black hat
ASIA 2016

NumChecker:

A System Approach for Kernel Rootkit
Detection and Identification

Xueyang Wang, Ph.D.
Xiaofei (Rex) Guo, Ph.D.

(xueyang.wang | | xiaofei.rex.guo) *noSPAM* intel.com

Disclaimer

We don’t speak for our employer. All the opinions
and information here are our responsibility
including mistakes and bad jokes.

Executive Summary

 Malware continues to proliferate
— Increasing in number
— Stealthier

* Traditional software-level detection mechanisms have limited
effectiveness
— Most of them relies on the correct functioning of OS
— VMM-based approaches has semantic gap
— Performance constraints

A new solution: NumChecker
— Analyzing software behaviors with rich hardware events
— Low performance overhead
— Focus on kernel rootkit

Agenda

* Kernel Rootkits

 Hardware Performance Counter
* NumChecker Design

 Kernel Rootkit Detection

* Kernel Rootkit Identification

* Conclusion

Kernel Rootkit

e Rootkit

— Toolkits injected by attackers to hide malicious
activities from the users and detection tools

. Kernel Rootkit

— Rootkits that subvert the operating system kernel
directly

— Have unrestricted access to system resources

— Used by attackers to hide their presence, open
backdoors, gain root privilege, and disable defense
mechanisms

Kernel Rootkit Behavior Classification

 Direct kernel object manipulation
(DKOM)

— Subvert the kernel by directly
modifying data objects

 Kernel Object Hooking (KOH) ser | application
— Hijack the kernel control-flow P @ T
.. . . ernel —Y i

— A majority of Linux kernel rootkits ~ mode nterrupt @, JZZi:.rsf; O [ystem cal
persistently violate control-flow andler table @ >
in.t.egrity . original syscall table

— Hijack the kernel static control syscall table (copy)
transfers (e.g., SucKIT rookit) ®,

- . . original modified
Hijack the kernel dynamic control syscal A) | OSSN

transfers (e.g., Adore-ng)

Known Kernel Rootkit Detection Approaches

Host-based rootkit detection

. Run inside the target they are
protecting

Check kernel static and dynamic
objects

Known Kernel Rootkit Detection Approaches

Host-based rootkit detection

Run inside the target they are
protecting

Check kernel static and dynamic
objects

Known Kernel Rootkit Detection Approaches

Host-based rootkit detection Virtual Machine Monitor (VMM)
* Runinside the target they are based rootkit detection
protecting . Run at the VMM level
* Check kernel static and dynamic * Check kernel static and dynamic
objects objects
Challenges: r—— == — == .
-Detection tools themselves might be : Guest VM :
! : Process :
I I
| 0S |
I I
I

Known Kernel Rootkit Detection Approaches

Host-based rootkit detection
. Run inside the target they are

Virtual Machine Monitor (VMM)
based rootkit detection

protecting . Run at the VMM level

* Check kernel static and dynamic * Check kernel static and dynamic
objects objects

Challenges: Challenges:

Hardware-Assisted Kernel Rootkit Detection

NumChecker: VMM-based kernel execution
path checking using Hardware Performance

Counters (HPCs) T Gt UM

* Runsatthe VMM level | Process : <

* Does not require detailed knowledge of the : Identifier| | T
guest OS implementation | ; : est

* Validates the execution path of guest system : 0S | progr-a-m
calls by checking the number of certain I_____:z’___l Identifier

hardware events using HPCs

Run test
programs
in the guest VM

Hardware Performance Counters (HPC)

. Performance monitoring unit (PMU)
— Originally used for performance tuning
— Performance counters
* Intel Core i7 (11 counters per core)
AMD Quad-Core Opteron 1356 CPU (4 counters per core)
— Event selectors
e Automatically count hardware events at the process level

Typical events include clock cycles, instruction retirements, cache misses, TLB
misses (100+ events)

. Details in the developer’s manuals
— Intel® 64 and IA-32 Architectures Software Developer’s Manual
— BIOS and Kernel Developer’s Guide (BKDG) for AMD Family 10h Processors

KVM In Linux

. Kernel-based virtual machine
(KVM)

— Based on Intel (VT) or AMD
(SVM)

