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Executive Summary

• Malware continues to proliferate
— Increasing in number
— Stealthier

• Traditional software-level detection mechanisms have limited 
effectiveness
— Most of them relies on the correct functioning of OS
— VMM-based approaches has semantic gap
— Performance constraints

• A new solution: NumChecker
— Analyzing software behaviors with rich hardware events
— Low performance overhead
— Focus on kernel rootkit
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• Rootkit
— Toolkits injected by attackers to hide malicious 

activities from the users and detection tools

• Kernel Rootkit

— Rootkits that subvert the operating system kernel 

directly

— Have unrestricted access to system resources

— Used by attackers to hide their presence, open 

backdoors, gain root privilege, and disable defense 

mechanisms

Kernel Rootkit



• Direct kernel object manipulation 
(DKOM)
— Subvert the kernel by directly 

modifying data objects

• Kernel Object Hooking (KOH)
— Hijack the kernel control-flow
— A majority of Linux kernel rootkits 

persistently violate control-flow 
integrity

— Hijack the kernel static control 
transfers (e.g., SucKIT rookit)

— Hijack the kernel dynamic control 
transfers (e.g., Adore-ng)

Kernel Rootkit Behavior Classification 
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Known Kernel Rootkit Detection Approaches
Host-based rootkit detection
• Run inside the target they are 
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• Check kernel static and dynamic 
objects
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Known Kernel Rootkit Detection Approaches

OS

Security 

tool
Process

Challenges: 
-Detection tools themselves might be 
tampered with by advanced kernel 
rootkits, which have high privilege and 
can access the kernel memory

OS

Process

VMM

Guest VMChallenges: 
-“semantic gap” between the external 
and internal observation. The detection 
tools require detailed knowledge of the 
guest OS implementation

-Performance overhead

Virtual Machine Monitor (VMM) 
based rootkit detection 
• Run at the VMM level
• Check kernel static and dynamic 

objects
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• Check kernel static and dynamic 
objects



NumChecker: VMM-based kernel execution 
path checking using Hardware Performance 
Counters (HPCs) 
• Runs at the VMM level

• Does not require detailed knowledge of the 
guest OS implementation

• Validates the execution path of guest system 
calls by checking the number of certain 
hardware events using HPCs

Hardware-Assisted Kernel Rootkit Detection
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• Performance monitoring unit (PMU)

— Originally used for performance tuning

— Performance counters 

• Intel Core i7 (11 counters per core)

• AMD Quad-Core Opteron 1356 CPU (4 counters per core)

— Event selectors

• Automatically count hardware events at the process level

• Typical events include clock cycles, instruction retirements, cache misses, TLB 
misses (100+ events)

• Details in the developer’s manuals

— Intel® 64 and IA-32 Architectures Software Developer’s Manual 

— BIOS and Kernel Developer’s Guide (BKDG) for AMD Family 10h Processors

Hardware Performance Counters (HPC)



KVM in Linux

• Kernel-based virtual machine 
(KVM)

— Based on Intel (VT) or AMD 
(SVM)

— Guest mode and host mode

— Each VM is an individual 
process

• KVM kernel module

— Handles interception

• Linux Perf_event kernel service

— Initializes, enables/disables, 
reads, and closes HPCs
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NumChecker Design

• NumChecker kernel module

— Communicates with 
Perf_event kernel service 
and KVM kernel

• Configuration program

— Dynamically configure the 
events and syscalls to be 
monitored

• Log

— HPC results are stored and 
compared with the 
reference model
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Detection: Test Programs

• Criteria
— Pick the events that are more stable in HPC reading across multiple 

executions

— The stability is quantified with the Coefficient of Variation (C.V)

— Experiments performed on a Intel Core i7

• Select preamble system calls to allow VMM to identify the 

process

• Ensures that we control the system call execution with 

selected arguments

• A sequence of selected system calls for measurement



Detection: Choosing Proper Events

• Criteria
— Pick the events that are more stable in HPC reading across multiple 

executions

— The stability is quantified with the Coefficient of Variation (C.V)

