

MLD Considered Harmful

Antonios Atlasis aatlasis@secfu.net Jayson Salazar jsalazar@ernw.de Rafael Schaefer rschaefer@ernw.de

A black hat

Road Map

- ¬ Background Information
- ¬ MLD, Myths and Facts
- Profiting from MLD
- Mitigations
- Conclusions

Background Information

On IPv6, MLD and where the Internet is heading

Web Content Available over IPv6

From: http://6lab.cisco.com/stats/

Users Accessing the Internet over IPv6

- Belgium: 37,28%
- **-** Germany: 18,24%
- **-** USA: 16,61%
- ¬ Japan: 10,96 %
- Malaysia: 8,25%
- ¬ Singapore: 4,53%

From: http://6lab.cisco.com/stats/

The IPv6 Vision

- Personal appliances are increasingly incorporating networking capabilities.
- Research and monitoring devices such as sensor networks are also looking towards IPv6 and multicasting.
- Concrete efforts are being directed towards materializing the "Internet of Things."

This All Sounds Great, but ...

Is IPv6 mature enough for deployment and most important, are we informed enough?

			Time	SRC ADD	DST ADD MLD MADDR
			13:23:18.574201000	fe80::200:ff:fe00:11	ff02::16 ff02::1:3
,			13:23:18.574210000	fe80::200:ff:fe00:11	ff02::16 ff02::1:3
	SRC ADD	Information	13:23:18.623002000	fe80::200:ff:fe00:11	ff02::16 ff02::1:3
	fe80::8678:acff:feb3:eb20	Multicast Listener Query	13:23:18.623011000	fe80::200:ff:fe00:11	ff02::16 ff02::1:3
	fe80::6267:20ff:fea5:d9c4	Multicast Listener Report	13:23:18.840934000	fe80::200:ff:fe00:11	ff02::16 ff02::1:3
	fe80::6267:20ff:fea5:d9c4	Multicast Listener Report	13:23:18.840938000	fe80::200:ff:fe00:11	ff02::16 ff02::1:3
	fe80::6267:20ff:fea5:d9c4	Multicast Listener Report	13:23:36.215326000	fe80::200:ff:fe00:11	ff02::16 ff02::1:3
			13:23:36.215336000	fe80::200:ff:fe00:11	ff02::16 ff02::1:3
	fe80::6267:20ff:fea5:d9c4	Multicast Listener Report	13:23:36.276699000	fe80::200:ff:fe00:11	ff02::16 ff02::1:3
	fe80::8678:acff:feb3:eb20	Multicast Listener Query	13:23:36.276708000	fe80::200:ff:fe00:11	ff02::16 ff02::1:3
	fe80::6267:20ff:fea5:d9c4	Multicast Listener Report	13:23:36.339596000	fe80::200:ff:fe00:11	ff02::16 ff02::1:3
	fe80::6267:20ff:fea5:d9c4	Multicast Listener Report	13:23:36.339601000	fe80::200:ff:fe00:11	ff02::16 ff02::1:3
	fe80::6267:20ff:fea5:d9c4	Multicast Listener Report	13:23:37.201776000	fe80::200:ff:fe00:11	ff02::16 ff02::1:3
	fe80::6267:20ff:fea5:d9c4	Multicast Listener Report	13:23:37.201787000	fe80::200:ff:fe00:11	ff02::16 ff02::1:3
			13:23:37.203986000	fe80::200:ff:fe00:11	ff02::16 ff02::1:3
			13:23:37.203993000	fe80::200:ff:fe00:11	ff02::16 ff02::1:3

MLD, Every Protocol Has a Story

Hopefully, an entertaining one.

27/03/2015 © ERNW GmbH | Carl-Bosch-Str. 4 | D-69115 Heidelberg

#8 www.ernw.de

The Unicast Side of Things

Basic Concepts behind Multicasting

- The sender does not require N data transmissions to reach N clients.
- The infrastructure takes care of the routing and replication.
- The sender sends its data once and N clients receive it.
- How does the infrastructure know where the listeners are located?

