the target they are

protecting

• Check kernel static and dynamic
objects

OS

Security
tool

Process

Known Kernel Rootkit Detection Approaches

OS

Security

tool
Process

Challenges:
-Detection tools themselves might be
tampered with by advanced kernel
rootkits, which have high privilege and
can access the kernel memory

Host-based rootkit detection
• Run inside the target they are

protecting

• Check kernel static and dynamic
objects

Known Kernel Rootkit Detection Approaches
Host-based rootkit detection
• Run inside the target they are

protecting

• Check kernel static and dynamic
objects

OS

Security

tool
Process

Challenges:
-Detection tools themselves might be
tampered with by advanced kernel
rootkits, which have high privilege and
can access the kernel memory

Virtual Machine Monitor (VMM)
based rootkit detection
• Run at the VMM level
• Check kernel static and dynamic

objects

OS

Process

VMM

Guest VM

Known Kernel Rootkit Detection Approaches

OS

Security

tool
Process

Challenges:
-Detection tools themselves might be
tampered with by advanced kernel
rootkits, which have high privilege and
can access the kernel memory

OS

Process

VMM

Guest VMChallenges:
-“semantic gap” between the external
and internal observation. The detection
tools require detailed knowledge of the
guest OS implementation

-Performance overhead

Virtual Machine Monitor (VMM)
based rootkit detection
• Run at the VMM level
• Check kernel static and dynamic

objects

Host-based rootkit detection
• Run inside the target they are

protecting

• Check kernel static and dynamic
objects

NumChecker: VMM-based kernel execution
path checking using Hardware Performance
Counters (HPCs)
• Runs at the VMM level

• Does not require detailed knowledge of the
guest OS implementation

• Validates the execution path of guest system
calls by checking the number of certain
hardware events using HPCs

Hardware-Assisted Kernel Rootkit Detection

OS

VMM

Identifier
Process

Identifier

Guest VM

Run test
programs

in the guest VM

Test
program

• Performance monitoring unit (PMU)

— Originally used for performance tuning

— Performance counters

• Intel Core i7 (11 counters per core)

• AMD Quad-Core Opteron 1356 CPU (4 counters per core)

— Event selectors

• Automatically count hardware events at the process level

• Typical events include clock cycles, instruction retirements, cache misses, TLB
misses (100+ events)

• Details in the developer’s manuals

— Intel® 64 and IA-32 Architectures Software Developer’s Manual

— BIOS and Kernel Developer’s Guide (BKDG) for AMD Family 10h Processors

Hardware Performance Counters (HPC)

KVM in Linux

• Kernel-based virtual machine
(KVM)

— Based on Intel (VT) or AMD
(SVM)