— Experiments performed on a Intel Core i7

• Events that occur frequently during the syscall

• Events that are statistically more stable in the presence of 

noises

• Events selected
— UOPS: retired micro-ops

— INST: retired instructions

— NRET: retired near returns 

— BRAN: retired branch instructions 

— BRNT: retired branch taken instructions



• Deviation
— Event: Ex, system call: Sy

— Count: C(Ex, Sy)

• Deviation threshold
— Pick the threshold with the least false 

positive rate

— HPC deviations is smaller than 5%

— If the deviation exceeds 5%, malicious 

modifications are suggested

Detection: Deviation Threshold



Detection: Kernel Rootkits Detected

Detection capabilities. The numbers are deviations (%) from uninfected executions. Any deviation of 
more than 5% suggests a malicious modification.



Detection: Kernel Rootkits Detected
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Detection: Performance Evaluation
Redhat 7.3 Fedora Core 4 Ubuntu 11.10

Test_open&close 44.9 ms 52.7 ms 50.9 ms

Test_read 50.5 ms 69.1 ms 65.5 ms

Test_getdents64 61.0 ms 75.7 ms 69.3 ms

Test_stat64 27.2 ms 40.5 ms 20.3 ms

Average 45.6 ms 59.5 ms 51.5 ms

• Test program execution time
— Each test program contains 

500 iterations to repeatedly 
invoke the corresponding 
system call

• Guest performance 
overhead
— Throughput degradation of 

the guest VM when 

NumChecker is invoked 

every 5 and 10 seconds
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• HPC-based behavior signature
— Let C(Ex , Sy) denote the count of 

event x from the execution of 
system call y. 

— m hardware events 

— n system calls

— an vector V with m * n elements 
can be obtained:

Identification: HPC-based Behavior Signature

V=[C(E1,S1),C(E2,S1), …C(Em,S1),C(E1,S2),C(E2,S2),…C(Em,Sn)]
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Identification: HPC-based Signature

The deviation of the element in the tested vector from the one in the reference 
vector is:

Dtest is calculated for each element in the tested vector and the largest one 
Dtest_max is determined:

Average deviation from the rootkit reference denoted as Dtest_avg and the Fitting 
Rate (FR) on the rootkit reference, which is defined as follows:
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Identification: Periodic Sampling
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Identification: Periodic Sampling

sys_open()

sys_close()

sys_read()

sys_getdent()

sys_stat()



• W/O periodic 
sampling

• With periodic 
sampling

Identification: Periodic Sampling



Security Analysis

• Rootkit may try to tamper with the HPCs
— HPCs are controlled by host (VMM)

• Rootkit may tamper with the analysis process
— Analysis process is done by host (VMM)

• Rootkit may try to predict the “good” number
— The test program can be considered as a “secret key” and can be updated

— The number of system call, system call argument, and hardware events are 
huge.



Security Analysis

• Rootkit may undo modifications  
— Rootkit is not aware of the test program 

• Not knowing the monitor time

— Rootkit tries to identify the test program 

• VMM updates test program

— Rootkit detects the test program and tries to undo the modification 

• Do or undo dilemma

• Randomized sampling period 

— Strong rootkit detects the test program accurately and undo all modifications

• Remove the test program and use machine learning approach



Conclusion

• NumChecker effectively detects and identifies kernel rootkits
— VMM-based framework (can be applied to different types of virtualizations)

— Validating the execution of guest system calls (can be changed to work with 
other software flows)

— Based on hardware events (free to choose from hundreds of events)

• Using Hardware Performance Counters 

— Feature supported by hardware (Intel, AMD, etc.)

— Very low performance overhead

— Tamper-resistant from guest OS

— Can be applied to other malware
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