
Automated Dynamic Firmware Analysis at Scale:
A Case Study on Embedded Web Interfaces

(Extended Version)

Andrei Costin
EURECOM

Sophia Antipolis, France
costin@eurecom.fr

Apostolis Zarras
Technical University of Munich

Germany
zarras@sec.in.tum.de

Aurélien Francillon
EURECOM

Sophia Antipolis, France
francill@eurecom.fr

Abstract—Embedded devices are becoming more widespread,
interconnected, and web-enabled than ever. However, recent
studies showed that these devices are far from being secure.
Moreover, many embedded systems rely on web interfaces for
user interaction or administration. Unfortunately, web security
is known to be difficult, and therefore the web interfaces of
embedded systems represent a considerable attack surface.

In this paper, we present the first fully automated framework
that applies dynamic firmware analysis techniques to achieve,
in a scalable manner, automated vulnerability discovery within
embedded firmware images. We apply our framework to study
the security of embedded web interfaces running in Commer-
cial Off-The-Shelf (COTS) embedded devices, such as routers,
DSL/cable modems, VoIP phones, IP/CCTV cameras. We intro-
duce a methodology and implement a scalable framework for
discovery of vulnerabilities in embedded web interfaces regardless
of the vendor, device, or architecture. To achieve this goal,
our framework performs full system emulation to achieve the
execution of firmware images in a software-only environment,
i.e., without involving any physical embedded devices. Then, we
analyze the web interfaces within the firmware using both static
and dynamic tools. We also present some interesting case-studies,
and discuss the main challenges associated with the dynamic
analysis of firmware images and their web interfaces and network
services. The observations we make in this paper shed light on an
important aspect of embedded devices which was not previously
studied at a large scale. Insights from this paper can help users,
programmers and auditors in efficiently testing and securing their
Internet enabled embedded devices.

We validate our framework by testing it on 1925 firmware
images from 54 different vendors. We discover important vul-
nerabilities in 185 firmware images, affecting nearly a quarter of
vendors in our dataset. We also perform comprehensive failure
analysis. We show that by applying relatively easy fixes during
corrective maintenance it is possible to remediate at least 61.3%
of emulation failures and at least 25.2% of web interface launch
failures. These experimental results demonstrate the effectiveness
of our approach.

I. INTRODUCTION

Embedded devices are present in many complex systems,
like cars, planes, and programmable logic controllers. Such
devices also appear massively in customer products such as
network gateways and IP cameras. Those devices are becoming
more pervasive and “invade” our lives under many different
forms (e.g., home automation, smart TVs).

This is an extended version of the peer-reviewed paper at [25].

Embedded systems, in particular Small Office/Home Office
(SOHO) devices, are often known to be insecure [41,80]. Their
lack of security may be the consequence of the harsh market
competition. For instance, the time to market is crucial and the
competition puts high pressure on the design and production
costs, and enforces short release timelines. Vendors try to
provide as many features as possible to differentiate products,
while customers do not necessarily look for the most secure
products.

Some embedded systems have clear and well-defined secu-
rity goals, such as the pay-TV smart cards and the Hardware
Security Modules (HSM). Therefore, such devices are rather
secure. However, many embedded systems are not designed
with a clear threat model in mind. This gives little motivation
to manufacturers to invest time and money in securing them.
This fact motivated several researchers to evaluate the state of
security of such embedded devices [11, 17, 24, 27, 71, 79].

Moreover, during the past few years, embedded devices
became more connected forming what is called the Internet
of Things (IoT). Such devices are often put online by com-
position; attaching a communication interface to an existing
(insecure) device. Most of these devices lack the user interface
of desktop computers (e.g., keyboard, video, mouse), but nev-
ertheless need to be configured and maintained. Albeit some
devices rely on custom protocols used by “thick” clients or
even legacy interfaces (i.e., telnet), the web quickly became the
universal administration interface. Thus, the firmware of these
devices often embed a web server running web applications,
for the rest of this paper, we will refer to these as embedded
web interfaces.

It is well known that making secure web applications
is not a trivial task. In particular, researchers showed that
more than 70% of vulnerabilities are hosted in the (web)
application layer [73]. Attackers who are familiar with this
fact use various techniques to exploit web applications. Well
known vulnerabilities, such as SQL injection [18] or Cross Site
Scripting (XSS) [81], constitute a significant portion of the
vulnerabilities discovered each year [22], and are frequently
used in real-world attacks [39]. Additionally, vulnerabilities
such as Cross Site Request Forgery (CSRF) [14], command
injection [78], and HTTP response splitting [61] are also often
present in web applications.

Given such a track record of security problems in both
embedded systems and web applications, it is natural to

mailto:costin@eurecom.fr
mailto:zarras@sec.in.tum.de
mailto:francill@eurecom.fr

expect the worse from embedded web interfaces. However,
as we discuss further, those vulnerabilities are neither easy to
discover, analyze, and confirm, nor do the vendors perform the
necessary security quality assurance of their firmware images.

Analysis of embedded web interfaces: While there are
solutions that can be used during the design phase of the soft-
ware [47,68,74,75], it is also important to discover and patch
existing vulnerabilities before they are found and exploited
“in the wild”. This is possible to do either by static analysis
on their source code [13, 30, 32, 59], or by dynamic analysis
where their code or web interface is typically exercised against
a number of known attack patterns [15, 17].

Unfortunately, these techniques and tools can be ineffi-
cient or difficult to use for detecting vulnerabilities inside
embedded web interfaces [15, 40]. For instance, performing
static analysis on embedded web interfaces seem to be a
rather simple task once the firmware has been unpacked. One
main limitation of this approach is that the web interfaces
often rely on various technologies (e.g., PHP, CGIs, custom
server-side languages). However, the static analysis tools are
usually designed for a particular technology, and many static
tools are often concentrated around some trendy environment
(e.g., PHP) leaving the others “uncovered”. In addition to this,
though sound static analysis tools exist, many other static
analysis tools are merely “glorified greps” and have a large
number of false positives (FP), which make them problematic
to reliably use in an automated large scale study. On the other
hand, dynamic analysis tools [38,50] are more generic as they
are less sensitive to the server-side language. Nevertheless,
they require the system or the web interface to be functional.
Unfortunately, it is challenging to create an environment that
can perfectly emulate firmware images for a broad range of
devices based on a variety of computing architectures and
hardware designs.

Scalable dynamic analysis of embedded web interfaces: The
easiest way to perform dynamic analysis is to perform it on a
live device. However, acquiring devices to dynamically analyze
them is expensive and does not scale. At the same time, it is
ethically questionable, if not illegal, to test devices one does
not own (e.g., devices on the Internet). Another option is to
extract the web interface files from a device and load them to a
test environment, like an Apache web server. Unfortunately, a
large majority of the embedded web interfaces use native CGIs,
bindings to local architecture-dependent tools or custom web
server features which cannot be easily reproduced in a different
environment (Section II-D1).

Emulating the firmware is an elegant method to perform
dynamic analysis of an embedded system, since it does not
require the physical device to be present and can be completely
performed in a controlled environment while being easy to
scale. But emulation of unknown devices is not easy because
an embedded firmware expects specific hardware to be fully
present, such as peripherals or memory layouts. Previous at-
tempts were made at improving emulation of firmware images
by forwarding hardware I/O or ioctl to the hardware [60,85].
These techniques achieve a rather good emulation, but require
the presence of the original device and a great deal of manual
setup, which does not scale. We noticed that in Linux-based
embedded systems the interaction with the hardware is usually

performed from the kernel. Moreover, the web interfaces often
do not interact with the hardware or this interaction is indirect.

A. Overview of our Approach

To perform scalable security testing of embedded web
interfaces we developed a distributed framework for automated
analysis (Figure 1) and we tested it in a cloud setup. We
started our analysis with a dataset of 1925 unpacked firmware
images that contain embedded web interfaces.1 Then, for each
unpacked firmware we identify any potential web document
root present inside the firmware. At this point we make a
pass with static analysis tools on the modules of the service
under test 2. Next, we propose a partial emulation of firmware
images by replacing their kernel with a stock kernel (targeting
the same architecture) and emulating the whole userland of
the firmware using the QEMU [37] emulator. We currently
support the most frequent architectures that are well supported
in QEMU and plan to extend later to other architectures.
We then chroot the unpacked firmware and start the init
program, the init scripts or sometimes directly the web server.
Once (and if) the service under test is up and operational 3,
we perform dynamic analysis on it. Finally, we analyze the
results, and whenever applicable we perform manual analysis
and investigate the failures.

B. Contributions

In this paper we present a completely automated framework
to perform scalable dynamic firmware analysis. We demon-
strate its effectiveness by testing the security of embedded web
interfaces. Our framework mainly relies on the emulation of
the firmware images. This allows to test the embedded web
interfaces using off-the-shelf dynamic analysis tools.

In summary, we make the following main contributions:

• We present the first framework that achieves scalable
and automated dynamic analysis of firmwares, and
that was precisely developed to discover vulnerabil-
ities in embedded devices using the software-only
approach.

• We highlight the challenges in emulating the firmware
images and testing the web interfaces of embedded
systems, and describe the techniques that can be used
for such tasks.

• We describe our framework which leverages multiple
techniques and state of the art tools.

• We perform the first large scale, comprehensive, se-
curity study on web interfaces of embedded systems.

• We automatically discover 225 previously unknown
serious vulnerabilities in 45 firmware images.

1We focused mainly on Linux-based firmware images. Linux-based firm-
ware images are in general well structured and documented, therefore they are
easier to unpack, analyze and emulate. However, our approach can be easily
extended in the future to firmware based on system that are similarly well
structured into bootloaders, kernels and filesystems (e.g., VxWorks, QNX).
Monolithic firmware is more challenging to fully emulate and in general
requires additional frameworks, such as Avatar [85].

2In the particular case of this study, the modules are the files within the
web document root.

3In the particular case of this study, the service under test is the web
interface.

2

Results
Collection

and
Analysis

Feedback for Improving Analysis

 File
Systems

Preparation

 Firmware
Selection

Unpacked
Firmware
Sources

Results
Exploitation

Static Analysis

Doc Root Analysis

Dynamic Analysis

QEMU/Chroot Analysis Tools

Scalable Cloud VM Infrastructure

Figure 1: Overview of the analysis framework.

C. Outline

The remainder of this paper is organized as follows. In
Section II, we explore techniques to emulate and analyze
embedded firmware and their web interfaces. In Section III,
we present our framework. In Section IV, we describe our
dataset. In Section V, we showcase our results and analyze
several case-studies. In Section VI, we discuss ethical aspects
of our work and its limitations, as well as we propose solutions
to them. We summarize the state of the art in Section VII and
then conclude with Section VIII.

II. EXPLORING TECHNIQUES TO ANALYZE EMBEDDED
WEB INTERFACES

In this section, we summarize the different possibilities for
static or dynamic analysis of embedded web interfaces, their
limitations, and motivate our final choices.