Where is Multicast being Used? (I)

¬ The usual suspects:

- Video-conferencing
- IPTV
- Sensor-networks
- Auto-Configuration and Monitoring

Where is Multicast being Used? (II)

 IPv6 has 'replaced' broadcasting with multicasting and multicast-related mechanisms.

 How, you ask?
 By mixing the Neighbor-Discovery protocol, with Solicited-Node multicast addresses and MLD.

MLD Will Make our Life much Easier

Well, at least it should ...

27/03/2015 © ERNW GmbH | Carl-Bosch-Str. 4 | D-69115 Heidelberg

#13 www.ernw.de

The Initial Scenario

- IPv6 counterpart of IGMP
- MLD enables IPv6 routers to discover the presence of multicast listeners on its attached links.
- Specifically, which multicast addresses are of interest to those neighboring nodes.
- MLDv1 dates back to 1999 and was superseded by MLDv2 in 2004.

Basic MLD Operation

- The Querier sends periodical Queries to which Listeners with reportable addresses reply.
- The Querier does not learn which or how many clients are interested in which sources.
- The Querier uses reported information for deciding what ingress data to forward.

MLD Messages

Querier-Sent Messages, Queries

Internet Control Message Protocol v6 Type: Multicast Listener Query (130) Code: 0 Checksum: 0x6b89 [correct] Maximum Response Code: 0 Reserved: 0000 Multicast Address: ff08::2001:db8 (ff08::2001:db8) ▼ Flags: 0x00 0... = Suppress Router-Side Processing: False000 = QRV (Querier's Robustness Variable): 0 0000 = Reserved: 0 QQIC (Querier's Query Interval Code): 0 Number of Sources: 4 Source Address: 2001:db8:1::1 (2001:db8:1::1) Source Address: 2001:db8:1::2 (2001:db8:1::2) Source Address: 2001:db8:1::3 (2001:db8:1::3) Source Address: 2001:db8:1::4 (2001:db8:1::4)

- Queries have ICMPv6 type 130.
- General Queries are sent to
 FF02::1.
- Specific Queries are sent to the multicast address being queried.

Listener-Sent Messages, Reports

Internet Control Message Protocol v6
Type: Multicast Listener Report Message v2 (143)
Code: 5
Checksum: 0xa291 [correct]
Reserved: 0000
Number of Multicast Address Records: 800
Multicast Address Record Changed to exclude: ff08::2000
Multicast Address Record Changed to exclude: ff08::2001
Multicast Address Record Changed to exclude: ff08::2002
Multicast Address Record Changed to exclude: ff08::2003
Multicast Address Record Changed to exclude: ff08::2004
Multicast Address Record Changed to exclude: ff08::2003
Multicast Address Record Changed to exclude: ff08::2004
Multicast Address Record Changed to exclude: ff08::2004

- MLDv2 Reports have ICMPv6 type 143.
- Reports are sent to FF02::16.
- One can report several desired groups and sources simultaneously in so-called MARs.

Funky Note #1, State Keeping on Gateways

- A gateway must keep state regarding what "kind" of content must be let through.
- MLDv2 extended state keeping mechanisms in order to also keep track of accepted sources.
- Timers are kept per reported group and per accepted source.

Funky Note #2, It Could've been Better

- MLD does not learn the identity or number of Listeners for a particular multicast group.
- When there are multiple routers on the link the Querier is elected by using the lowest IPv6 address seen on a Query.
- In MLDv1, a client may suppress its own report when another node reports the same address.

Funky Note #3, One-to-one Communication

5.1.15. Destination Addresses for Queries

In MLDv2, General Queries are sent to the link-scope all-nodes multicast address (FF02::1). Multicast Address Specific and Multicast Address and Source Specific Queries are sent with an IP destination address equal to the multicast address of interest. *However*, a node MUST accept and process any Query whose IP Destination Address field contains *any* of the addresses (unicast or multicast) assigned to the interface on which the Query arrives. This might be useful, e.g., for debugging purposes.