— @Quest mode and host mode

— Each VM is an individual
process

. KVM kernel module
— Handles interception
. Linux Perf_event kernel service

— Initializes, enables/disables,
reads, and closes HPCs

VM 1

/

VM 2

Host Linux Kernel

Perf_event
kernel
service
A

\
N

/

KVM
kernel

Hardware y

Hardware
performance
counters

NumChecker Design

. NumChecker kernel module

Communicates with
Perf_event kernel service
and KVM kernel

. Configuration program

Dynamically configure the
events and syscalls to be
monitored

HPC results are stored and
compared with the
reference model

Configuration
program

Host Linux Kernel

-
==

-
-—

=

Perf_event
kernel
service

i

-

=]

NumChecker
kernel
module

KVM
kernel

4

Hardware y

Hardware
performance
counters

log

Two-Phase Detection and Identification

Clean guest |< Host >
| Launch
| NumChecker
E |
a |
£ |
(]
S |
I
I
I
I
|
v
Offline

Two-Phase Detection and Identification

Clean guest |< Host g
| Launch
| NumChecker
S Login to Ithe guesti
o I I
£ Count events of
3 Execute test monitored
2 programs
o | syscalls
Vo)
Y
Offline

Two-Phase Detection and Identification

Clean guest |« Host >

| Launch
| NumChecker

ILog in to Ithe guesti
|

Count events of

Execute test .

Foarams monitored
pros | syscalls

v

Log HPC
results

Checking flow

~
Offline

Two-Phase Detection and Identification

Checking flow

Clean guest

ILog into

Execute test

|

|
|
!
|

Host g Host
Launch Launch
NumChecker NumChecker

he guesti

>| Monitored guest

LLog in to |the guestl

Count events of

Count events of

Execute test

monitored monitored #{
programs | syscalls syscalls | programs
v
| Log HPC |
| results |
| |
| |
| |
N\ J N\
Y Y
Offline Online

Two-Phase Detection and Identification

Checking flow

Clean guest

ILog into

Execute test

|

|
|
!
|

Host g Host
Launch Launch
NumChecker NumChecker

he guesti

Count events of

LLog in tolthe guest
R

Count events of

>| Monitored guest

Execute test

monitored monitored #{
programs | syscalls syscalls | programs
| = y |
Log HPC Log HPC
| results results |
| I
: » Analysis :
N\ J N\
Y Y
Offline Online

Two-Phase Detection and Identification

Checking flow

Clean guest |< Host P Host >| Monitored guest
| Launch Launch |
| NumChecker NumChecker |

ILog in to Ithe guesti l | Guest initial

| Count events of Count events of |

Execute test . . Execute test

Fosrams monitored monitored Foerams
prog | syscalls syscalls | pros

| Log HPC Log HPC |
| results results |
: » Compare :

N\ J N\

Y Y
Offline Online

Syscall Measurement

Guest user
Test INT Ox80
program (syscall A)
Guest
kernel trap
Host Initialize HPCs
kernel
HPCs

Time line

Syscall Measurement

Guest user
Test INT Ox80
program (syscall A)
Guest —»{ Run monitored syscall A
kernel trap
Host Initialize HPCs
kernel
HPCs > Count events

Time line

Syscall Measurement

Guest user
Test INT Ox80 Test
program (syscall A) program
Guest : IRET
—| Run monitored syscall A —

kernel trap (syscall A)

Host 1 Disable Read

kernel e HPCs HPCs

HPCs —p Count events —

Time line -

Syscall Measurement

Guest user
Test INT Ox80 Test
program (syscall A) program

Guest —» Run monitored syscall A —| L3l

kernel trap (syscall A)
[====-= t____$ ______ 1 l
1 1
: :
! Other interception !

Host e s I I Disable Read

kernel Initialize APCs : * : HPCs HPCs
| | Disable/enable HPCs | |
} }
I # _____ i_ !

HPCs —Pp Count events —

Time line |

Kernel Preemption Handling

Guest Run Task
kernel S syscall A I switch
Host Disable

kernel HPCs
HPCs Count
events

Time line

Kernel Preemption Handling

Guest Run Task | Run syscall B invoked
kernel S syscall A I switch by another program
Host Disable
kernel HPCs
HPCs Count
events

Time line

Kernel Preemption Handling

Guest
kernel

Host
kernel

HPCs

)

Run Task Run syscall B invoked Task Run
syscall A switch by another program switch syscall A
! !

