

DIVING INTO IE 10’S ENHANCED PROTECTED MODE SANDBOX

Mark Vincent Yason
IBM X-Force Advanced Research
yasonm[at]ph[dot]ibm[dot]com

@MarkYason

(v3)

ABSTRACT

With the release of Internet Explorer 10 in Windows 8, an improved version of IE’s Protected Mode sandbox, called

Enhanced Protected Mode (EPM), was introduced. With the use of the new AppContainer process isolation

mechanism introduced in Windows 8, EPM aims to further limit the impact of a successful IE compromise by

limiting both read and write access and limiting the capabilities of the sandboxed IE process.

As with other new security features integrated in widely-deployed software, it is just prudent to look at how EPM

works internally and also evaluate its effectiveness. This presentation aims to provide both by delving deep into

the internals and assessing the security of IE 10’s Enhanced Protected Mode sandbox.

The first part of this presentation will focus on the inner workings of the EPM sandbox where topics such as the

sandbox restrictions in place, the inter-process communication mechanism in use, the services exposed by the

higher-privileged broker process, and more are discussed. The second part of this presentation will cover the

security aspect of the EPM sandbox where its limitations are assessed and potential avenues for sandbox escape

are discussed.

Finally, in the end of the presentation, an EPM sandbox escape exploit will be demonstrated. The details of the

underlying vulnerability, including the thought process that went through in discovering it will also be discussed.

IBM Security Systems | © 2014 IBM Corporation

DIVING INTO IE 10’S ENHANCED PROTECTED MODE SANDBOX > CONTENTS

IBM Security Systems | ©2014 IBM Corporation

|2

CONTENTS

Contents .. 2

1. Introduction ... 3

2. Sandbox Internals .. 4

2.1. Architecture ... 4

2.2. Sandbox Restrictions ... 5

2.2.1. Securable Object Restrictions .. 6

2.2.2. Object Namespace Isolation .. 7

2.2.3. Global Atom Table Restrictions ... 7

2.2.4. User Interface Privilege Isolation (UIPI) Enhancements .. 8

2.2.5. Network Isolation .. 8

2.2.6. Analysis: Unapplied Restriction/Isolation Mechanisms ... 9

2.3. IE Shims (Compatibility Layer) ... 9

2.4. Elevation Policies ... 10

2.5. Inter-Process Communication ... 10

2.5.1. Shared Memory IPC ... 11

2.5.2. COM IPC ... 14

2.6. Services .. 14

2.6.1. User Broker Object Services... 14

2.6.2. Known Broker Objects Services ... 16

2.6.3. Broker Components Message Handlers... 17

2.7. Summary: Sandbox Internals ... 18

3. Sandbox Security .. 19

3.1. Sandbox Limitations/Weaknesses ... 19

3.1.1. File System Access ... 19

3.1.2. Registry Access ... 20

3.1.3. Clipboard Access .. 20

3.1.4. Screen Scraping And Screen Capture ... 21

3.1.5. Network Access .. 21

3.2. Sandbox Escape ... 21

3.2.1. Local Elevation of Privilege (EOP) Vulnerabilities .. 21

3.2.2. Policy/Permission Vulnerabilities .. 21

3.2.3. Policy Check Vulnerabilities ... 22

3.2.4. Service Vulnerabilities .. 23

3.3. Summary: Sandbox Security .. 23

4. Conclusion.. 24

5. Bibliography ... 25

DIVING INTO IE 10’S ENHANCED PROTECTED MODE SANDBOX > INTRODUCTION

IBM Security Systems | ©2014 IBM Corporation

|3

1. INTRODUCTION
One of the goals of Protected Mode since its introduction in IE7 is to prevent an attack from modifying data and to

prevent the installation of persistent malicious code in the system [1]. However, because Protected Mode does not

restrict read access to most resources and it does not restrict network access [2, 3], attacks can still read and

exfiltrate sensitive information or files from the system. With the release of IE10 in Windows 8, an improved

version of Protected Mode called Enhanced Protected Mode (EPM) was introduced with one of the objectives

being to protect personal information and corporate assets [4] by further limiting the capabilities of the sandboxed

IE.