— Guest mode and host mode

— Each VM is an individual
process

• KVM kernel module

— Handles interception

• Linux Perf_event kernel service

— Initializes, enables/disables,
reads, and closes HPCs

Perf _event
kernel
service

VM 1 VM 2

KVM

kernel

Host Linux Kernel

Hardware
performance

counters

Hardware

NumChecker Design

• NumChecker kernel module

— Communicates with
Perf_event kernel service
and KVM kernel

• Configuration program

— Dynamically configure the
events and syscalls to be
monitored

• Log

— HPC results are stored and
compared with the
reference model

Perf _event
kernel
service

VM 1 VM 2

KVM

kernel

Host Linux Kernel

Hardware
performance

counters

Hardware

Configuration
program

NumChecker
kernel

module

log

Two-Phase Detection and Identification

Launch
NumChecker

Clean guest

Offline

Host

C
h

e
ck

in
g

fl
o

w

Two-Phase Detection and Identification

Execute test
programs

Log in to the guest

Launch
NumChecker

Count events of
monitored

syscalls

Clean guest

Offline

Host

C
h

e
ck

in
g

fl
o

w

Two-Phase Detection and Identification

Execute test
programs

Log in to the guest

Launch
NumChecker

Count events of
monitored

syscalls

Log HPC
results

Clean guest

Offline

Host

C
h

e
ck

in
g

fl
o

w

Two-Phase Detection and Identification

Execute test
programs

Log in to the guest

Launch
NumChecker

Count events of
monitored

syscalls

Log HPC
results

Launch
NumChecker

Execute test
programs

Log in to the guest

Count events of
monitored

syscalls

Clean guest Monitored guest

Offline Online

Host

C
h

e
ck

in
g

fl
o

w

Host

Two-Phase Detection and Identification

Execute test
programs

Log in to the guest

Launch
NumChecker

Count events of
monitored

syscalls

Log HPC
results

Launch
NumChecker

Execute test
programs

Log in to the guest

Count events of
monitored

syscalls

Log HPC
results

Analysis

Clean guest Monitored guest

Offline Online

Host

C
h

e
ck

in
g

fl
o

w

Host

Two-Phase Detection and Identification

Execute test
programs

Log in to the guest

Launch
NumChecker

Count events of
monitored

syscalls

Log HPC
results

Launch
NumChecker

Send the
request for

checking

Execute test
programs

Count events of
monitored

syscalls

Log HPC
results

Compare

Clean guest Monitored guest

Offline Online

Host

Guest-initial

C
h

e
ck

in
g

fl
o

w

Host

Syscall Measurement

INT 0x80
(syscall A)

Initialize HPCs

Test
program

Guest user

Guest
kernel

Host
kernel

HPCs

Time line

Syscall Measurement

INT 0x80
(syscall A)

Initialize HPCs

Run monitored syscall A

Test
program

Guest user

Guest
kernel

Host
kernel

HPCs Count events

Time line

Syscall Measurement

INT 0x80
(syscall A)

Initialize HPCs

Run monitored syscall A
IRET

(syscall A)

Disable
HPCs

Test
program

Test
program

Guest user

Guest
kernel

Host
kernel

HPCs Count events

Time line

Read
HPCs

Syscall Measurement

INT 0x80
(syscall A)

Initialize HPCs

Run monitored syscall A

Other interception

IRET
(syscall A)

Disable
HPCs

Test
program

Test
program

Guest user

Guest
kernel

Host
kernel

HPCs Count events

Disable/enable HPCs

Time line

Read
HPCs

Kernel Preemption Handling

Task
switch

Disable
HPCs

Run
syscall A

Time line

Guest
kernel

Host
kernel

HPCs Count
events

Kernel Preemption Handling

Task
switch

Run syscall B invoked
by another program

Disable
HPCs

Run
syscall A

Time line

Guest
kernel

Host
kernel

HPCs Count
events

Kernel Preemption Handling

Task
switch

Run syscall B invoked
by another program

Task
switch

Disable
HPCs

Enable
HPCs

Run
syscall A

Run
syscall A

Time line

Guest
kernel

Host
kernel

HPCs Count
events

Count
events

Detection: Test Programs

• Criteria
— Pick the events that are more stable in HPC reading across multiple

executions

— The stability is quantified with the Coefficient of Variation (C.V)

— Experiments performed on a Intel Core i7

• Select preamble system calls to allow VMM to identify the

process

• Ensures that we control the system call execution with

selected arguments

• A sequence of selected system calls for measurement

Detection: Choosing Proper Events

• Criteria
— Pick the events that are more stable in HPC reading across multiple

executions

— The stability is quantified with the Coefficient of Variation (C.V)

— Experiments performed on a Intel Core i7

• Events that occur frequently during the syscall

• Events that are statistically more stable in the presence of

noises

• Events selected
— UOPS: retired micro-ops

— INST: retired instructions

— NRET: retired near returns

— BRAN: retired branch instructions

— BRNT: retired branch taken instructions

• Deviation
— Event: Ex, system call: Sy

— Count: C(Ex, Sy)

• Deviation threshold
— Pick the threshold with the least false

positive rate

— HPC deviations is smaller than 5%

— If the deviation exceeds 5%, malicious

modifications are suggested

Detection: Deviation Threshold

Detection: Kernel Rootkits Detected

Detection capabilities. The numbers are deviations (%) from uninfected executions. Any deviation of
more than 5% suggests a malicious modification.