A. Static Analysis

There are many practical advantages to static analysis tools;
they are often automated and do not require setting up too
complex test environments. In general, they only need the
source code (or application) to be provided to generate an
analysis report. It is also relatively easy to plug new static
analysis tools for increased coverage or wider support of file
formats and source code languages. Finally, as a result of all
the above, such tools are scalable and easy to automate.

However, static analysis techniques have well understood
limitations. On the one hand, they cannot find all the vulnera-
bilities, i.e., false negatives (FN), while on the other, they also
alert on non-vulnerabilities, i.e., false positives (FP), which
becomes increasingly problematic in large scale automated
setups. Additionally, we found that embedded devices’ firm-
ware often rely on uncommon technologies for which security
static analysis tools often do not exist (e.g., lua, haserl,
binary CGIs). Albeit there exist a number of static analysis
tools for the PHP language [30,58], in our dataset only 8% of
embedded firmware images contain PHP code in their server-
side. This is not really a surprise since PHP is not primarily
designed for embedded systems. We nevertheless analyze these
cases with RIPS [30] in Section V-B. Finally, binary static ana-
lysis can be applied to binary CGIs to find vulnerabilities such
as buffer overflow, (remote) code execution, command injec-
tion In this paper we use “command injection” and “command

execution” terms interchangeably. (e.g., Firmalice [77] or
Weasel [76]). Also, new techniques start to appear that are
able to cope with the diversity of CPU architectures found in
embedded systems [72].

B. Dynamic Analysis

Dynamic analysis—an analysis that relies on testing an
application by running it—has many benefits. First, dynamic
analysis of web interfaces is mostly independent from the
server-side technology that is used. For instance, the very same
tool can test web interfaces that are implemented in PHP, native
CGIs or custom web scripting engines. Second, it can be used
to confirm vulnerabilities found in the static analysis phase.
Although there exist many dynamic analysis tools for security
testing of web applications [15], unfortunately, they often
require significant effort to setup (e.g., environment setup),
and sometimes additional customization such as adding new
vulnerability modules for scanning, testing or validation.

For this particular study, we selected web penetration tools
that are free and open source so that we can easily adapt and
integrate them in our framework as well fix their defects when
needed. Based on this we selected Arachni [1], Zed Attack
Proxy (ZAP) [2], and w3af [3] to be used in our framework.

However, our approach and framework are designed in a
way that allows great flexibility. For example, as depicted in
the Figure 3 other tools such as Metasploit 4 and Nessus 5 can
supplement or replace the web penetration tools mentioned
above. In this way, we can achieve additional security and
vulnerability testing that can help us increase the surface of
vulnerability discovery for both known and unknown vulner-
abilities.

C. Limitations of Analysis Tools

Our framework relies on existing web analysis tools, which
have their own limitations. For instance, the number of FPs and
FNs of this study are a direct consequence of the vulnerability
finding tools we rely on. An example of their limitations
is their ability to detect command injections vulnerabilities.
Those are frequently missed because such flaws are often hard
to discover via automated testing [4,15]. For example, tools try

4http://www.metasploit.com/
5http://www.tenable.com/products/nessus-vulnerability-scanner

3

http://www.metasploit.com/
http://www.tenable.com/products/nessus-vulnerability-scanner

Emulation accuracy

Speed

Complexity

Generic system emulator Userland
emulator

"Perfect"
emulation

Original FW,
original
kernel

Original FW
with

architectural
chroot

Hosted web
application

Original FW
with chroot,

generic
Kernel

Ideal emulator No emulator

Figure 2: Ways to emulate embedded web interfaces: from
perfect emulation of a hardware platform to hosting the web
interface. (The arrows show a general increasing trend, actual
evolution of the properties may not be linear.)

to inject commands, such as ping <ip> assuming that the
network is functional and that the targeted system supports the
ping utility. We overcome some of these limitations by taking
advantage of our “white box” approach (Section III-D.1).

Additionally, the tools we use were not initially targeting
vulnerabilities in embedded web interfaces and were not
designed to be integrated in a framework like ours. As a
consequence, we found many problems with those tools which
were severely impacting the success rate of the vulnerability
discovery. We were able to improve or fix many of them
at the cost of a significant engineering effort. Nevertheless,
fixing these bugs proved necessary to obtain better results.6
This highlights that better web application analysis tools are
needed, especially ones that are in particular adapted for testing
embedded web interfaces.

D. Running Web Interfaces

Dynamic analysis of web applications requires a function-
ing web interface. There are different ways to launch the
web interface that is present in the firmware of an embedded
system, however, none of them are perfect. Some methods are
very accurate but infeasible in our setup, such as emulating
the firmware in a perfect emulator (which is not available).
Other methods are much less accurate, like extracting the web
application files and serving them from a generic web server.
Therefore, we evaluated different approaches (Figure 2) and
describe their advantages and drawbacks.

1) Hosting Web Interfaces Non-Natively: A straightforward
way to launch a web interface from a firmware is to extract and
then launch it under a web server on an analysis environment,
without trying to emulate the original web server and firmware.
The web application is located (i.e., the document root, as
described in Section III-B2), extracted and “transplanted” to
the hosting environment. The main advantage of this technique
is that it does not require emulation, which dramatically
simplifies the deployment and thus is easy to automate and
scale.

6We plan to submit the bugfixes to be included in the upstream releases
of the tools.

However, this approach has many limitations. For example,
it is not possible to handle platform dependent binaries and
CGIs. We analyzed the document roots within 1580 firmware
candidates for emulation and found that 57% out of these
were using binary CGIs or were in some way bound to
the platform.7 In addition to this, the firmware images often
use either customized web servers, or versions which are
not available on normal systems, thus a generic web server
(e.g., Apache) has to be used in the hosting environment. We
evaluated this technique and we present results of its evaluation
in Section V-D, where we also compare its performance to
other techniques we use.

2) Firmware and Web Interface Emulation: A preliminary
step to emulate a firmware is to know its architecture. While
this may seem straightforward, it is actually often a compli-
cated step to perform automatically at scale. For instance, some
firmware packages contain files for various architectures (e.g.,
ARM and MIPS). Sometimes, vendors package two different
firmware blobs into a single firmware update package. The
firmware installer then picks the right architecture during the
upgrade based on the detected hardware. In such cases, we
try to emulate this filesystem with each detected architecture.
We detect the architecture of each executable in a firmware
using ELF headers or statistical opcode distribution for raw
binaries. We then decide on the architecture by counting the
number of architecture specific binaries it contains. Once we
detect the right architecture, we use the QEMU emulator for
that particular architecture. There are different possibilities for
emulating the firmware images, which we now compare.

a) Perfect emulation: Ideally, the firmware would be
complete (including the bootloader, kernel, etc.) and a QEMU
configuration which perfectly emulates the original hardware
would be available. However, QEMU only emulates few
platforms for each CPU architectures and thus perfectly emu-
lating unknown hardware is impossible in practice, especially
considering that hardware devices can be arbitrarily complex.
In addition to this, hardware in embedded devices is often
custom and its documentation is, in general, not available. It
is therefore infeasible to adapt the emulator let alone to apply
this at a large scale.

b) Original kernel and filesystem on a generic emu-
lator: Reusing the kernel of the firmware could lead to a
more accurate emulation, in particular because it may export
interfaces for some custom devices that are needed to properly
emulate the system. Unfortunately, kernels for embedded sys-
tems are often customized and hence do not support a wide
range of peripherals. Therefore, using the original kernel is
unlikely to work very well on a generic emulator. Additionally,
in our dataset only 5% of the firmware images were containing
the kernel making this approach not feasible.

c) Firmware chroot with a generic kernel and filesys-
tem: Lacking the original kernel, it is is possible to rely on
a complete generic system (for the same CPU architecture of
the firmware), which is then used as a base for the analysis.8
From this generic system we chroot to the unpacked firmware
and execute the shell (e.g., /bin/sh) or the init binary (e.g.,

7This is a lower bound as we did not count web scripts calling local
system utilities, e.g., using the system() call.

8We use the pre-compiled Debian Squeeze packages from [57].

4

/sbin/init). Finally, we start the web server’s binary along
with the web interface document root and web configuration.

Ideally, it should be possible to directly boot the firmware
filesystem instead. However, using a generic file system pro-
vides a consistent environment to control the virtual machine
and perform our analysis and monitoring of the system. The
advantage of this approach is that it allows emulation of the
web interfaces and web server software in their original file
system structure and can execute native programs.

This approach, however, has few drawbacks. First, emu-
lating the system is not very fast.9 Additionally, the emulator
environment setup and cleanup introduces a significant over-
head. Furthermore, with this approach we cannot fully emulate
the peripherals and specific kernel extensions of the embedded
devices. Even so, few firmware images and a limited part of
embedded web interfaces actually interact directly with the
peripherals. One such example is a web page that performs a
firmware upgrade which in turn requires access to flash or
NVRAM memory peripherals.

We found that this approach offers the best trade-off
between emulation accuracy, complexity, and speed (see Fig-
ure 2). It is also scalable and provided the best results in
analyzing dynamically the web interfaces (see Section V-D).

d) Architectural chroot: One way to improve the perfor-
mance and emulation management aspects of our framework
is by using architectural chroot [5] (also known as QEMU
static chroot). This technique uses chroot to emulate an
environment for architectures other than the architecture of the
running host itself. This basically relies on the Linux kernel’s
ability to call an interpreter to execute an ELF executable for
a foreign architecture. Registering the userland QEMU as an
interpreter allows to transparently execute ARM Linux ELF
executables on an x86_64 Linux system. However, we found
that this approach was not very stable, making it impossible
to use it at a large scale. Finally, while this approach has
the advantage of improving emulation speed, in essence, it
is unlikely to improve the number of firmware packages we
can finally emulate. Therefore, we did not use this technique
in our setup, and we leave this for our future work.

III. ANALYSIS FRAMEWORK DETAILS

In order to perform a large scale and automatic analysis
of firmware images we designed a framework to process and
analyze them (Figure 1). First, we obtain a set of unpacked
firmware images, analyze and filter them (Section III-A). Next,
we perform some pre-processing of the selected unpacked
files. For instance, some firmware images are incompletely
unpacked or the location of the document root is not obvious
(Section III-B). We then perform the static and dynamic
analyses (Section III-C). Finally, we collect and analyze the
reported vulnerabilities (Section III-D) and exploit these results
(Section III-E).

A. Firmware Selection

The firmware selection works as follows. First, we select
the firmware images that are successfully unpacked and are

9We measured that emulation is one order of magnitude slower than native
execution.

Linux-based systems which we can natively emulate and
chroot (see Section III-B). Second, we choose firmware in-
stances that clearly contain web server binaries (e.g., httpd,
lighttpd) and typical configuration files (e.g., boa.conf,
lighttpd.conf). In addition to these, we select firmware
images that include server side or client side code related to
web interfaces (e.g., HTML, JavaScript, PHP, Perl).
Our dataset is detailed in Section IV.

