Bypassing malware detection mechanisms in online banking

Jakub Kałużny
Mateusz Olejarka
Who are we?

- Pentesters @ SecuRing
- Ex-developers
- Experience with:
 - E-banking and mobile banking systems
 - Multi-factor and voice recognition authentication
 - Malware post mortem
Agenda

• Intro
 — Why this topic?
 — How it’s done?
 — Will it blend?
• Vulnerabilities
• Conclusions
• Q&A*
Intro
Why this topic?

- AVs are not reliable
- Users are lazy
- Market gap for new solutions
- A lot of money
How malware works?

- Interaction with browser
 - Web injects
 - Other?
- What it does
 - Steals credentials
 - Changes transaction data
 - Automates attacks
What is online malware detection?

Aim: Detect malware presence

User/browser behaviour

User

Malware

(JS)

Browser

HTTP

Transactions

Signatures

Fingerprint

Fraud detection system

Action: drop or mark as compromised
What are the limits?

Malware detection methods:

• HTTP response signature
• Browser fingerprint
• User/browser behavior
• Server-side behavioral methods
• Fraud detection system
What is the purpose of this report?

- We do not represent any vendor
- We want to show
 — architecture failures
 — implementation errors
- We want to talk about what can be done
Vulnerabilities
Our approach

- USER
- MALWARE
 .feed
- BROWSER
 HTTP
 .analyze traffic
 .analyze response
- WEB SERVER
- TRANSACTIONS
- BACKEND
 .analyze JS
First idea

HTTP traffic

- clean machine
- infected machine
- system
Going through...

HTTP traffic + JS analysis

- Different paths
- Different subdomains
- Different data format (e.g. base64)
- Encryption (e.g. rsa)
Almost there...

clean machine

infected machine

action

action

system
If it bleeds, we can kill it

- clean machine
- infected machine

system

BYPASSED!
Architecture problem

Words of wisdom: adverse inference
Malware spotted!

Who sends the alert?

login: user1
time: ...
behaviour: suspicious

login: user2?
First things first

user

anti malware magic

JavaScript slowing your page?

action

red light

system

BYPASSED!
Security by obscurity

malware detection JavaScript

eval

Simple obfuscation – base64, hex

Web Service

signatures

rsa encryption

reasoning engine

rsa public key
Signatures server-side

Hey, your website A is webinjected!

browser ——— website A please ——— server

HTML + JS malware detection
regexp for website A

Fragments of website A

Hey, your website A is webinjected!
Signatures client-side

website A please

HTML + JS malware detection
web injects signatures
Hash of web injects signatures content
Leaks your malware signatures

The output is your weakness
Conclusions
Conclusions - banks

- Buy an anti-malware box?
- Better call your crew
- Trust, but verify
- Ask for technical details
Conclusions – vendors

• Online malware detection is a good path, behavioral systems are a future of ITsec
• But they are still based on the old HTTP + HTML + JS stack
• Think about architecture and implementation
What’s next?

- Recommendations for potential anti-malware buyers – paper, work in progress
- Interested? -> malware@securing.pl or antimalware@securing.pl
Thank You

Q&A*