RFC 3810

Funky Note #3, One-to-one Communication

5.1.15. Destination Addresses for Queries

In MLDv2, General Queries are sent to the link-scope all-nodes
multicast address (FF02::1). Multicast Address Specific and
Multicast Address and Source Specific Queries are sent with an IP
destination address equal to the multicast address of interest.
However, a node MUST accept and process any Query whose IP
Destination Address field contains *any* of the addresses (unicast or
multicast) assigned to the interface on which the Query arrives. This
might be useful, e.g., for debugging purposes.

RFC 3810

There are Good News, Though

Well, it depends ...

27/03/2015 © ERNW GmbH | Carl-Bosch-Str. 4 | D-69115 Heidelberg

#23 www.ernw.de

Up Until this Point, You don't need MLD

- You only need MLD if you are operating multicast applications.
- But, needing and running isn't the same.
- Except for OpenBSD clients, every
 IPv6-capable host in your network is running it.
- Great, **complexity for** the sake of **complexity**.

A black hat

So, Summarizing ...

- You're running a complex, resource-intensive protocol although you usually don't need it.
- It has some useful "features"
 - Increases state-keeping on the infrastructure and clients' side
 - One can **easily 'impersonate'** the **Querier**
 - One can communicate on a one-to-one basis
 - Some clients implement **Report suppression**
 - Forcing a network to MLDv1 is trivial
 - Anything else?

Playing with MLD

On how and what we tested

27/03/2015 © ERNW GmbH | Carl-Bosch-Str. 4 | D-69115 Heidelberg

#26 www.ernw.de

Test Environment

- Cisco 1921 routers and Cisco 2960s switches. IOS 15.2 and 15.4 respectively.
- Android, FreeBSD, Ubuntu and Windows virtualized guests

¬ Tools

- Scapy
- Chiron
- Dizzy
- THC IPv6 Toolkit
- Wireshark

Clients' Response Time to MLD Queries

- Most clients replied immediately to Queries with Maximum Response Delay equal to zero
- 1,3kb/s of MLDv1 Queries
 become 49,8kb/s on the Querier's side.
- Although the RFC mentions potential "ACK explosions" and traffic amplification, the clients just fire right away.

MLDv1 Traffic Amplification

¬ 1,3kb/s become 49,8kb/s on the router's side, ~3830% the initial traffic

As Usual, Windows Must Behave Differently

 In Windows 7 and 8.1 systems the process in charge of MLD + Interrupts processing can consume up to one processor core.

Big MLD Reports, Router Resource Depletion

	My traceroute	[v0.8	5]				
ubuntu (::)			F	ri Jan	16 16	5:43:24	4 2015
eys: Help Display mode	Restart statis	tics	Order o	of fie	lds	quit	
	Packe	ts		P	ings		
Host	Loss%	Snt	Last	Avg	Best	Wrst	StDev
1. 2001:db8:1::ec:1	0.0%	71	0.6	0.6	0.3	1.0	0.0
2. 2001:db8:2::ec:1	0.0%	71	0.9	0.8	0.6	2.6	0.2

	My traceroute	[v0.8	5]					
Jbuntu (::)	Fri Jan 16 16:36:04 2015							
eys: Help Display mode	Restart statis	tics	Order o	of fie	lds	quit		
	Packets		Pings					
Host	Loss%	Snt	Last	Avg	Best	Wrst	StDev	
1. 2001:db8:1::ec:1	0.0%	73	22.1	7.2	0.4	78.2	11.5	
2. 2001:db8:2::ec:1	8.2%	73	0.8	4.5	0.6	80.0	13.5	

A black hat

Big Reports Fill the Cache in about 30s

- Device becomes unresponsive, packets start being dropped and latency goes up
- Further Listeners aren't able to
 join multicast groups since the table is effectively full
- Putting a hard limit on the number of entries isn't likely to help

The PIM IPv6 Process Fails, Not that Bad

IPv6 Addresses can't be Leased, Hm

Neither does SSH work, Oh Well ...