Disable Enable
HPCs HPCs
l’ \ 4
Count Count
events events

Time line

Detection: Test Programs

* Select preamble system calls to allow VMM to identify the
process

* Ensures that we control the system call execution with
selected arguments

A sequence of selected system calls for measurement

Detection: Choosing Proper Events

* Events that occur frequently during the syscall

* Events that are statistically more stable in the presence of
noises

e Events selected

— UOPS: retired micro-ops

— INST: retired instructions

— NRET: retired near returns

— BRAN: retired branch instructions

— BRNT: retired branch taken instructions

Detection: Deviation Threshold

* Deviation

— Event: Ex, system call: Sy
— Count: C(Ex, Sy)

Cftest (Ex) Sy) - Crr'ef (E:c 3 Sy)

Duealt:4) = =5 (B 5,)
“Tre T My

* Deviation threshold

— Pick the threshold with the least false
positive rate

— HPC deviations is smaller than 5%

— |If the deviation exceeds 5%, malicious
modifications are suggested

False positive rate (%)

80 -
70 -
60 -
50 -
40 -
30 -
20 -

10 A

3 4 5 6
Detection threshold of HPC deviation (%)

Detection: Kernel Rootkits Detected

Detection capabilities. The numbers are deviations (%) from uninfected executions. Any deviation of
more than 5% suggests a malicious modification.

System calls monitored

Guest OS Rootkit Events counted | sys_open | sys_close | sys_read | sys_getde | sys_statod | Detected?
-nts64
UOPS 0.0 -0.1 -0.1 25.9 0.0
INST 0.0 -0.1 0.0 27.5 0.0
Matias NRET 0.0 0.0 0.0 247 0.0 Yes
BRAN 0.0 -0.7 0.0 25.0 0.0
BRNT 0.6 0.0 0.0 36.1 0.0
UOPS 0.0 -0.1 0.6 139.8 0.0
INST 0.0 -0.1 0.0 155.7 0.0
Linux 3.0 Suterusu NRET 0.0 24 0.0 64.9 0.0 Yes
BRAN 0.2 0.0 0.0 219.6 0.0
BRNT 0.6 0.0 0.0 308.8 0.9
UOPS 248 -0.1 129.8 107.7 -0.1
INST 13.5 0.0 72.3 59.0 -0.1
KBeast NRET 9.9 0.0 56.7 247 0.0 Yes
BRAN 2.7 0.0 86.7 67.5 0.0
BRNT 12.0 0.0 82.1 60.0 0.9

Detection: Kernel Rootkits Detected

System calls monitored

Guest OS Rootkit Events counted | sys_open | sys_close | sys_read | sys_getde | sys_stat64 | Detected?
-nts64

UOPS 0.2 1.2 61.2 953 0.4
INST 0.8 23 41.0 62.0 2.3

Enyelkm 1.1 NRET 40 12.5 28.1 549 4.0 Yes
BRAN 1.7 26 557 76.7 1.1
BRNT 0.8 2.1 383 748 0.8
UOPS 5.6 -0.1 132.0 24.7 0.0
INST 8.3 0.0 201.5 33.0 -2.3

Phalanx b6 NRET 14.0 0.0 56.3 17.6 0.0 Yes
BRAN 19.5 -1.7 165.1 69.2 -0.5
BRNT 19.8 0.0 203.9 56.5 0.0
Linux 2.6 UOPS 0.7 -0.1 1.8 0.0 -0.9
INST 94 0.0 10.3 0.0 -0.7

Sebek 3.2 NRET 8.0 0.0 18.8 0.0 0.0 Yes
BRAN 13.8 0.9 24 0.0 -0.5
BRNT 10.3 0.0 1.9 0.0 0.0
UOPS -10.7 4.1 40.0 2286 0.0
INST 0.0 0.0 0.0 289.0 -0.6

