
• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

DABiD
The Powerful Interactive Android Debugger
for Android Malware Analysis

• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• Static Analysis

— Analyze intent of application by decoding DEX(Dalvik
Executable) into readable bytecode
• ex) Apktool, JEB

• Dynamic Analysis

— Monitor behavior of android application at runtime
• ex) DroidBox, Mobile Sandbox, Anubis etc.

— Conduct step by step debugging with disassembled Dalvik
executable code
• ex) SmaliDebugging, IDAPro

Reversing Android application

• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• Smali Debugging
— Use apktool and NetBeans(Java IDE) in combination

• Apktool : disassemble DEX and repackage app in debug mode

• Java IDE : support step by step debugging

Dalvik Executable Debugging

• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• IDA Pro Debugging
— Supports dalvik debugging from version 6.6

— Similar to Smali Debugging but use own DEX disassembler

Dalvik Executable Debugging

• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• Smali Debugging VS. IDA Pro Debugging

Dalvik Executable Debugging

Preprocessing Dalvik Executable Disassemble Debugging

Application
Modification

Debugging
Settings

Disassembler Register Type
Debugging

Starting Point
Dex Used In
Debugging

Smali
Debugging

modified as
debuggable

Jdwp socket

host & port
Smali Correct Type

First BP hit
after debugger

attached

Extracted
from apk

IDA Pro
Package &
lauchable

activity name
IDA Pro

All registers
casted as
“Object”

(java.lang.Object)

Methods at
launchable

activity

Should be done manually! Bad Type Fault! Can’t debug
from the start..

What if…The dex I am debugging
is not the one running??

• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• BlueBox Security verified tempering davik bytecode during
runtime is possible
— Load library and execute function which write bytes into memory where

dalvik executable is loaded
• Find codeItem of “add()” method from DEX loaded in memory

• Write bytes into codeItem of “add()” method

Challenges in Android Analysis
: Modification of DEX bytes at runtime

“Ljava/lang/String;” “add”

ClassIdItem MethodIdItem

CodeItem

Find codeItem of “add()”

Write “inject” bytes into codeItem

• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title styleChallenges in Android Analysis
: Dynamic DEX Loading

classes.dex

Encrypted
dex

(Asset)

Dynamically
loaded dex

Process

Loading Stub

classes.dex

Loading Stub

File System

Malcode

?

• GoogleAppsToy malware load encrypted DEX at runtime

—Analysts can obtain classes.dex from APK and conduct static or dynamic
analysis on classes.dex

—But, classes.dex from APK has no malicious actions

• Only decrypt and dynamic loading routine exist in classes.dex

• No way to debug malicious code….

classes.dex

Encrypted dex
(Asset)

Dynamically
loaded dex

Process

Loading Stub

classes.dex

Loading Stub

File System

Malcode

?

• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• DEX(Dalvik Executable) can be different in memory

Challenges in Android Debugging

Classes.dex
in

APK

Classes.dex
in

Dalvk-cache
(optimized)

Dex
in

Memory
≈ ≠

Analysis Target

Analysis with current analyzers might be useless..

• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

DABiD :
Dynamic Android
Binary Debugger

• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• To develop android debugger which is able to debug
“the same DEX” running on memory

• To make android debugging more effective and
convenient for analysts

Goal

• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• To develop android debugger which is able to debug
“the same DEX” running on memory

— Monitor dynamic changes in memory and reflect them to
debugger

• Self modification of DEX bytes in memory

• Dynamic DEX loading

• To make android debugging more effective and
convenient for analysts

Our Approach (1/2)

• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• To develop android debugger which is able to debug
“the same DEX” running on memory

• To make android debugging more effective and
convenient for analysts

— Provide advanced debugging features

• Code update by analyst

• Register value acquisition

— Automate bothersome settings for android debugging

Our Approach (2/2)

• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• Resembles java debugger structure
— DEX disassembler : disassemble DEX from both apk file and memory

— Debug Event Handler : create and handle debugging event from JDWP

• But, JDWP has limitations…

DABiD - Overview

JDWP

J
D
I

DABiD

Debug Event
Handler

DEX disassembler classes.dex

libraries.so

D App Process
A
D
B
D

• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• Make our service module reside in application process
— Notify supervision results of dynamic changes in memory

— Give a control over the application

DABiD - Overview

JDWP

J
D
I

DABiD

Debug Event
Handler

DABiD Service
Module Manager

DEX disassembler classes.dex

libraries.so

DABiD
Service Module

libdabid.so

D App Process
A
D
B
D

• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• DABiD Service module detects that memory write function call
is made and alarm debugger when event happens

• Analysts is now able to analyze hidden bytes

Monitoring Dynamic Changes
: Self modification of DEX bytes

• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• DABiD Service module find and dump new DEX bytes in memory

• With DABiD, Analysts no longer need to
— Find the location of hidden or newly downloaded DEXs

— Conduct static analysis for new DEXs by pulling them to local

Monitoring Dynamic Changes
: Dynamic DEX loading

• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• Analysts can modify bytecodes on the fly

— Analysts can input bytes from DABiD

— DABiD service module writes input bytes to proper location
in memory

— Debuggee runs with modified bytes

• Analysts are able to

— Force to execute code

— Skip code part should not be
executed to continue analysis

Advanced Debugging Feature
: Code update by Analyst

Force to execute code
before the time of event

• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• JDI provides register values only with debug symbols
— But, Not all registers have debug symbols

• Modify JDI to get values of registers
— Get register value using slot number

— Eliminate evaluation check whether the register is visible variable or not

— Cast value with type information by emulating bytecodes in DEX disassembler

Advanced Debugging Feature
: Register value acquisition

Java Bytecode DebugSymbol

int a = 3;

Log.d(“Info”, “a :” +a);

.local name :’v0’ type: int ‘v0’ – int
const/4

const-string

new-instance

const-string

Invoke-direct

Invoke-virtual

…

v0, 3

v1, “info”

v2, Ljava/lang/StringBuilder;

v3 “a : “

{v2, v3} StringBuilder.init()

{v2, v0} StringBuilder.append()

Java Bytecode DebugSymbol

int a = 3;

Log.d(“Info”, “a :” +a);

.local name :’v0’ type: int ‘v0’ – int

‘v1’ – Ljava/lang/String;

‘v2’ – Ljava/lang/StringBuilder;

‘v3’ – Ljava/lang/String;

const/4

const-string

new-instance

const-string

Invoke-direct

Invoke-virtual

…

v0, 3

v1, “info”

v2, Ljava/lang/StringBuilder;

v3 “a : “

{v2, v3} StringBuilder.init()

{v2, v0} StringBuilder.append()

Analyzed
type info

• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• DABiD automates followings to aid debugging

— Transform application into debuggable

— Install and start application

— Set jdwp socket connection

— Set breakpoints at the starting point of application

Automation of debugging setting

• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

DEMO

• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• Debugging for Android Runtime (ART)
— Support ART features
— Resolve Code Protections on ART

• Code coverage
— Support native code debug included in APK

• Anti-Debugging
— Counter anti-debugging techniques

Future work