A black hat

Demo

Overloading network infrastructure via MLD

Just Useless Defaults by Cisco

- 156.500 MLD entries cause the routers to malfunction.
- Who and what for needs 150k MLD entries?
- So much for useful defaults, **limit MLD state**!
- Not limited to the listed devices, similar behavior was observed with ASR1000s

Drivers, Always Drivers

- Certain enterprise grade virtualization solution, which shall sadly remain unnamed, crashes when high rates of MLD traffic are received on an Intel 82573L network interface.
- Relevant only as **DoS**.
- IPv6 'reliance' on multicast should be expected to cause trouble with network cards.

Multicast Source

Let's not Forget the Scenario

Interested Listener

- MLD messages are processed regardless of **destination** address
- A malicious user can trivially become the **Querier** on the link

Force MLDv1 Usage and Reports Suppression

	SRC MAC	SRC ADD	DST ADD	
03.275444000	kali eth0	fe80::200:ff:fe00:14	ff02::1	
03.275458000	kali_eth0	fe80::200:ff:fe00:14	ff02::1	
08.737940000	freebsd_eth0	fe80::200:ff:fe00:13	ff02::2:2eb7:74fa	
08.737953000	freebsd_eth0	fe80::200:ff:fe00:13	ff02::2:2eb7:74fa	
26.141097000	freebsd_eth0	fe80::200:ff:fe00:13	ff02::2:ff2e:b774	
26.141105000	freebsd eth0	fe80::200:ff:fe00:13	ff02::2:ff2e:b774	
50.939472000	freebsd eth0	fe80::200:ff:fe00:13	ff02::1:ff00:13	
50.939489000	freebsd_eth0	fe80::200:ff:fe00:13	ff02::1:ff00:13	

08.343150000	kali_eth0	fe80::200:ff:fe00:14	ff02::1
08.343160000	kali_eth0	fe80::200:ff:fe00:14	ff02::1
43.335196000	freebsd_eth0	fe80::200:ff:fe00:13	ff02::2:ff2e:b774
43.335208000	freebsd_eth0	fe80::200:ff:fe00:13	ff02::2:ff2e:b774
12.541043000	freebsd_eth0	fe80::200:ff:fe00:13	ff02::2:2eb7:74fa
12.541050000	freebsd_eth0	fe80::200:ff:fe00:13	ff02::2:2eb7:74fa
13.410482000	kali_eth0	fe80::200:ff:fe00:14	ff02::1
13.410495000	kali_eth0	fe80::200:ff:fe00:14	ff02::1

The Last Call for Drinks, Last-Listener-Queries

MLDv2 Report or MLDv1 Done --> Last Listener Query --> MLD General Query -->

- Last-Listener-Queries are sent by the Querier when a Listener expresses its lack of interest in certain traffic
- Is sent as a Specific-Query to the multicast address which is being queried
- An attacker can become the Querier, leave a group on behalf of a client and fake a Last-Listener-Query

However, Something was Missing

	SRC MAC	SRC ADD	MLD MADDR	Len.
47.373682000	ubuntu_eth0	ubuntu.local	ff08::db8	90
47.373696000	ubuntu_eth0	ubuntu.local	ff08::db8	90
56.087140000	Cisco_15:c0:11	fe80::200:cff:fe15:c011		90
58.028565000	ubuntu_eth0	ubuntu.local	ff08::db8,ff02::fb,ff02::1:ff00:12	130
58.028578000	ubuntu_eth0	ubuntu.local	ff08::db8,ff02::fb,ff02::1:ff00:12	130
38.885241000	kali_eth0	fe80::200:ff:fe00:14	ff08::db8	90
38.885255000	kali_eth0	fe80::200:ff:fe00:14	ff08::db8	90
01.332813000	Cisco_15:c0:11	fe80::200:cff:fe15:c011		90
09.418357000	ubuntu_eth0	ubuntu.local	ff08::db8,ff02::fb,ff02::1:ff00:12	130
09.418367000	ubuntu_eth0	ubuntu.local	ff08::db8,ff02::fb,ff02::1:ff00:12	130
06.582484000	Cisco_15:c0:11	fe80::200:cff:fe15:c011		90
13.996287000	ubuntu_eth0	ubuntu.local	ff08::db8,ff02::fb,ff02::1:ff00:12	130
13.996304000	ubuntu_eth0	ubuntu.local	ff08::db8,ff02::fb,ff02::1:ff00:12	130

