
An Introduction to the CANard Toolkit

Eric Evenchick

March 9, 2015

Abstract

The Controller Area Network (CAN) protocol is used for networking
controllers in industrial and automotive applications. Interfacing with a
CAN network requires specialized hardware and software.

This paper introduces CANard, a Python library for communicating
with CAN bus systems. It is capable of sending and receiving frames on
a network, and includes support for protocols that are commonly used on
CAN.

1 Introduction

Controller Area Network (CAN) is used as a networking protocol in industrial
control systems and automotive applications. CAN has become popular due to
the low cost of implementation, and built in reliability features. It is ubiquitous
in the automotive industry, and became the mandatory protocol for automotive
diagnostics in the United States in 2008.

CAN based systems typically assume that anyone with physical access to
the network is trusted. Once a device is placed on a CAN network it is able to
read all traffic, send fraudulent messages, or perform a denial of service attack.

The CANard [1] toolkit is a Python library which aims to make it easy to
interact with CAN networks. This toolkit has a few goals:

1. Hardware Abstraction

2. Protocol Implementation

3. Ease of Automation

4. Sharing of Information

2 Basic CAN Communication

All communications on a CAN network are encapsulated as a frame. A CAN
frame consists of:

• Identifier

1

• Control flags

– Remote Request Flag

– Extended ID Flag

• A data length code

• 0 to 8 bytes of data

CANard encapsulates CAN frames as Python objects. These frame objects
can be sent, received, logged, and inspected. Listing 1 creates a standard CAN
frame with identifier 0x123, data length code 5 and data bytes 1, 2, 3, 4, 5.

from canard import can

f = can.Frame(0x123)

f.dlc = 5

f.data = [1,2,3,4,5]

Listing 1: Creating a Frame in CANard

This example frame can now be sent using a hardware device. This simple
interface makes it easy to generate and send payloads, or analyze frames received
from the bus.

3 Hardware Abstraction

Since traditional PCs lack a CAN bus interface, an external adapter is required.
A variety of adapters exist to provide a CAN bus interface over USB. Each one
has its own drivers and tools.

The CANard library currently supports Linux’s SocketCAN [2]. Any CAN
interface supporting SocketCAN will therefore work with CANard on Linux.
CANard also directly supports the CANtact [3] interface on Windows, OS X,
and Linux.

from canard.hw import socketcan

dev = socketcan.SocketCanDev(’can0’)

dev.start()

while True:

f = dev.recv()

dev.send(f)

Listing 2: A CAN Echo Script

2

The CAN echo example will repeat any message that it receives. In the
example, the a SocketCAN device named can0 is used.

Implementing a new hardware interface is simple. The developer only needs
to write methods for starting and stopping communications, and for sending
and receiving messages. With those in place, a new CAN device can be used
with the library.

3.1 Message Queuing

While the CAN echo example works, a common issue in dealing with CAN is
blocking IO. When calling dev.recv(), the program will be blocked until a
message is received. Most CAN interfaces will block while waiting for frames.

To prevent our script from being blocked, the CanQueue object is used.

from canard.hw import socketcan

create a SocketCAN device

dev = socketcan.SocketCanDev(’can0’)

wrap the device in a CanQueue

cq = CanQueue(dev)

cq.start()

receive a frame, timing out after 10 seconds

print cq.recv(timeout=10)

cq.stop()

Listing 3: A CAN Queue Example

This example sends waits 10 seconds for a frame to be received. If no frame
is received, we can handle the timeout as an error.

A common pattern used in CAN systems is a request/response. One device
sends a frame to request data or an action from a remote device. That device
then responds accordingly.

3

from canard.hw import socketcan

create a SocketCAN device

dev = socketcan.SocketCanDev(’can0’)

wrap the device in a CanQueue

cq = CanQueue(dev)

cq.start()

create a request frame

req = can.Frame(0x6A5)

req.dlc = 3

req.data = [0x10, 0xFF, 0xFF]

send the request

cq.send(req)

receive a response, timing out after 10 seconds

print cq.recv(filter=0x6A5, timeout=10)

cq.stop()

Listing 4: A Request/Response Example

Our request/response example makes use of the CanQueue’s filter. Since we
know the response frame will have identifier 0x6A5, we ignore all other messages.
This is very useful for implementing protocols such as CANOpen, OBD-II, and
Unified Diagnostic Services.

4 Protocols

A variety of standard protocols are used for CAN communications. We will
focus on the automotive industry, which conforms to standards published by
the International Organization for Standardization (ISO).

In automotive systems, there is a class of communications known as “diag-
nostics.” These communications are not active during normal operation, but
can be used by manufacturers and service technicians to get device status, run
tests, read memory, and update firmware.

CANard aims to implement the these protocols, so developers don’t have to
deal with the underlying CAN message structure. From a security prospective,
this is helpful for writing fuzzers and exploits targeting automotive devices.

4

4.1 CAN-TP

CAN frames are limited to 8 bytes of data. To overcome this limitation, the
ISO 15765-2 standard, often called ISO-TP is used. This standard provides a
way of packaging longer data into multiple frames.