Adore-ng NRET 0.0 0.0 0.0 80.4 4.0 Yes
BRAN 0.0 26 24 5244 -0.5
BRNT -1.2 1.0 1.3 437.0 0.0

Detection: Kernel Rootkits Detected

System calls monitored
Guest OS Rootkit Events counted | sys_open | sys_close | sys_read | sys_getde | sys_stat64d | Detected?
-nts64

UOPS 923.9 13.3 427 2124 276.5
INST 836.1 8.6 59.5 2429 284.3

SucKIT 1.3b NRET 676.5 50.0 150.0 483.3 383.3 Yes
BRAN 1294.2 72.0 333 1028.1 292.9
BRNT 1125.6 21.2 68.9 1227.2 301.4
UOPS [75.8 05 0.2 3537 203.8
INST 99.4 10.3 0.0 427.7 91.9

Adore 0.42 NRET 123.5 25.0 0.0 650.0 161.1 Yes
BRAN 119.9 24.0 0.0 1313.1 162.9
BRNT 119.2 0.1 0.0 1443.2 149.3
Linux 2.4 UOPS 384.2 221 73.4 36.5 121.8
INST 363.4 524 79.5 39.8 63.1

Sk2rc2 NRET 488.2 50.0 166.7 95.8 166.7 Yes
BRAN 359.2 128.0 76.9 66.9 98.6
BRNT 365.6 27.3 75.6 123.5 36.1
UOPS 955.4 13.3 427 215.8 284.4
INST 8278 0.8 59.5 2444 283.1

Superkit NRET 5353 50.0 2333 483.3 383.3 Yes
BRAN 1399.5 28.0 61.5 1014.4 295.2
BRNT 1071.2 21.2 68.9 1235.8 298.6

Detection: Performance Evaluation

* Test program execution time

Each test program contains
500 iterations to repeatedly
invoke the corresponding
system call

* Guest performance
overhead
— Throughput degradation of
the guest VM when
NumChecker is invoked
every 5 and 10 seconds

Test_open&close 44.9 ms 52.7 ms 50.9 ms
Test_read 50.5 ms 69.1 ms 65.5 ms
Test_getdents64 61.0 ms 75.7 ms 69.3 ms
Test_stat64 27.2 ms 40.5 ms 20.3 ms
Average 45.6 ms 59.5 ms 51.5 ms
=
3 O5sec. W10sec.
§,§ 100%
£2 98%
5 é 96%
é_ % 94%
g; 92%
.-C: 90%
N & & >) g D L Q © A
ST NN & Lo
N Q,OQ oQ\\ oQ* ‘9(')
< & & S\
N N2 4 O
R ©

ldentification: HPC-based Behavior Signature

e HPC-based behavior signature

— Let C(E,, S,) denote the count of
event x from the execution of HPCbased signature

system call y.
— m hardware events

HPC profile of a
detected rookit

known

— n system calls rootkit
: i i ?
— an vector V with m * n elements ootk I
can be obtained:
Offline Online

V=[C(E,,S,),C(ES,), ---C(Ern,S1),C(E+,S,),C(E,S,),...C(En,Sp)]

|dentification: HPC-based Signature

The deviation of the element in the tested vector from the one in the reference

vector is:
Ctest(Em: Sy) — Cref<Efn: Sy)

C‘?“é?f(Eﬂﬂﬁ Sy)

Dtest(x: :U) —

D,..: is calculated for each element in the tested vector and the largest one

Diest max 1S determined:

Dtest_'ma;r — max Dtest (:1;) l/)
1<e<m,1<y<n

Average deviation from the rootkit reference denoted as D, ,,, and the Fitting

Rate (FR) on the rootkit reference, which is defined as follows:

FR — no. of elements fitted to the targeted reference
- no. of elements in the tested vector.