B. Filesystem Preparation

To emulate a firmware the emulator requires its root
filesystem. In the simplest case the unpacked firmware directly
contains the root filesystem. However, in many cases the
firmware images are packed in different and complex ways. For
instance, a firmware can contain two root filesystems, one for
the upgrade and one for the factory restore, or it can be packed
in multiple layers of archives along with other resources. For
these reasons, we first need to detect the potential candi-
dates for root filesystems. We achieve this by searching for
key directories (e.g., /bin/, /sbin/, /etc/, /usr/)
and for key files (e.g., /init, /linuxrc, /bin/sh,
/bin/bash, /bin/dash, /bin/busybox). Once we
discover such files and folders relative to a directory within
the unpacked firmware, we select that particular directory as
the root filesystem point. There are also cases where it is hard
or impossible to detect the root filesystem. A possible reason
for this is that some firmware updates are just partial and do
not provide a complete system. We extract each detected root
filesystem and pack it as a standalone root filesystem ready
for emulation.

Unpacking firmware images can produce “broken” root
filesystems which we attempt to fix. Additionally, in order
to start the web server within the root filesystem, we need to
detect the web server type, its configuration, and the document
root. For these reasons, we have to use heuristics on the
candidate root filesystems and apply transformations before
we can use them for emulation and analysis.

1) Filesystem Sanitization: Unpacking firmware packages
is not a perfect procedure. First, unpacking tools sometimes
have defects. Second, some firmware images have to be
unpacked using an imperfect “brute force” approach [24]. Fi-
nally, some vendors customize archives or filesystem formats.
For example, some filesystems have symbolic links that are
incorrectly unpacked because they were represented as text
files containing the target of the link.10 All these lead to an
incorrect unpacking and thus the unpacked firmware image
differs from the filesystem representation intended to be on
the device. This reduces the chances of successful emulation
and therefore we need a sanitization phase.

This sanitization phase is performed by scripts that tra-
verse unpacked firmware filesystems and fix such problems.
Sometimes, there are multiple ways to fix a single unpacked
firmware. This results in multiple root filesystems to be submit-
ted for emulation, increasing our chances of proper emulation
of a given firmware. Implementing these heuristics added a
13% processing overhead. At the same time, it allowed us to

10For example, the symbolic link /usr/bin/boa ->
/bin/busybox is represented with a text file named /usr/bin/boa that
contains the string /bin/busybox.

5

increase the successful emulations by 2% and the successful
web server launches by 11%.

2) Web Server Heuristics: Within the firmware, we lo-
cate web server binaries and their related configuration files
(e.g., boa.conf, lighttpd.conf).11 The path of the
web server and its configuration file is sufficient to start
the web server using a command such as /bin/boa -f
/etc/boa/boa.conf (a real example from our dataset).
Additionally, we extract important settings from the configu-
ration files (e.g., the document root).

Sometimes, we miss important parameters which are re-
quired to properly start the web server, such as the document
root path or the CGI path. Often this happens because of a
missing configuration file (e.g., partial firmware update) or
because the parameters are supplied via the command line from
a script which is not available. In these cases, we experiment
with all the potential document roots of the firmware. To find
a potential document root (within the root filesystem) we first
search for index files (e.g., index.html, default.html)
with possible file extensions (HTML, SHTML, PHP, ASP,
CGI). Then, we build a set of longest common prefix directo-
ries of these files. This can result in multiple document root
directories, for example a second document root can be found
in a recovery partition. Once we discover the document roots,
we prepare the possible commands to start the web server.
With this, we increase the chances of bringing the web server
up and operational.

We also build an optimized site map for each such docu-
ment root directory. We use the site maps to hint the dynamic
analysis tools which URLs they have to analyze. In general,
dynamic analysis tools crawl the web application to discover
its site map. However, this is inefficient and can easily miss
some pages and even whole sets of vulnerabilities [34]. Thus,
we instruct the tools to restrict their analysis to the supplied site
map and we do this for multiple reasons. First, it significantly
lowers the time required to complete the dynamic analysis.
No time is wasted to analyze uninteresting files, such as
image files, or to (inefficiently) crawl the web application [34].
Second, it reduces the chances for the web interface or the
emulator to crash by limiting the resource load, e.g., number of
requested files. Third, it increases the chances that the files that
are reported as vulnerable by static analysis will also undergo
dynamic analysis.

There are several possible improvements to our tests.
Restricting the site map allows to complete tests in reason-
able time but may miss URLs when content is dynamically
generated or monolithic web server binaries are used. Another
improvement would be to use a tool like ConfigRE [82] to
automatically infer configuration files.12

C. Analysis Phase

Once the filesystems are prepared, we emulate each of them
in an analysis Virtual Machine (VM) where dynamic testing
is performed (Figure 3 and Section II-B). We also submit
the document roots to the static analyzers (Section II-A).

11Namely: httpd, boa, lighttpd, thttpd, minihttpd, webs,
goahead.

12Unfortunately, ConfigRE is not available anymore.

This phase is completely automated and scales well as each
firmware image can be analyzed independently.

D. Results Collection and Analysis

After dynamic and static analysis phases are completed, we
obtain the analysis reports from the security analysis tools. We
also collect several logs that can help us make further analysis
as well as improve our framework. These are typically required
to debug the analysis tools or our emulation environment.
For instance, we collect SSH communication logs with the
emulator host, changes in the firmware filesystem, and capture
the network traffic of the interaction with the web interface.

a) File systems changes: We capture a snapshot of the
emulated filesystem at several different points in time. We do
this (i) before starting the emulation, (ii) after emulation is
started, and (iii) after dynamic analysis is completed. Then, we
perform a filesystem diff among these snapshots. Interesting
changes are included in both log files and new files. Log files
are interesting to collect in case a manual investigation is
needed. New files can be the consequence of a OS command
injection or more generally of a Remote Code Execution
(RCE) vulnerability triggered during the dynamic analysis
phase. This often occurs when dynamic testing tools try to
inject commands (e.g., touch <filename>). Sometimes,
the command injection can be successful but not detected by
the analysis tools. However, it is easy to detect such cases with
the filesystem diff.

b) Capturing communications: Performing dynamic
analysis involves a lot of input and output data between the
(emulated) device and the dynamic analysis tool. Capturing the
raw input and output of the communication allows to increase
accountability in case of emulation problem.

For instance, a successful OS command injection can go un-
detected by the tools. Also, such vulnerability can be difficult
to verify, even in a “white box” testing approach (Section II-C).
Once the testing phase is over, it can be discovered that a
command injection was, in fact, successful. In such case, we
need to rewind through all HTTP transactions to find the input
triggering the particular vulnerability and afterward we can
look for incriminating inputs and parameters (e.g., a touch
command).

The testing tools often behave like fuzzers as they try
many malformed inputs one after the other. Because of this,
a detected vulnerability may not be a direct result of the last
input. For example, it can be a result of the combination of
several previous inputs. It is therefore important to recover all
these previous inputs in order to successfully reproduce the
vulnerability.

E. Results Exploitation

After collecting all the details of the analysis phase, we per-
form several steps to exploit these results. First, we validate the
high impact vulnerabilities by hand and try to create a proof-of-
concept exploit. This could be fully automatized in the future,
as was done for other fields of vulnerability research [12].
Unfortunately, none of the tools we currently use provide such
functionality. Additionally, from the static analysis reports we
manually select the high impact vulnerabilities (e.g., command

6

Figure 3: Overview of one analysis environment for Linux armel with a 2.6 kernel.

injection, XSS, CSRF) and the files they impact. We then use
these to explicitly drive the dynamic analysis tools and aim
mainly at two things: (i) get the dynamic analysis tools to
find the vulnerabilities they missed (if they did) and (ii) find
the bugs or limitations that prevented the dynamic tools to
discover these vulnerabilities in the first place. Even though
manual analysis does not scale, it can help uncover additional
nontrivial vulnerabilities (see Table IX). Finally, we summarize
all our findings in vulnerability reports to be submitted as
CVEs.

IV. DATASET

We started with a set of firmware images that we collected
over time from publicly available sources. Table I presents
details about the counts of the firmware images each of the
phases in our framework.

First, we chose the firmware instances which were suc-
cessfully unpacked and which were Linux-based embedded
systems (1925). These were the systems which seem the easiest
to emulate. Then, we selected firmware instances that clearly
contained a web server binary (e.g., httpd, lighttpd)
and typical configuration files (e.g., lighttpd.conf,
boa.conf). In addition to these, we also chose firmware
images that included server-side or client-side code associated
with web interfaces (e.g., HTML, JS, PHP, CGI). Once
we applied all the heuristics to the firmware candidates (1580),
we tried to chroot to them and start their web interface
emulation. Unfortunately, we were able to chroot to only a
part of the firmware candidates (488). Then, we were able
to start the embedded web interfaces only for a part of the
firmware images which successfully chrooted (246). Finally,
we were able to discover high impact vulnerabilities only in a

part of all the web interfaces that were successfully emulated
(185).

Challenges and Limitations: Inevitably, our dataset and the
heuristics we apply lead to a bias. First, it almost only contains
firmware images that are publicly available online. Second,
Linux-based devices only account for a portion of all em-
bedded systems. Third, because we use pre-compiled Debian
Squeeze images from [57] we performed our tests mainly on
ARM, MIPS and MIPSel firmware images. However, as we
present in Table II, adding support for additional architecture
should be straightforward and requires mainly engineering
effort. For example, when pre-compiling the Debian for archi-
tectures in Table II and using mainline QEMU version with
additional patches, our framework could ideally support the
emulation of ≈ 97% of the firmware images in our dataset.
Finally, there exist firmware images running as monolithic
software or embedding web servers which we currently do
not detect or support. We are aware of this bias and the results
herein should be interpreted without generalizing them to all
embedded systems. In essence, these choices were needed to
perform this study and it will be an interesting future work to
extend the study to more diverse firmware images.

V. RESULTS AND CASE STUDIES

A. Summary of Discovered Vulnerabilities

Our automated system performed both static and dynamic
analysis of embedded web interfaces inside 1925 firmware
images from 54 vendors. We found serious vulnerabilities in at
least 45 firmware images out of those 246 for which we were
able to emulate the web server. These include 225 high impact
vulnerabilities found and verified by dynamic analysis. Static

7

TABLE I: Number of firmware images and corresponding
vendors at each phase of the experiment.

Dataset phase # of FWs
(unique) # of root FS # of vendors

(unique)

Original dataset 1925 – 54
Candidates for chroot
and web interface emulation 1580 1754 49

Improved by heuristics 1580 1982 49
Chroot OK 488 – 17
Web server OK 246 – 11
High impact vulnerabilities
(static + dynamic) 185 – 13

TABLE II: Distribution of CPU architectures, QEMU support
of those CPUs, and the success rates of chroot and web
launch for each architecture. (The failure analysis is detailed
in Section V-F.)