Detection: Kernel Rootkits Detected

Detection: Kernel Rootkits Detected

Detection: Performance Evaluation
Redhat 7.3 Fedora Core 4 Ubuntu 11.10

Test_open&close 44.9 ms 52.7 ms 50.9 ms

Test_read 50.5 ms 69.1 ms 65.5 ms

Test_getdents64 61.0 ms 75.7 ms 69.3 ms

Test_stat64 27.2 ms 40.5 ms 20.3 ms

Average 45.6 ms 59.5 ms 51.5 ms

• Test program execution time
— Each test program contains

500 iterations to repeatedly
invoke the corresponding
system call

• Guest performance
overhead
— Throughput degradation of

the guest VM when

NumChecker is invoked

every 5 and 10 seconds

90%

92%

94%

96%

98%

100%

%
 t

h
ro

u
gh

p
u

t
o

f
th

e
 g

u
e

st
 V

M

w
/o

 N
u

m
C

h
e

ck
e

r

5 sec. 10 sec.

• HPC-based behavior signature
— Let C(Ex , Sy) denote the count of

event x from the execution of
system call y.

— m hardware events

— n system calls

— an vector V with m * n elements
can be obtained:

Identification: HPC-based Behavior Signature

V=[C(E1,S1),C(E2,S1), …C(Em,S1),C(E1,S2),C(E2,S2),…C(Em,Sn)]

Rootkit
database

HPC-based signature

Rootkit1 RootkitNRootkit2

Signature
matching

HPC profile of a
detected rookit

Offline Online

known
rootkit

?

Identification: HPC-based Signature

The deviation of the element in the tested vector from the one in the reference
vector is:

Dtest is calculated for each element in the tested vector and the largest one
Dtest_max is determined:

Average deviation from the rootkit reference denoted as Dtest_avg and the Fitting
Rate (FR) on the rootkit reference, which is defined as follows:

Identification: Kernel Rootkits Identified

Identification: Kernel Rootkits Identified

Identification: Periodic Sampling

Read HPC2 Read HPC2 Read HPC2 Read HPC2

Counting
instruction retired

N inst N inst N inst
HPC1:

HPC2:
Counting
event X

The system call being monitored

Time line

Guest

Host

Identification: Periodic Sampling

sys_open()

sys_close()

sys_read()

sys_getdent()

sys_stat()

• W/O periodic
sampling

• With periodic
sampling

Identification: Periodic Sampling

Security Analysis

• Rootkit may try to tamper with the HPCs
— HPCs are controlled by host (VMM)

• Rootkit may tamper with the analysis process
— Analysis process is done by host (VMM)

• Rootkit may try to predict the “good” number
— The test program can be considered as a “secret key” and can be updated

— The number of system call, system call argument, and hardware events are
huge.

Security Analysis

• Rootkit may undo modifications
— Rootkit is not aware of the test program

• Not knowing the monitor time

— Rootkit tries to identify the test program

• VMM updates test program

— Rootkit detects the test program and tries to undo the modification

• Do or undo dilemma

• Randomized sampling period

— Strong rootkit detects the test program accurately and undo all modifications

• Remove the test program and use machine learning approach

Conclusion

• NumChecker effectively detects and identifies kernel rootkits
— VMM-based framework (can be applied to different types of virtualizations)

— Validating the execution of guest system calls (can be changed to work with
other software flows)

— Based on hardware events (free to choose from hundreds of events)

• Using Hardware Performance Counters

— Feature supported by hardware (Intel, AMD, etc.)

— Very low performance overhead

— Tamper-resistant from guest OS

— Can be applied to other malware

Acknowledgement

• Rodrigo Branco

• Alexander Matrosov

• Nam Nguyen

• Jason Fung

• Mickey Shkatov