In Reality, It's Even Easier

- Cisco 1921 devices do not forward Last-Listener-Queries
- To prevent a client from receiving certain multicast data-flows one simply has to spoof an MLD Report or Done message
- The interested Listener won't have the chance to reply since, well, the switch doesn't forward the query

A black hat

Demo

So, management wants video-conferencing?

But Someone had to Add Something else ...

Because there is always room for more complexity

MLD-Snooping ... Yes, More Complexity!

- ¬ Is not standardized
- There's an informational RFC
- Brings state-keeping behavior to the switches
- Considered by RFC3810 and others where ND is specified.

Of Course, Nothing Could Go Wrong

		five seconds Invoked	uSecs		1Min	5Min	1MiB		J KID/	s 567	KTD/ 3			
TD RI	untime(ms)			5Sec										
1	Θ	30	Θ	0.00%			/s 📥							
2	1619	125351	12	0.00%	0.00%	0.00%	32KiB 🗕							
3	58	93	623	0.00%	0.00%	0.00%	/s							
D R	untime(ms)	Invoked	uSecs	5Sec	1Min	5Min								
4	6120421	355770	17203	0.00%	1.01%	0.93%		_						
5	1256	10454	120	0.00%	0.00%	0.00%	TX:	eth0	549	KiB/s	547	KiB/s	426	
6	0	1	0	0.00%	0.00%	0.00%						K	KiB/s	
										1Gi	BSpeed	domete	r 2.8	
		SW#show pr	ocesses	cou						/s				
				o p a										

10

637

uSecs

17190

108

0

0.09%

0.00%

5Sec

1.10%

0.00%

0.02%

1Min

1.20%

0.00%

0.00% 0.00% 0.00%

0.00% 0.00%

0.00%

5Min

0.93%

0.00%

15 32KiB

TX: eth0

563 KiB/s

PID Runtime(ms)

3

4 5

6

1262

1132

0

6080171

58

124662

Invoked

353695

10396

91

527

KiB/s

549 KiB/s

Anything else?

One last minor detail

27/03/2015 © ERNW GmbH | Carl-Bosch-Str. 4 | D-69115 Heidelberg

#48 www.ernw.de

Trivial Host Discovery and Fingerprinting (I)

MLDv2 Query – 'ICMPv6 Echo Request' MLDv2 Report – 'ICMPv6 Echo Reply'

- Pre-enabled in Windows, Linux and FreeBSD
- Reports are sent even before the ND Process starts
- **¬ Hosts must respond to Queries**
- Works even when responses to ICMPv6 are disabled
- Use Chiron, Scapy, THCv6 Toolkit or NMAP*

Trivial Host Discovery and Fingerprinting (II)

os	Multicast Group	Service		
	ff02::2	All IPv6 routers on the Link		
	ff02::d	PIM routers		
IOS 15.4(3) M	ff02::16	All MLDv2 capable routers		
	ff02::1:2	All DHCP servers and relay agents		
	ff02::2:ff2e:b774	IPv6 Node Information Query		
FreeBSD 10.0	ff02::2:2eb7:74fa	IPv6 Node Information Query (Invalid)		
Ubuntu 14.04	ff02::FB	Zero Configuration Networking		
	ff02::C	SSDP		
Windows 8.1	ff02::1:3	LLMNR		

Is MLD really not used at all?

Well, it's more complex than that ...