Arch. QEMU
support

Original
firmware Chroot OK Web server OK

ARM mainline 35% 53% 55%
MIPS mainline 19% 21% 17%
MIPSel mainline 17% 26% 28%
Axis CRIS patch [53, 54] 16% – –
bFLT mainline 5% – –
PowerPC mainline 3% – –
Intel 80386 mainline 2% – –
DLink Specific no ≈ 1% – –
Unknown no ≈ 1% – –
Altera Nios II patch [83] � 1% – –
ARC Tangent-A5 no � 1% – –

Total – 1925 488 246

analysis reported 145 unique firmware packages to expose
9046 possible vulnerabilities. Aggregating static and dynamic
analysis reports, a total of 185 firmware images are responsible
for 9271 vulnerabilities, affecting nearly a quarter of vendors
in our dataset.13

B. Static Analysis Vulnerabilities

PHP is one of the most used server-side web programming
languages [35]. Over the past years, many researchers focused
on investigating vulnerabilities in PHP applications and creat-
ing static analysis tools [30, 58]. However, to the best of our
knowledge, we are the first to study the prevalence of PHP
in embedded web interfaces and their security. In our dataset
the 8% of embedded firmware images contain PHP code in
their server-side. We extracted the PHP source code from those
firmware packages and analyzed the code using RIPS. RIPS
reported 145 unique firmware packages to contain at least one
vulnerability and a total of 9046 reported issues. The detailed
breakdown is presented in Table V. We observe that cross-site
scripting and file manipulation constitute the majority of the
discovered vulnerabilities, while command injection (one of
the most serious vulnerability class) ranks third.

TABLE III: Distribution of web server types among the 246
started web server.

Web server % among started web servers

minihttpd 37%
lighttpd 30%
boa 4%
thttpd 3%
empty banner 26%

TABLE IV: Web technologies used by the started web servers
(combinations possible).

Web interface contains % of started web servers

HTML 98%
CGI 57%
PHP 2%
Perl 3%
POSIX shell 11%

C. Dynamic Analysis Vulnerabilities

Our framework was able to perform dynamic security
testing on 246 distinct web interfaces, and the general results
are presented in Table VI. In particular, we discovered 21
firmware packages which are vulnerable to command injection.
The impact of such vulnerabilities can be significant as a large
number of devices may be running these firmware images (e.g.,
Section V-G).

Additionally, we found that 32 firmware packages are
affected by XSS and 37 are vulnerable to CSRF. Even though
XSS and CSRF are usually not considered to be critical
vulnerabilities, they can have a high impact. For example,
Bencsáth et al. [16] were able to completely compromise an
embedded device only by using XSS and CSRF vulnerabilities.

The above vulnerabilities affect the firmware of multiple
type of devices in our dataset, such as SOHO routers, CCTV
cameras, smaller WiFi devices (e.g., SD-cards). Leveraging
tools such as Shodan [69] or ZMap [36], it is possible
to correlate these firmware images to populations of online
devices using multiple correlation techniques [24], which we
leave for future work.

In summary, we found vulnerabilities in roughly one out of
four (24%) of the dynamically tested firmware images, which
demonstrates the viability of our approach.

D. Evaluation of Hosting Web Interfaces

“Hosting” embedded web interfaces seems a promising
approach as it permits testing a web interface without emu-
lating the complete firmware. Indeed, many firmware images
are difficult (or impossible) to emulate. We therefore tested
the “hosting” approach on all the firmware images from our
dataset where our web server heuristics tools could extract
a document root (Section III-B2). The document roots are
then “transplanted” into testing hosts containing a generic web

13Some firmware images contribute to both static and dynamic firmware
counts.

8

TABLE V: Distribution of PHP vulnerabilities reported by
RIPS static analysis. (The typical error rates of each type of
vulnerability can be found in [30].)

Vulnerability type # of issues # of affected FWs

Cross-site scripting 5000 143
File manipulation 1129 98
Command execution 938 41
File inclusion 513 40
File disclosure 461 87
SQL injection 442 10
Possible flow control 171 56
Code execution 141 21
HTTP response splitting 127 27
Unserialize 119 15
POP gadgets 4 4
HTTP header injection 1 1

Total 9046 145 (unique)

TABLE VI: Distribution of dynamic analysis vulnerabilities.
(The vulnerabilities followed by a “†” sign have low severity
and are known to be reported with a very high false positive
rate, therefore they are not mentioned elsewhere in this paper,
including when we mention a total number of vulnerabilities
found.)

Vulnerability type # of issues # of affected FWs

Command execution 51 21
Cross-site scripting 90 32
CSRF 84 37

Sub-total HIGH impact 225 45 (unique)

Cookies w/o HttpOnly † 9 9
No X-Content-Type-Options † 2938 23
No X-Frame-Options † 2893 23
Backup files † 2 1
Application error info † 1 1

Sub-total low impact † 5843 23 (unique)

Total 6068 58 (unique)

server,14 and then the dynamic analysis is performed with the
same tools as for the emulated firmware images.

Table VII shows the high impact vulnerabilities found in
this experiment and also presents a comparison with the em-
ulation approach. We can immediately see that unsurprisingly
the “hosted” analysis allows to test web interfaces from many
more firmware images, but surprisingly it almost only reports
CSRF vulnerabilities. In fact the technique did not allow to
detect any new command injection or XSS vulnerabilities.
We expect that the lack of results for some categories of
vulnerabilities is due to the fact that using the “hosted”
approach with a static web server configuration has some
undesired side effects. For instance, the headers of the HTTP
responses will be different from those of the real device’s web
server, while these headers may have an important security
role (e.g., Cookies w/o HttpOnly, No X-Content-Type-Options,
No X-Frame-Options). In fact, for command execution and
XSS vulnerabilities we had to perform manual interventions
into the hosting environment to make the web interface more
functional. Then we had to rerun the dynamic analysis to

14Ubuntu 14.10, Kernel 3.13, Apache2, PHP 5.5.9, Perl 5.18.2.

discover a part of vulnerabilities already reported by the fully
automated emulation approach. In few instances we had to
install additional apache2 modules, while in some others
we had to disable .htaccess configuration files which came
with the transplanted document roots. Yet in several other cases
we had to adjust a variety of shebang (#!) paths in the
interpreted scripts’ headers to point to the correct interpreter
path of the hosting environment. These manual interventions
clearly do not scale and limit the “hosted” approach. In the
future, we plan to address such limitations with approaches
to automatically reconfigure the “hosting” environment based
on the semantics of the transplanted document root. Overall,
we conclude that both firmware emulation and “hosting” web
interfaces are useful and complementary techniques. Moreover,
whenever the emulation is possible, it finds more vulnerabili-
ties.

TABLE VII: Comparison of firmware images affected by high
impact vulnerabilities found with the Emulated and Chroot
method and the ones found with the Hosted technique. The
firmware and vulnerabilities marked with a ”†” are found
using the Hosted technique, which is not yet integrated in the
fully automated framework. Therefore, they are not aggregated
elsewhere in this paper, including when we mention a total
number of vulnerabilities and affected firmware.

Emulated
(unique FWs)

Hosted
(unique FWs)

Hosted Contribution
(added unique FWs)

Command execution 21 15 † 0
Cross-site scripting 32 13 † 0
CSRF 37 307 † 269

Total tested FWs 246 515 † 269
Total vulnerable FWs 45 307 † 262

E. HTTPS and Other Network Services

We also explored how often embedded devices provide
HTTPS support. In our dataset, nearly 19% of the original
firmware images contained at least one HTTPS certificate. This
provides a lower bound estimate of firmware images that could
provide a web server with HTTPS support.15 Similarly, around
24% of the firmware instances starting an HTTP web server,
also started an HTTPS one. We also expect this number to be
a lower bound estimate as an HTTPS web server might not
start for multiple reasons. It is unfortunate that so few devices
provide HTTPS support.

While in this paper we focus on the security of web
interfaces, we found it interesting to also report on the other
network services that are automatically started during the
dynamic analysis. Indeed, these additional network services
which we detected using netstat16 may be vulnerable on
their own (e.g., TFTP [7], TR-069 [10], RTSP [9], Debug [8]).
For this we compare the netstat output before and after
starting the chroot and the init scripts. This provides a very
precise information on which program is listening on which
port (Table VIII).

15As some devices may generate certificates dynamically.
16Scanning the virtual machine with the NMAP scanner [6] was both too

slow and provided too shallow results.

9

TABLE VIII: Distribution of network services opened by 207
firmware instances out of 488 successfully emulated ones. The
last entry summarizes the 16 unusual port numbers opened by
services such as web, telnetd, ftp or upnp servers.

Port type Port number Service name # of FWs

TCP 554 RTSP 91
TCP 555 RTSP 84
TCP 23 Telnet 60
TCP 53 DNS 23
TCP 22 SSH 15
TCP Others Others 58

Total 207 (unique)

F. Analysis of the Failures

The failures at various stages limit the coverage of the
tested firmware images. For example, Table II shows that ch-
root failed for around 69% of the original firmware images, and
around 50% of the successfully chrooted firmware packages
failed to start the embedded web interface. To increase the
coverage and hence the chances of finding more vulnerabilities
in more firmware images, we have to perform analysis of the
failures and improve our framework.

Such a failure diagnosis is very time consuming [65],
it requires the exploration of the failure symptoms (e.g.,
message patterns, error codes, unstructured or inconsistent
logs). However, this information differs from one system (i.e.,
device, firmware) to another.

Ideally, such fixes should resolve the failures permanently.
However, in practice failures often reoccur [63]. One reason is
that the corrective maintenance activities, failure diagnosis and
solution development can take a long effort. Another reason is
that the deployed solution is not completely effective. Addi-
tionally, failures can become more recurrent in older systems
(e.g., old devices and firmware). Moreover, once the firmware
complexity grows, human analysts become overloaded with the
generated logging or failure information. Therefore, scalable
failure analysis approaches are required

a) Analysis: As mentioned before, during the exper-
iments our framework encountered 1092 firmware images
where chroot failed, and 242 firmware emulations where web
interface launch failed. However, this is too many failures
to analyze manually, and the diversity of the systems makes
automated log analysis challenging. Therefore, we performed
the analysis on a sample of the data and we apply statistical
methods and confidence intervals to reason about failures, their
root causes and to find ways to improve the system. For this,
we consider a 95% confidence level and a ± 10% confidence
interval for the accuracy of estimations. Those parameters
allow to provide coarse grained results while remaining within
a reasonable number of failures to manually analyze.

We analyzed the log samples of 88 randomly selected (out
of 1092) firmware files that failed to chroot. Among those
we found actual chroot failures and cases where chroot was
successful but which we failed to exploit.