ldentification: Kernel Rootkits Identified

Rootkit under test SucKIT 1.3b | Adore 0.42 | Sk2rc2 | Superkit | Identified?
Dtest-maa 3.80 538.49 3923 38.28
SucKIT 1.3b Diesivng 1.70 111.40 115.65 4.95% Yes
FR 100 8 12 84%
Ditest max 84.79 371 762.92 85.86
Adore 0.42 Divestaniz 40.32 2.10 118.00 40.06 Yes
FR 8 100 4 12
Dtest_max 710.34 168.00 3.71 85.46
Sk2rc2 Dissvnva 127.78 69.32 1.91 42.76 Yes
FR 0 0 100 8
Dtestmax 30.00 569.41 572.96 3.65
Superkit Lhicdiiang 5.51* 111.39 114.88 1.85 Yes
FR 34 12 12 100

ldentification: Kernel Rootkits Identified

Rootkit under test SucKIT 1.3b | Adore 0.42 | Sk2rc2 | Superkit | Identified?
Dtest-maa 3.80 538.49 592.73 | 38.28
SucKIT 1.3b Diesivng 1.70 111.40 115.651 4.95*% \> Yes
FR 100 8 12 N 84%
Diest maz 84.79 3T 762.92 85.86
Adore 0.42 Diesiianig 40.32 2.10 118.00 40.06 Yes
FR 8 100 4 12
1 5 "R — 710.34 168.00 3.71 85.46
Sk2rc2 Bhsarng 127.78 69.32 1.91 42.76 Yes
FR 0 0 100 8
Dtestmax ~30.00 569.41 572.96 3.65
Superkit Diesiiang / 551 \ 111.39 114.88 1.85 Yes
FR N 12 12 100

TeS—————

|dentification: Periodic Sampling

-

HPC,(t)]

malware |

__-.-.‘..—___---‘-.-
clean
t
Time line -
S The system call being monitored S Guest
Countin Ninst _ _ Ninst _ _ Ninst
HPCy: . L -
instruction retired
Host

event X

|dentification: Periodic Sampling

of UOP

0 50

100 150 200 250
of UOP

of UOP

60 80 100 120 140
of UOP

2000 - - -

2000f---

1000 - - -

of BRN

50 100 150

of BRN

200

250

2000

1500

1000 ===~

500

1000 -« == or -

500

20 40

60

80

of BRT

2000 -

1500 |-

o 50 100 150 200 250

#of RET

1000 - -

#of RET

AOO sttt Ty
200 .- emtann e 24 s At '
6 . i . . .
0 20 40 60 20 100

sys_open()

sys_close()

sys_read()

sys_getdent()

sys_stat()

ldentification

. Periodic Sampling

* W/O periodic
sampling

* With periodic
sampling

Rootkit under test SucKIT 1.3b | Superkit
Dtest maz 380 738.287N
SucKIT 1.3b Diest_avg 1.7 4.95
FR 100 N34
Diest max 30.00 3.65
Superkit Diestavg || 551) 1.85
FR 84 100
Rootkit under test SucKIT 1.3b | Superkit
Dtest.‘m.ax 3.90 K‘S-Hi
SucKIT 1.3b Diestavg .35 (] 12.04
FR 100 N 45
Diest maz 75.0 3.15
Superkit Diest_avg 14.19 1.08
FR 45 100

Security Analysis

* Rootkit may try to tamper with the HPCs
— HPCs are controlled by host (VMM)

* Rootkit may tamper with the analysis process
— Analysis process is done by host (VMM)

* Rootkit may try to predict the “good” number

— The test program can be considered as a “secret key” and can be updated

— The number of system call, system call argument, and hardware events are
huge.

Security Analysis

* Rootkit may undo modifications
— Rootkit is not aware of the test program
* Not knowing the monitor time
— Rootkit tries to identify the test program
e VMM updates test program
— Rootkit detects the test program and tries to undo the modification
* Do orundo dilemma
 Randomized sampling period
— Strong rootkit detects the test program accurately and undo all modifications

* Remove the test program and use machine learning approach

Conclusion

 NumChecker effectively detects and identifies kernel rootkits
— VMM-based framework (can be applied to different types of virtualizations)

— Validating the execution of guest system calls (can be changed to work with
other software flows)

— Based on hardware events (free to choose from hundreds of events)
 Using Hardware Performance Counters

— Feature supported by hardware (Intel, AMD, etc.)

— Very low performance overhead

— Tamper-resistant from guest OS

— Can be applied to other malware

Acknowledgement

 Rodrigo Branco

* Alexander Matrosov
* Nam Nguyen

* Jason Fung

* Mickey Shkatov