While the details of ISO-TP are beyond the scope of this paper, CANard
can be used to automatically generate and parse ISO-TP. This functionality is
provided by the IsoTpProtocol class.

4.2 OBD-II

The OBD-II standard is used for basic vehicle diagnostics. This standard uses
a subset of CAN-TP. CANard provides an ObdInterface class which facilitates
sending requests for OBD-II data and receiving the responses.

While OBD-II is useful for reading basic vehicle data, it does not provide
much functionality beyond that. For more complex diagnostics operations, Uni-
fied Diagnostic Services is used.

4.3 Unified Diagnostic Services

Unified Diagnostic Services, or UDS, is used for manufacturer specific diagnos-
tics. The UDS standard is published in ISO 14229-1 This protocol provides a
wide variety of functionality for manufacturers and services technicians.

To access these services, a diagnostics tool is connected to the CAN bus. It
then sends UDS requests to the various controllers on the bus. Each controller
has a unique CAN identifier for receiving UDS requests and sending UDS re-
sponses. A table of the supported services is provided in table 1.

The variety of services available provides a large attack service on these
controllers. For example, the ability to read and write arbitrary memory on
a controller (services 0x23 and 0x3D) in an active vehicle is a major concern.
While these services should be limited, there are often implementation issues.
Finding these issues results in controller exploits.

The CANard library provides a UdsInterface class that deals with packag-
ing UDS messages, sending them, receiving a response, and parsing the response
data. This makes it easier to write scripts to fuzz and exploit diagnostic systems.

5 Automation and Scripting

CANard allows developers to build utilities that deal with raw CAN data and
standard protocols. Due to the hardware abstraction provided by the library,
scripts can be used across various operating systems and with a multitude of
CAN bus adapters.

A simple script using CANard is shown in listing 5. This script performs a
Denial of Service attack by sending a message with identifier 0 at a high rate.
In this example, a CANtact device is used.

5

Service ID Function
0x10 DiagnosticSessionControl
0x11 ECUReset
0x27 Security Access
0x28 CommunicationControl
0x3E TesterPresent
0x83 AccessTimingParameter
0x84 SecuredDataTransmission
0x85 ControlDTCSetting
0x86 ResponseOnEvent
0x87 LinkControl
0x22 ReadDataByIdentifier
0x23 ReadMemoryByAddress
0x24 ReadScalingDataByIdentifier
0x2A ReadDataByPeriodicIdentifier
0x2C DynamicallyDefineDataIdentifier
0x2E WriteDataByIdentifier
0x3D WriteMemoryByAddress
0x14 ClearDiagnosticInformation
0x19 ReadDTCInformation
0x2F InputOutputControlByIdentifier
0x31 RoutineControl
0x34 RequestDownload
0x35 RequestUpload
0x36 TransferData
0x37 RequestTransferExit

Table 1: UDS Services

6

from canard import can

from canard.hw import cantact

create and start device

dev = cantact.CantactDev(’/dev/cu.usbmodem14514’)

dev.start()

create our payload frame

frame = can.Frame(id=0)

frame.dlc = 8

spam!

while True:

dev.send(frame)

Listing 5: Denial of Service

CANard’s protocol features can be used to quickly build tools that talk over
standard protocols. For example, listing 6 will attempt to discover UDS enabled
devices by requesting a diagnostic session on a range of IDs.

import sys

from canard.proto.uds import UdsInterface

from canard.hw.cantact import CantactDev

d = CantactDev(sys.argv[1])

d.set_bitrate(500000)

d.start()

p = UdsInterface(d)

DiagnosticSessionControl Discovery

for i in range(0x700, 0x800):

attempt to enter diagnostic session

resp = p.uds_request(i, 0x10, [0x1], timeout=0.2)

if resp != None:

print("ECU response for ID 0x%X!" % i)

Listing 6: Controller Discovery

6 Conclusions

The CAN protocol is widely used in a number of industries, including automo-
tive. The CANard library provides tools for rapid development of scripts that

7

interface with CAN bus systems.
Since CANard performs hardware abstraction for the CAN bus interface,

scripts can be used on different platforms using a variety of CAN bus interfaces.
The open source nature of this tool means that anyone can add support for a
CAN interface.

CANard is able to communicate with controllers that use the Unified Di-
agnostic Services standard. This provides a variety of access to the controller,
which provides an attack surface in cars.

References

[1] CANard project: https://github.com/ericevenchick/canard

[2] SocketCAN Documentation: https://www.kernel.org/doc/

Documentation/networking/can.txt

[3] CANtact website: http://cantact.io

8

https://github.com/ericevenchick/canard
https://www.kernel.org/doc/Documentation/networking/can.txt
https://www.kernel.org/doc/Documentation/networking/can.txt
http://cantact.io

	Introduction
	Basic CAN Communication
	Hardware Abstraction
	Message Queuing

	Protocols
	CAN-TP
	OBD-II
	Unified Diagnostic Services

	Automation and Scripting
	Conclusions