There were 36 cases where chroot was actually the cause of
the failure (which we extrapolate to 40.9% ± 9.8% cases out

of 1092). In these sampled logs we found two main reasons
of chroot failure:

• Chroot failed for 10 firmware images because of
exec format errors (extrapolated to 11.3% ± 6.3%
out of 1092 firmware images). Those failures are
the consequence of an incorrect guess of the CPU
architecture or due to a /bin/sh that contain illegal
instructions.17 We believe that those error cases should
be relatively easy to fix, i.e., by changing the QEMU
architecture (e.g., because architecture was improperly
detected in the first place) or improving QEMU (e.g.,
to support, or ignore, non standard instructions).

• Second, chroot failed for 26 samples because the
firmware images were only partial firmware updates
(which we extrapolate to 29.5% ± 9.1% out of 1092).
Such firmware images do not contain any shell or
busybox binary that our framework could chroot to.
Those cases can also be fixed by replacing missing
utilities, however, at this point the firmware under
analysis will start to diverge from the actual device’s
firmware.

The remaining 52 chroot failures were found to be false
positives. In fact, those firmware images did chroot success-
fully but our framework failed to detect this. This can occur in
systems that set the environment in unusual ways or take long
time to respond to chroot and environment queries (timeout).
We therefore extrapolate that 59.1% ± 9.8% of 1092 chroot
failure cases were in fact successfully chrooted. We estimate
that those cases should be relatively easy to fix. The fixes could
include more adaptive timeouts, and more robust handling of
various shells and environments.

In summary, for the chroot failed failures we estimate that
62 samples should be relatively easy to fix, meaning that 70.4%
(± 9.1%) of the failures should be easy to fix fix that would
allow the emulation to advance one step further.

Similarly, we analyzed log samples of 69 randomly selected
(out of 242) firmware files that successfully chrooted but
failed to start the web interface. We found 45 instances where
missing device were the cause of the failure. Some exam-
ples of missing devices are eth1, br0, /dev/gpio,
/dev/mtdblock0. We estimate that fixing the missing de-
vices in the emulator is generally hard, and sometimes even
impossible due to the lack of specification sheets. This also
means that 65.2% ± 9.5% of those 242 web server failures
are in general hard to fix. We also found 15 firmware samples
that failed or hung during the initialization of the emulation.
Some of these errors were “Init is the parent of all processes”
and “init: must be run as PID 1”. The reason for such errors
could be the chrooted nature of the emulation. However, we
expect this not to be too difficult to fix. This translates to
21.8% ± 8.2% of original 242 web interface failure will be
likely easy to fix. Finally, we identified 9 firmware samples
that reached the web interface launch but failed to launch. We
therefore estimate that this is the case for 13.0% ± 6.7% of
firmware images that produced web server failures. Examples
of errors are “(server.c.621) loading plugins finally failed”

17 For example, MIPS processors can have customized opcodes. This is
possible by using User Defined Instruction Sets (UDIs) [52].

10

and “(log.c.118) opening errorlog /tmp/log/lighttpd/error.log
failed: No such file or directory”. However, we estimate this
failure category can be relatively easy to fix.

In summary, for the web server failures we estimate that 24
samples should be relatively easy to fix, meaning that 34.8%
(± 9.6%) of the failures should have easy fixes that would
eventually allow the launch of embedded web interfaces.

b) Further improvements: The failure analysis and de-
termination in large-scale deployments [21] can be improved
and automated in several ways. One way is to perform
log pre-processing [87], log mining [66] and analysis [84].
This approach often uses clustering and machine learning
techniques to classify an unknown execution of the system
based on its logs and based on previously seen logs of that
system [23,67]. Filesystem instrumentation is another approach
to automate the failure analysis [49]. Such an approach is
generic because it does not assume that the system is based on
particular components or existing log files. The failure causes
are determined by looking at differences between file accesses
(e.g., which file, when) under both normal and abnormal
executions. However, these approaches assume that there exist
samples of the analyzed system that runs under normal and
abnormal conditions. Also, some of these approaches require
domain-specific knowledge [66]. These techniques are not
trivial to apply in our case. First, we aim at emulating unknown
firmware images regardless of the type or application domain
of the device for which the firmware is intended. Second, most
of the times we do not have samples of a non-failure run of
the firmware.

Another way to trace and analyze the failures is to use
tracing [31]. For example, strace is a debugging tool that
provides useful diagnostics by tracing system calls and signals.
Unfortunately, strace is broken for stock kernels 2.618,
which also affects the builds for embedded architectures (e.g.,
ARM, MIPS).

Finally, kernel level instrumentation and analysis could be
a reliable approach to monitor [56] and detect the failures
and their root cause. For example, Kprobes [62, 70] can be
used to dynamically monitor any kernel routine and collect
debugging and performance information non-disruptively.19

Unfortunately, Kprobes is often not enabled in default kernels
we used but more importantly it’s support for various CPU
architectures is not stable (at least in some old kernel versions
that we need to use for emulation).

These limitations do not represent themselves research
challenges. However, it takes more than a trivial engineering
effort to address them and overcome their effect in a systematic
and generic manner. We leave the resolution of such limitations
as an engineering challenge for future work.

G. Case Study: Netgear Networking Devices

In the results set we discovered many interesting cases.
One of them is the case of at least 8 different device types
from Netgear, one of the major networking equipment manu-
facturers. First, our dynamic analysis framework automatically

18http://landley.net/aboriginal/news.html
19https://www.kernel.org/doc/Documentation/kprobes.txt

discovered several previously unknown yet important com-
mand injection and XSS vulnerabilities that can be exploited
by non-authenticated users 20. Then, we also manually verified
and confirmed that the discovered vulnerabilities are indeed
exploitable on the emulated interfaces and on some physical
devices we acquired for confirmation.

The affected modules are written in PHP and are used to
write (i.e., store onto the hardware board) and display back to
the user some manufacturer data, such as MAC address and
hardware registers values. These values are supplied by the
user and therefore can be controlled by the attacker. To write
the manufacturer data onto the hardware board, the affected
modules use the unsafe exec call with unsanitized input which
leads to command injection. To display the manufacturer data
back to the user the affected modules use the unsafe echo
with unsanitized input which leads to XSS. The PHP modules
affected by the discovered vulnerabilities do not have a clear
purpose because the information they provide can be accessed
from other pages of the web interface. Also, unless the user or
the attacker knows the affected PHP modules names, the user
cannot reach these modules by browsing the web interfaces
because no other pages link to them. Therefore, one could
speculate that these modules, at best, might be forgotten
debugging files used during development or, at worse, could
be classified as potential backdoors.

Interestingly enough, since the affected modules were writ-
ten in PHP, we were also able to discover these vulnerabilities
by using the static analysis tools such as RIPS. This confirms
that our approach to use a combination of static and dynamic
analysis (Section I-A) is sound and efficient, and combining
them both can drive the dynamic analysis to focus more on
particular modules that are flagged in the static analysis phase.
Once again, the disadvantage of the static analysis tools is
the high number of false positives and the verboseness of the
output. For this reason, if we perform only the static analysis
on these modules we could have missed these vulnerabilities
easily.

An additional manual analysis (Table IX) revealed that
those devices suffer from some more pre-authentication vul-
nerabilities, such as privilege escalation to web admin, unen-
crypted configuration storage and unauthorized configuration
downloads (e.g., WPAx keys, passwords).

Additionally, by using the emulated interfaces we extracted
the web interface keywords that we used to perform searches
on Shodan and Google for potentially affected online devices.
Shodan reported around 500 affected devices, which seem to
be a small population of affected devices connected directly to
the Internet via their WAN interface. However, many wireless
routers are used mainly in WLANs and cannot be found from
the Internet. The WIGLE project provides access to worldwide
scans of wireless networks and can be used to detect devices of
this particular vendor. At the date of this writing, the WIGLE
project reports that several millions 21 of wireless devices from
Netgear are deployed worldwide. However, lacking detailed

20The latest firmware versions for some device types now require authen-
tication to access the vulnerable modules. However, the modules still remain
vulnerable to command injection and XSS triggered by authenticated users
because the root cause problems, i.e., unsafe and unsanitized exec and echo
calls were not actually fixed.

21https://wigle.net/stats#ssidstats

11

http://landley.net/aboriginal/news.html
https://www.kernel.org/doc/Documentation/kprobes.txt
https://wigle.net/stats#ssidstats

TABLE IX: Distribution of vulnerabilities motivating the man-
ual analysis (Section III-E). Firmware images relate to similar
products of one vendor. (These vulnerabilities were manually
found so we don’t consider them when we mention a total
number of vulnerabilities found by our automated framework.)

Vulnerability type # of affected FWs

Privilege escalation (full admin) 19
Unauthorized configuration download 19
Unencrypted configuration storage 19

Total high impact 19 (unique)

information of device types in the WIGLE database, we cannot
exactly tell how many actual devices worldwide are affected
by these particular vulnerabilities.

The Table X lists the SHA-256 and the byte size of each
PHP module that our framework automatically found vulner-
able to the command injection and XSS we detailed above.
These PHP modules can be found in more than 30 firmware
firmware images that are available in total for the affected 8
device types.The names of the affected modules are: board-
Data102.php, boardData103.php, boardDataNA.php, board-
DataWW.php, and boardDataJP.php. The affected devices
are: WG103, WN604, WNDAP350, WNDAP360, WNAP320,
WNAP210, WNDAP660, and WNDAP620. We have reported to
the vendor the command injection and XSS in these modules
and devices as ACSA-2015-001 22. Independently and at the
same time, Chen et al. [20], through manual analysis and cor-
relation, discovered and reported only the command injection
vulnerabilities in a set of devices (partially overlapping with
ours) as CVE-2016-1555 23.

Finally, we have also reported a command injection vul-
nerability in the login handler.php module of all currently
known firmware releases for Netgear ProSafe devices WC9500,
WC7600, and WC7520. This vulnerability was reported to the
vendor as ACSA-2015-002 24 and we have strong static
analysis indicators that Netgear ProSafe WMS5316 is also
affected by the this vulnerability. Shodan reported less than 20
online devices that correspond to these products. Nevetheless,
these are very expensive devices intended for enterprise, ISP
and telecoms, and their online exposure with a command
injection vulnerability put those core networks at high attack
risks which should at least raise some concern.

H. Case Study: Samsung CCTV Cameras

Another interesting case study is the one of a Samsung
CCTV camera model. The affected camera model has Ethernet
networking, provides a web interface and multiple advanced
functions (e.g., face detection and tracking). These cameras
are intended for SOHO and enterprise setups, and cost several
hundreds US dollars. Our system automatically discovered a
command injection and multiple XSS vulnerabilities in their
web interfaces as follows. First, our system applied the static
analysis. Since a part of the camera’s web interface consists of

22http://firmware.re/vulns/acsa-2015-001.php
23http://seclists.org/fulldisclosure/2016/Feb/112
24http://firmware.re/vulns/acsa-2015-002.php

TABLE X: List of the SHA-256 and the byte size of each PHP
module that our framework automatically found vulnerable to
the command injection and XSS in at least 8 device types from
Netgear.