27/03/2015 © ERNW GmbH | Carl-Bosch-Str. 4 | D-69115 Heidelberg

#51 www.ernw.de

Of Course, Multicast Applications

 Whether intra or inter-domain, you wouldn't want all those video streams to get broadcasted like crazy.

Funky Note #5, The Neighbor Discovery Protocol

- No broadcast, all-nodes multicast address instead.
- Every IPv6 address has a associated derived Solicited-Node multicast group.
- All relevant Solicited-Node groups must be joined by a node during interface initialization.
- RFC 4861: "joining the solicited-node multicast address is done using a Multicast Listener Discovery protocol such as the [MLD] or [MLDv2] protocols."

O black hat

Funky Note #6, Duplicate Address Detection

Note that when a node joins a multicast address, it typically sends a Multicast Listener Discovery (MLD) report message [RFC2710] [RFC3810] for the multicast address. In the case of Duplicate Address Detection, the MLD report message is required in order to inform MLDsnooping switches, rather than routers, to forward multicast packets. In the above description, the delay for joining the multicast address thus means delaying transmission of the corresponding MLD report message. Since the MLD specifications do not request a random delay to avoid race conditions, just delaying Neighbor Solicitation would cause congestion by the MLD report messages. The congestion would

RFC 4862

All this for What? (I)

All this for What? (II)

- **Normal** multicast **traffic**, ICMPv6 in this case, is appropriately **forwarded**.
- ND-related traffic just gets broadcasted.
- Cisco seemingly followed the easy route here.
 See: <u>http://tools.ietf.org/id/draft-pashby-magma-simplify-mld-snooping-01.txt</u>

	Interface	SRC ADD	DST ADD	Information
.516049000	0	2001:db8:1::bad	ff02::1:ff00:db8	Neighbor Solicitation for ff08::db8
.516183000	2	2001:db8:1::bad	ff02::1:ff00:db8	Neighbor Solicitation for ff08::db8
.516186000	1	2001:db8:1::bad	ff02::1:ff00:db8	Neighbor Solicitation for ff08::db8
.949196000	1	2001:db8:1::aa	ff08::db8	Echo (ping) request id=0x10ad, seq=1

O black hat

Wrap-Up

What have we learned?

27/03/2015 © ERNW GmbH | Carl-Bosch-Str. 4 | D-69115 Heidelberg

#57 www.ernw.de

O black hat

Some Ideas for Admins

 Limit the rate at which your infrastructure components process MLD messages (CoPP).

- If you're not running multicast applications, stay away from MLD-Snooping
- If pertinent, consider filtering MLD messages on your access and distribution layers; at least Queries.
- Don't enable full multicast routing or MLD-Snooping for few services. Configure multicast groups used for critical services statically (e.g. DHCPv6)

A Couple of Points for the IETF

- MLDv2: Routers must not accept Queries destined to FF02::2, FF02::16, or unicast addresses, link-local or global.
 - "For debugging purposes" isn't a valid reason
- MLDv1: Nodes must not accept Reports to their unicast addresses.
- Both: Querier election by using the 'lowest' IPv6 address? Is such a trivial mechanism really useful?

A black hat

Future Work

- Telcos are deploying IPv6 multicasting in their IPTV solutions
- Surveillance using IP cameras is widespread. As IPv6 gains traction IPv6 multicast is likely to also come into play
- Video-conferencing is now sought after by 'the management'. Solutions also rely on multicasting
- How are cheap appliances and simple networks going to deal with what allegedly is the 'future' of the Internet?

Conclusions

- You have **MLD** traffic **in your IPv6 network**, yes you do!
- Theory says MLD is required for ND, practice shows it isn't
- MLD introduces complexity and a immature codebase
- MLD is crucial for IPv6 multicasting, but not for your typical IPv6 network.
- If multicasting is the future, more people have a critical look at the protocols that power it, among them MLD
- The IETF should reconsider the role and design of MLD

Thank You for Your Time!

Enjoy Singapore!

Antonios Atlasis aatlasis@secfu.net Jayson Salazar jsalazar@ernw.de Rafael Schaefer rschaefer@ernw.de