SHA-256 Byte size

03bd170b6b284f43168dcf9de905ed33ae2edd721554cebec81894a8d5bcdea5 4847
2311b6a83298833d2cf6f6d02f38b04c8f562f3a1b5eb0092476efd025fd4004 3646
325c7fe9555a62c6ed49358c27881b1f32c26a93f8b9b91214e8d70d595d89bb 4838
33a29622653ef3abc1f178d3f3670f55151137941275f187a7c03ec2acdb5caa 4922
35c60f56ffc79f00bf1322830ecf65c9a8ca8e0f1d68692ee1b5b9df1bdef7c1 4914
40fbb495a60c5ae68d83d3ae69197ac03ac50a8201d2bccd23f296361b0040b9 3582
453658ac170bda80a6539dcb6d42451f30644c7b089308352a0b3422d21bdc01 5039
4679aca17917ab9b074d38217bb5302e33a725ad179f2e4aaf2e7233ec6bc842 3638
56714f750ddb8e2cf8c9c3a8f310ac226b5b0c6b2ab3f93175826a42ea0f4545 4166
70fe0274d6616126e758473b043da37c2635a871e295395e073fb782f955840e 3544
760bde74861b6e48dcbf3e5513aaa721583fbd2e69c93bccb246800e8b9bc1e6 3684
8bf836c5826a1017b339e23411162ef6f6acc34c3df02a8ee9e6df40abe681ff 4964
9f56e5656c137a5ce407eee25bf2405f56b56e69fa89c61cdfd65f07bc6600ef 4256
a5ef01368da8588fc4bc72d3faaa20b21c43c0eaa6ef71866b7aa160e531a5b4 3791
dcefcff36f2825333784c86212e0f1b73b25db9db78476d9c75035f51f135ef6 3552

CGI scripts written in PHP, the RIPS tool reported multipled
potential vulnerabilities of different types, including command
injection and XSS. interface (i.e., the web interface is not exclu-
sively implemented by native Then, our system took advantage
of the partial PHP implementation of the web binaries) and
applied the Hosted technique (Section II-D) to transplant the
camera’s web interface onto a Ubuntu Linux host. Finally, our
system used the report from the RIPS tool to focus the dynamic
analysis phase onto the modules contained in the report. As a
result, the dynamic analysis tools were able to confirm that one
particular module of the web interface allowed an attacker to
successfully perform command injection and XSS. We reported
this vulnerability to the vendor as ACSA-2015-003 25. This
once again confirms that our approach to use a combination
of static and dynamic analysis (Section I-A) is sound and
efficient. Also, it also confirms that “hosting” the embedded
web interfaces non-natively is effective. We show it can suc-
cessfully achieve discovery and confirmation of high-severity
vulnerability similar to the emulation-based approaches.

VI. DISCUSSION

A. Limitations of the Emulation Techniques

Although our approach is able to discover vulnerabilities
in embedded web interfaces that run inside an emulated
environment, setting up such environments is not always
straightforward. We discuss several limitations we encountered
and outline how they could be handled in the future. In
fact, many of these limitations are the results of the failures
analyzed previously in Section V-F.

1) Forced Emulation: Even though most of the firmware
instances in our dataset are for Linux-based devices, they are
quite heterogeneous and their actual binaries vary. Examples
include init programs that have different set of command
parameters or strictly requiring to run as PID 0, which is not
the case in a chrooted environment. Ideally, there should be
a simple and uniform way to start the firmware, but this is
not the case in practice as devices are very heterogeneous. In
addition to this, unless we have access to the bootloader of each

25http://firmware.re/vulns/acsa-2015-003.php

12

http://firmware.re/vulns/acsa-2015-001.php
http://seclists.org/fulldisclosure/2016/Feb/112
http://firmware.re/vulns/acsa-2015-002.php
http://firmware.re/vulns/acsa-2015-003.php

individual device, there is no reliable way to reproduce the boot
sequence. Obtaining and reverse-engineering the bootloaders
themselves is not trivial. This usually requires access to the
device, use of physical memory dumping techniques, and
manual reverse-engineering, which is outside the scope of this
paper. We emulate firmware images by forcefully invoking its
default initialization scripts, (e.g., /etc/init, /etc/rc),
however, sometimes, these scripts do not exist or fail to execute
correctly leading to an incomplete system configuration. For
instance, it may fail to mount the /etc_ro partition at the
/etc mount point, and then, the web server is missing some
required files (e.g., /etc/passwd).

2) Emulated Web Server Environment: Even if the basic
emulation was successful, other problems with the emulated
web server environment are common. For example, an em-
ulated web interface return for many requests the HTTP
response codes 500 Internal Server Error or 404
Not Found. Manual inspection of the cases when code
500 is returned suggests that some scripts or binaries are
either missing from the root filesystem or do not have proper
permissions. Code 404 was often returned due to the wrong
web server configuration file being loaded, which lead to the
document root pointing at a wrong directory. To overcome this,
we try to emulate the web interface of a firmware using all
combinations of the configuration files and document roots we
find in this firmware.

3) Imperfect Emulation: The ability to emulate embedded
software in QEMU is incredibly valuable, but comes at a
price. One big drawback is that some very basic peripheral
devices are missing in the emulated environments. A very
common emulation failure is related to the lack of non volatile
memories (e.g., NVRAM) [29,44]. Such memories are used by
embedded devices to store boot and configuration information.
Several approaches to overcome such limitations exist. One is
to have an universal or on-the-fly NVRAM emulator plugged
into QEMU, for example instrumented at kernel-level or imple-
mented using Avatar [85]. Another approach is to intercept
calls to the commonly used libnvram functions (such as
nvram_get and nvram_set) and return fake data [29,44].
While these tools are easy to compile and use, it is not trivial
to automatically generate meaningful application data without
producing false alerts or breaking the emulation. We plan to
integrate these techniques in our future versions.

B. Outdated Firmware Versions

One concern about our approach could be that the firmware
files in our experiments were not necessarily the latest available
versions. This in turn could imply that the vulnerabilities we
automatically discovered are not necessarily applicable to the
latest versions of the affected firmware images. Although such
a concern is legitimate, in practice there are several caveats to
this concern that in our view still make our methodology and
findings valuable.

First, it is important to know and understand how many
embedded devices that are vulnerable or have outdated firm-
ware will update their firmware in such a case. On the one
hand, many embedded devices are SOHO devices which means
that the users decide if and when they will upgrade their
firmware version. On the other hand, researchers showed

that even simple improvements, such as changing the default
credentials of the embedded devices, are not always applied
by the users during long period of times [42]. For example,
it was found that 96% of accessible devices having factory
default root passwords still remain vulnerable after a period of
4 months [28]. On the other hand, a firmware download and
update is a more complex task than a change of the default
credentials. Therefore, unless the devices are connected to the
Internet and have a firmware auto-update functionality that is
effectively enabled, it is reasonable to expect that in practice
the firmware updates are applied far less than expected/desired,
or are applied at best as often and as fast as the credentials
are updated.

Second, even though the embedded devices should keep
their firmware updated, this in not always feasible, e.g., for
field-deployed devices. Such devices often cannot be remotely
updated and require the physical access of an operator in the
field to do so. However, even in such cases the upgrade of the
firmware is not always straightforward. Cerrudo [19] showed
that in some cases embedded devices could be buried in the
roadway, making firmware updates that require physical access
very challenging, if not impossible.

Third, even the latest firmware releases could still contain
the very same vulnerabilities as the older versions [26]. There-
fore, vulnerabilities discovered in older firmware versions can
prove extremely useful as direct input or mutation template for
testing the latest firmware versions.

In summary, we believe that a security study performed
only on the latest firmware releases could provide important
details for securing embedded devices (e.g., critical vulnera-
bility discovery, patching 0-days). At the same time, however,
such a study would not be completely accurate as many
existing devices run outdated firmware versions. Ultimately,
the goal of this work is not to find (all) the vulnerabilities in
(all) the latest firmware versions. The main goal is to provide
a methodology and insights that can be applied on any firm-
ware version in order to automatically discover vulnerabilities
in embedded firmware, and in particular in embedded web
interfaces.

C. Manual Interventions

Our framework is designed to be as automated as possible.
However, manual interventions are sometimes necessary or
even desirable. First, for each newly encountered web server
type we need to write a tool, which will then automatically
detect, parse, and launch instances of this particular web
server. Automation of such a step could be improved, for
example, using ConfigRE [82]. Second, manual inspection
of the results and of the affected software allows to confirm
vulnerabilities and sometimes leads to finding new ones. This
is part of the power of our methodology, i.e., pointing the finger
on likely vulnerable software. In our experience this last phase
was very productive as there were only a few false positives
left after the dynamic analysis phase.

D. Ethical Aspects

In our study we are particularly careful to work within legal
and ethical boundaries. First, we strictly follow the responsible
disclosure policy. To this end, we try our best to notify vendors,

13

CERTs and Vulnerability Contribution Programs (VCP) for
vulnerabilities we discover during our experiments. We also
try to assist vendors in reproducing these issues. Second, as
previously mentioned, our framework does not operate on live
embedded devices, rather on their emulations. This avoids both
accessing devices we do not own and breaching the terms of
use. Also, there is no risk to interfere unintentionally with
devices which are not under our control or to “brick” an actual
device. In limited cases when confirmation of an issue requires
a physical device, we do perform such validations on devices
under our control and in an isolated test environment.

VII. RELATED WORK

Analysis of embedded devices is an active topic. Costin
et al. [24] performed a large scale firmware analysis, but
they mainly focused on simple static analysis. Zaddach and
Costin [86] demonstrated the feasibility of dynamic analysis
and vulnerability discovery in embedded devices via firmware
emulation using QEMU and custom-built kernels. Bojinov et
al. [17] studied the security of embedded management inter-
faces, but they performed the analysis manually and focused
only on 21 devices. Similar studies were recently preformed
on popular SOHO devices [48, 55] each performing manual
analysis on about ten devices and uncovering flaws in almost
all of them. In contrast, we show that by automating the
analysis we can scale the analysis to hundreds of devices and
find thousands of vulnerabilities.

In addition, several projects scanned the Internet, or parts of
it, to discover vulnerabilities in embedded systems [28,45,69].
In most cases these approaches lead to discovery of devices
with known vulnerabilities such as default passwords or keys,
and in several notable cases helped the discovery of new
flaws [45]. However, such approaches raise serious ethical
problems and in general only allow to find devices that are
vulnerable to known or manually found bugs.

Web static analysis is a very active field of research, where
Huang et al. [51] were the first to statically search for web
vulnerabilities in the context of PHP applications. Balzarotti
et al. [13] showed that even if the developer performs certain
sanitization on input data, XSS attacks are still possible due to
the deficiencies in the sanitization routines. Pixy [58] proposed
a technique based on data flow analysis for detecting XSS,
SQL, or command injections. RIPS [30], on the other hand,
is a static code analysis tool that detects multiple types of
injection vulnerabilities. While we could use any of those
detection mechanisms we only used RIPS which has low false
positives and is still openly available.

Several recent works rely on emulation to discover or
verify vulnerabilities in embedded systems. Avatar [85] is
a dynamic analysis framework for firmware security testing
of embedded devices that executes embedded code inside a
QEMU emulator, while the I/O requests to the peripherals
are forwarded to the real device attached to the framework.
Kammerstetter et al. [60] targeted Linux-based embedded
systems that are emulated with a custom kernel which forwards
ioctl requests to the embedded device that runs the normal
kernel. Li et al. [64] proposed a hybrid firmware/hardware
emulation framework to achieve confident SoC verification by
using a transplanted QEMU at BIOS level to directly emu-
late devices upon hardware. Unfortunately, these approaches

require access to the physical devices, which does not scale
as our approach does. Independently and at the same time,
Chen et al. [20] proposed an approach for firmware emulation
and dynamic analysis similar to ours. Although they build and
use instrumented stock kernels, they do not perform extensive
web interfaces testing and do not automatically discover new
vulnerabilities as they only test for known vulnerabilities, for
example using Metasploit. Meanwhile, Firmalice [77] is a
static binary analysis framework that supports the analysis of
firmware files for embedded devices. It was shown to detect
three known backdoors in real devices, but it requires manual
annotations and is therefore challenging to use in a large scale
analysis.

Fong and Okun [40] took a closer look at web application
scanners, their functions and definitions, and proposed a tax-
onomy of software security tools. Bau et al. [15] conducted an
evaluation of the state of the art of tools for automated “black
box” web application vulnerability testing. While results have
shown the promise and effectiveness of such tools, they also
uncovered many limitations of existing tools. Similarly, Doupé
et al. [34] performed an evaluation of eleven “black box” web
pen-testing tools, both open-source and commercial. Authors
found that crawling ability is as important and challenging
as vulnerability detection techniques and many classes of
vulnerabilities are completely overlooked. Holm et al. [46]
performed a quantitative evaluation of vulnerability scanning.
The authors showed that automated scanning is unable to
accurately identify all vulnerabilities, and that the scans of
Linux-based hosts (i.e., many embedded systems are known to
be Linux-based) are less accurate than of the Windows-based
ones. Doupé et al. [33] proposed improvements to such “black
box” tools by observing the web application state from the
outside, which allows them to extend their testing coverage
and to precisely control the “black box” web vulnerability
scanner. They implemented the technique in a crawler linked
to a fuzzing component of an open-source web pen-testing
tool. Such improvements to the analysis tools may improve
our framework as we can integrate them in our analysis phase.

Finally, Gourdin et al. [43] addressed the challenges of
building secure embedded web interfaces with WebDroid, the
first framework specifically dedicated to this purpose. Such
frameworks can be used by the vendors of embedded systems
to provide secure web interfaces within their devices.

VIII. CONCLUSION AND FUTURE WORK

In this work, we presented a new methodology to perform
large scale security analysis of web interfaces within embedded
devices. For this, we designed the first framework that achieves
scalable and automated dynamic analysis of firmwares, and
that was precisely developed to discover vulnerabilities in
embedded devices using the software-only approach. Our
framework leverages off-the-shelf static and dynamic analysis
tools. Because of the limitations in static analysis tools, we
created a mechanism for automatic emulation of firmware
images. While perfectly emulating unknown hardware will
probably remain an open problem, we were able to emulate
systems well enough to test the web interfaces of 246 firmware
images. Our framework found serious vulnerabilities in at
least 24% of the web interfaces we were able to emulate,
including 225 high impact vulnerabilities found and verified

14

by dynamic analysis. When counting static analysis, 9271
issues were found in 185 firmware images, affecting nearly a
quarter of vendors in our dataset. These results show that some
embedded systems manufacturers need to start considering
security in their software life-cycle, e.g., using off-the-shelf
security scanners as part of their product quality assurance.

Our work motivates the need for additional research in
several areas. First, there are probably ways to improving
emulation quality of unknown hardware. Second, automatically
synthesizing web exploits would make vulnerability confir-
mation easier. Finally, responsibly disclosing vulnerabilities is
time consuming and difficult (and in our experience is worse
with vendors of SOHO devices). It becomes an open challenge
when it needs to be performed at a large scale.

We plan to continue collecting new data and extend our
analysis to all the firmware images we can access in the future.
Further we want to extend our system with more sophisticated
dynamic analysis techniques that allow a more in-depth study
of vulnerabilities within each firmware image.

REFERENCES

[1] http://www.arachni-scanner.com/.
[2] https://code.google.com/p/zaproxy/.
[3] http://w3af.org/.
[4] http://owasp.org/index.php/Top 10 2013-A1-Injection.
[5] http://www.darrinhodges.com/chroot-voodoo/.
[6] http://nmap.org.
[7] CVE-2007-1435, CVE-2011-4821.
[8] CVE-2010-2965, CVE-2014-0659.
[9] CVE-2014-4880, CVE-2013-1606.

[10] CVE-2014-9222.
[11] Internet Census 2012 – Port scanning /0 using insecure embedded

devices. http://internetcensus2012.bitbucket.org.
[12] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley. AEG: Automatic

Exploit Generation. In ISOC Network and Distributed System Security
Symposium (NDSS), 2011.

[13] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda,
C. Kruegel, and G. Vigna. Saner: Composing Static and Dynamic
Analysis to Validate Sanitization in Web Applications. In IEEE
Symposium on Security and Privacy, 2008.

[14] A. Barth, C. Jackson, and J. C. Mitchell. Robust Defenses for
Cross-Site Request Forgery. In ACM Conference on Computer and
Communications Security (CCS), 2008.

[15] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell. State of the Art:
Automated Black-Box Web Application Vulnerability Testing. In IEEE
Symposium on Security and Privacy, 2010.

[16] B. Bencsáth, L. Buttyán, and T. Paulik. XCS Based Hidden Firmware
Modification on Embedded Dievices. In International Conference
on Software, Telecommunications and Computer Networks (SoftCOM),
2011.

[17] H. Bojinov, E. Bursztein, E. Lovett, and D. Boneh. Embedded
management interfaces: Emerging massive insecurity. BlackHat USA,
2009.

[18] S. W. Boyd and A. D. Keromytis. SQLrand: Preventing SQL Injection
Attacks. In Applied Cryptography and Network Security, 2004.

[19] C. Cerrudo. Hacking US (and UK, Australia, France, etc.)
– Traffic Control Systems. http://blog.ioactive.com/2014/04/
hacking-us-and-uk-australia-france-etc.html, Apr 2014.

[20] D. D. Chen, M. Egele, M. Woo, and D. Brumley. Towards Automated
Dynamic Analysis for Linux-based Embedded Firmware. In ISOC
Network and Distributed System Security Symposium (NDSS), 2016.

[21] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer. Pin-
point: Problem determination in large, dynamic internet services. In
Dependable Systems and Networks, 2002. DSN 2002. Proceedings.
International Conference on, pages 595–604. IEEE, 2002.

[22] S. Christey and R. A. Martin. Vulnerability type distributions in CVE.
Mitre Report, 2007.

[23] I. Cohen, J. S. Chase, M. Goldszmidt, T. Kelly, and J. Symons.
Correlating Instrumentation Data to System States: A Building Block

for Automated Diagnosis and Control. In OSDI, volume 4, pages 16–16,
2004.

[24] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti. A Large-Scale
Analysis of the Security of Embedded Firmwares. In USENIX Security
Symposium, 2014.

[25] A. Costin, A. Zarras, and A. Francillon. Automated Dynamic Firmware
Analysis at Scale: A Case Study on Embedded Web Interfaces. In
Proceedings of the 11th ACM Asia Conference on Computer and
Communications Security (AsiaCCS). ACM, 2016.

[26] A. Cui, M. Costello, and S. J. Stolfo. When Firmware Modifications
Attack: A Case Study of Embedded Exploitation. In ISOC Network
and Distributed System Security Symposium (NDSS), 2013.

[27] A. Cui, J. Kataria, and S. J. Stofo. From Prey to Hunter: Transforming
Legacy Embedded Devices into Exploitation Sensor Grids. In Annual
Computer Security Applications Conference (ACSAC), 2011.

[28] A. Cui and S. J. Stolfo. A Quantitative Analysis of the Insecurity of
Embedded Network Devices: Results of a Wide-area Scan. In Annual
Computer Security Applications Conference (ACSAC), 2010.

[29] Z. Cutlip. Emulating and Debugging Workspace. http://shadow-file.
blogspot.fr/2013/12/emulating-and-debugging-workspace.html.

[30] J. Dahse and T. Holz. Simulation of Built-in PHP Features for Precise
Static Code Analysis. In ISOC Network and Distributed System Security
Symposium (NDSS), 2014.

[31] X. Ding, H. Huang, R. B. Jennings, Y. Roan, S. Sahu, and A. A. Shaikh.
Automatic software fault diagnosis by exploiting application signatures,
Jan 2011. US Patent 7,877,642.

[32] A. Doupé, B. Boe, C. Kruegel, and G. Vigna. Fear the EAR:
Discovering and Mitigating Execution After Redirect Vulnerabilities.
In ACM Conference on Computer and Communications Security (CCS),
2011.

[33] A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna. Enemy of the State: A
State-Aware Black-Box Web Vulnerability Scanner. In USENIX Security
Symposium, 2012.

[34] A. Doupé, M. Cova, and G. Vigna. Why Johnny Can’t Pentest: An
Analysis of Black-box Web Vulnerability Scanners. In Detection of
Intrusions and Malware, and Vulnerability Assessment (DIMVA). 2010.

[35] L. Duflot, Y.-A. Perez, and B. Morin. Netcraft. PHP Usage Stats. http:
//www.php.net/usage.php, June 2007.

[36] Z. Durumeric, E. Wustrow, and J. A. Halderman. ZMap: Fast Internet-
wide Scanning and Its Security Applications. In USENIX Security
Symposium, 2013.

[37] F. B. et al. QEMU – Quick EMUlator. http://www.qemu.org.
[38] V. Felmetsger, L. Cavedon, C. Kruegel, and G. Vigna. Toward

automated detection of logic vulnerabilities in web applications. In
USENIX Security Symposium, 2010.

[39] Firehost. The Superfecta Report Special Edition. Superfecta Report,
2013.

[40] E. Fong and V. Okun. Web Application Scanners: Definitions and
Functions. In Annual Hawaii International Conference on System
Sciences (HICSS), 2007.

[41] D. Geer. Cybersecurity as Realpolitik. BlackHat, 2014.
[42] B. Ghena, W. Beyer, A. Hillaker, J. Pevarnek, and J. A. Halderman.

Green Lights Forever: Analyzing the Security of Traffic Infrastructure.
In USENIX Workshop on Offensive Technologies (WOOT), 2014.

[43] B. Gourdin, C. Soman, H. Bojinov, and E. Bursztein. Toward Secure
Embedded Web Interfaces. In USENIX Security Symposium, 2011.

[44] C. Heffner. Emulating NVRAM in Qemu. http://www.devttys0.com/
2012/03/emulating-nvram-in-qemu/.

[45] N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman. Mining
Your Ps and Qs: Detection of Widespread Weak Keys in Network
Devices. In USENIX Security Symposium, 2012.

[46] H. Holm, T. Sommestad, J. Almroth, and M. Persson. A quantitative
evaluation of vulnerability scanning. Information Management &
Computer Security, 19(4):231–247, 2011.

[47] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and M. Veanes.
Fast and Precise Sanitizer Analysis with BEK. In USENIX Security
Symposium, 2011.

[48] HP-Fortify-ShadowLabs. Report: Internet of Things Research
Study. http://h20195.www2.hp.com/V2/GetDocument.aspx?docname=
4AA5-4759ENW, 2014.

[49] L. Huang and K. Wong. Assisting failure diagnosis through filesystem
instrumentation. In Proceedings of the 2011 Conference of the Center
for Advanced Studies on Collaborative Research, pages 160–174, 2011.

[50] Y.-W. Huang, S.-K. Huang, T.-P. Lin, and C.-H. Tsai. Web Application
Security Assessment by Fault Injection and Behavior Monitoring. In
International Conference on World Wide Web (WWW), 2003.

15

http://www.arachni-scanner.com/
https://code.google.com/p/zaproxy/
http://w3af.org/
http://owasp.org/index.php/Top_10_2013-A1-Injection
http://www.darrinhodges.com/chroot-voodoo/
http://nmap.org
http://internetcensus2012.bitbucket.org
http://blog.ioactive.com/2014/04/hacking-us-and-uk-australia-france-etc.html
http://blog.ioactive.com/2014/04/hacking-us-and-uk-australia-france-etc.html
http://shadow-file.blogspot.fr/2013/12/emulating-and-debugging-workspace.html
http://shadow-file.blogspot.fr/2013/12/emulating-and-debugging-workspace.html
http://www.php.net/usage.php
http://www.php.net/usage.php
http://www.qemu.org
http://www.devttys0.com/2012/03/emulating-nvram-in-qemu/
http://www.devttys0.com/2012/03/emulating-nvram-in-qemu/
http://h20195.www2.hp.com/V2/GetDocument.aspx?docname=4AA5-4759ENW
http://h20195.www2.hp.com/V2/GetDocument.aspx?docname=4AA5-4759ENW

[51] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-Y.
Kuo. Securing Web Application Code by Static Analysis and Runtime
Protection. In International Conference on World Wide Web (WWW),
2004.

[52] P. Ienne and R. Leupers. Customizable embedded processors: design
technologies and applications. Academic Press, 2006.

[53] E. Iglesial. CRIS target port of Qemu. http://repo.or.cz/qemu/cris-port.
git.

[54] E. Iglesial. Status of CRIS Architecture Support in Linux Kernel. https:
//lkml.org/lkml/2014/9/15/1082.

[55] Independent Security Evaluators. SOHO Network Equipment (Techni-
cal Report), 2013.

[56] T. Jarboui, J. Arlat, Y. Crouzet, and K. Kanoun. Experimental analysis
of the errors induced into linux by three fault injection techniques.
In Dependable Systems and Networks, 2002. DSN 2002. Proceedings.
International Conference on, pages 331–336. IEEE, 2002.

[57] A. Jarno. Debian pre-compiled images for QEMU. https://people.
debian.org/∼aurel32/qemu/.

[58] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A Static Analysis Tool
for Detecting Web Application Vulnerabilities (Short Paper). In IEEE
Symposium on Security and Privacy, 2006.

[59] N. Jovanovic, C. Kruegel, and E. Kirda. Static analysis for detecting
taint-style vulnerabilities in web applications. Journal of Computer
Security, 18(5):861–907, 2010.

[60] M. Kammerstetter, C. Platzer, and W. Kastner. PROSPECT – Peripheral
Proxying Supported Embedded Code Testing. In ACM Symposium
on Information, Computer and Communications Security (ASIACCS),
2014.

[61] A. Klein. Divide and Conquer: HTTP Response Splitting, Web Cache
Poisoning Attacks and Related Topics. Sanctum whitepaper, 2004.

[62] R. Krishnakumar. Kernel korner: kprobes-a kernel debugger. Linux
Journal, 2005(133):11, 2005.

[63] I. Lee and R. K. Iyer. Diagnosing rediscovered software problems using
symptoms. Software Engineering, IEEE Transactions on, 26(2):113–
127, 2000.

[64] H. Li, D. Tong, K. Huang, and X. Cheng. FEMU: A Firmware-
Based Emulation Framework for SoC Verification. In IEEE/ACM/IFIP
International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ ISSS), 2010.

[65] J. Li, T. Stålhane, J. M. Kristiansen, and R. Conradi. Cost drivers of
software corrective maintenance: An empirical study in two companies.
In Software Maintenance (ICSM), 2010 IEEE International Conference
on, pages 1–8. IEEE, 2010.

[66] C. Lim, N. Singh, and S. Yajnik. A log mining approach to failure
analysis of enterprise telephony systems. In Dependable Systems and
Networks With FTCS and DCC, 2008. DSN 2008. IEEE International
Conference on, pages 398–403. IEEE, 2008.

[67] T.-T. Y. Lin and D. P. Siewiorek. Error log analysis: statistical
modeling and heuristic trend analysis. Reliability, IEEE Transactions
on, 39(4):419–432, 1990.

[68] B. Livshits and S. Chong. Towards Fully Automatic Placement of
Security Sanitizers and Declassifiers. In ACM Symposium on Principles
of Programming Languages (POPL), 2013.

[69] J. Matherly. SHODAN – Computer Search Engine. http://www.shodan.
io.

[70] A. Mavinakayanahalli, P. Panchamukhi, J. Keniston, A. Keshavamurthy,
and M. Hiramatsu. Probing the guts of kprobes. In Linux Symposium,
volume 6, 2006.

[71] M. Niemietz and J. Schwenk. Owning your home network: Router
security revisited. CoRR, abs/1506.04112, 2015.

[72] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz. Cross-
Architecture Bug Search in Binary Executables . In IEEE Symposium
on Security and Privacy, San Jose, CA, May 2015.

[73] J. Prescatore. Gartner, quoted in ComputerWorld, 2005.
[74] M. Samuel, P. Saxena, and D. Song. Context-Sensitive Auto-

Sanitization in Web Templating Languages Using Type Qualifiers. In
ACM Conference on Computer and Communications Security (CCS),
2011.

[75] P. Saxena, D. Molnar, and B. Livshits. SCRIPTGARD: Automatic
Context-Sensitive Sanitization for Large-Scale Legacy Web Applica-
tions. In ACM Conference on Computer and Communications Security
(CCS), 2011.

[76] F. Schuster and T. Holz. Towards reducing the attack surface of software
backdoors. In ACM Conference on Computer and Communications
Security (CCS), 2013.

[77] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna. Fir-
malice: Automatic Detection of Authentication Bypass Vulnerabilities
in Binary Firmware. In ISOC Network and Distributed System Security
Symposium (NDSS), 2015.

[78] Z. Su and G. Wassermann. The Essence of Command Injection Attacks
in Web Applications. In ACM Symposium on Principles of Programming
Languages (POPL), 2006.

[79] Tripwire vulnerability and exposure research team (VERT). SOHO
Wireless Router (in)Security. White Paper, 2014.

[80] J. Viega and H. Thompson. The state of embedded-device security
(spoiler alert: It’s bad). IEEE Security & Privacy, 10(5):68–70, 2012.

[81] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna.
Cross Site Scripting Prevention with Dynamic Data Tainting and Static
Analysis. In ISOC Network and Distributed System Security Symposium
(NDSS), 2007.

[82] R. Wang, X. Wang, K. Zhang, and Z. Li. Towards automatic reverse
engineering of software security configurations. In ACM Conference on
Computer and Communications Security (CCS), 2008.

[83] C. Wulff. Altera NiosII Support. https://lists.gnu.org/archive/html/
qemu-devel/2012-09/msg01229.html.

[84] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan. Detecting
large-scale system problems by mining console logs. In Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles,
pages 117–132. ACM, 2009.

[85] J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti. Avatar:
A Framework to Support Dynamic Security Analysis of Embedded
Systems’ Firmwares. In ISOC Network and Distributed System Security
Symposium (NDSS), 2014.

[86] J. Zaddach and A. Costin. Embedded Devices Security and Firmware
Reverse Engineering. BlackHat USA, 2013.

[87] Z. Zheng, Z. Lan, B. H. Park, and A. Geist. System log pre-processing
to improve failure prediction. In Dependable Systems & Networks,
2009. DSN’09. IEEE/IFIP International Conference on, pages 572–577.
IEEE, 2009.

16

http://repo.or.cz/qemu/cris-port.git
http://repo.or.cz/qemu/cris-port.git
https://lkml.org/lkml/2014/9/15/1082
https://lkml.org/lkml/2014/9/15/1082
https://people.debian.org/~aurel32/qemu/
https://people.debian.org/~aurel32/qemu/
http://www.shodan.io
http://www.shodan.io
https://lists.gnu.org/archive/html/qemu-devel/2012-09/msg01229.html
https://lists.gnu.org/archive/html/qemu-devel/2012-09/msg01229.html

	I Introduction
	I-A Overview of our Approach
	I-B Contributions
	I-C Outline

	II Exploring Techniques to Analyze Embedded Web Interfaces
	II-A Static Analysis
	II-B Dynamic Analysis
	II-C Limitations of Analysis Tools
	II-D Running Web Interfaces
	II-D1 Hosting Web Interfaces Non-Natively
	II-D2 Firmware and Web Interface Emulation

	III Analysis Framework Details
	III-A Firmware Selection
	III-B Filesystem Preparation
	III-B1 Filesystem Sanitization
	III-B2 Web Server Heuristics

	III-C Analysis Phase
	III-D Results Collection and Analysis
	III-E Results Exploitation

	IV Dataset
	V Results and Case Studies
	V-A Summary of Discovered Vulnerabilities
	V-B Static Analysis Vulnerabilities
	V-C Dynamic Analysis Vulnerabilities
	V-D Evaluation of Hosting Web Interfaces
	V-E HTTPS and Other Network Services
	V-F Analysis of the Failures
	V-G Case Study: Netgear Networking Devices
	V-H Case Study: Samsung CCTV Cameras

	VI Discussion
	VI-A Limitations of the Emulation Techniques
	VI-A1 Forced Emulation
	VI-A2 Emulated Web Server Environment
	VI-A3 Imperfect Emulation

	VI-B Outdated Firmware Versions
	VI-C Manual Interventions
	VI-D Ethical Aspects

	VII Related Work
	VIII Conclusion and Future Work
	References