New security features in widely-deployed software such as the EPM in IE always deserve a second look from

unbiased observers because important questions such as “how does it work?”, “what can malicious code still do or

access once it is running inside the EPM sandbox?” and “what are the ways to bypass it?” needs to be answered

candidly. Answering these important questions is the goal of this paper.

The first part of this paper (Sandbox Internals) takes a look at how the EPM sandbox works by discussing what

sandbox restrictions are in place and the different mechanisms that make up the EPM sandbox. The second part of

this paper (Sandbox Security) is where the EPM sandbox limitations/weaknesses and potential avenues for EPM

sandbox escape are discussed. To sum up the main points discussed, a summary section is provided in the end of

each part.

This paper is based on IE10 update KB2817183 (April 2013) running in Enhanced Protected Mode on Windows 8

(x64). With the exception of a few noted differences, the information in this paper still mostly applies to IE10 and

IE11 patch KB2909921 (February 2014), the latest IE patch when this paper was updated.

DIVING INTO IE 10’S ENHANCED PROTECTED MODE SANDBOX > SANDBOX INTERNALS

IBM Security Systems | ©2014 IBM Corporation

|4

2. SANDBOX INTERNALS
Understanding how a piece of software works is the first step in figuring out its limitations and weaknesses. In this

first part of the paper we’ll take a look at the internals of the EPM sandbox. We’ll start by looking at the high-level

architecture which shows how the different sandbox mechanisms work together and then discuss in detail how

each mechanism works.

2.1. ARCHITECTURE
IE10 follows the Loosely-Coupled IE (LCIE) process model introduced in IE8 [5]. In the LCIE process model, the

frame process hosting the browser window (also called the UI frame) is separate from the tab processes which host

the browser tabs. The frame process is responsible for the lifetime of the tab processes. The tab processes, on the

other hand, are responsible for parsing and rendering content and also host the browser extensions such as

Browser Helper Objects (BHO) and toolbars.

To limit the impact of a successful IE compromise, the tab process which processes potentially untrusted data is

sandboxed. IE10 supports two options for sandboxing the tab process – Protected Mode which runs the tab

process at Low Integrity, and Enhanced Protected Mode which runs the tab process inside a more restrictive

AppContainer (see section 2.2):

Frame Process (Broker)

(iexplore.exe)

COM IPC

- COM Object Calls

Tab Process (Sandboxed)
(iexplore.exe)

[Sandboxed: Low Integrity or AppContainer]

API Call

 [Sandboxed]

 API Call

Operating

System

Shared Memory IPC

- Inter-process Messages

- Shared Data
Elevation Policies

IE Shims

Components

Components

COM Objects

User Broker Object

Known Broker Objects

To facilitate sharing of data and inter-process message exchange between components in the tab process and the

frame process, a shared memory IPC mechanism (2.5.1) is used. Additionally, a separate COM IPC (2.5.2)

mechanism is used by the sandboxed process for invoking services exposed by COM objects in the frame process.

A shim mechanism (2.3) in the tab process provides a compatibility layer for browser extensions to run on a low-

privilege environment, it is also used for forwarding API calls to the broker in order to support certain

functionalities, furthermore, it is also used to apply elevation policies (2.4) if an operation will result in the

launching of a process or a COM server.

DIVING INTO IE 10’S ENHANCED PROTECTED MODE SANDBOX > SANDBOX INTERNALS

IBM Security Systems | ©2014 IBM Corporation

|5

The shim mechanism uses the services exposed by the User Broker COM Object (2.6.1) to launch an elevated

process/COM server if dictated by the elevation policies. Finally, several Known Broker COM Objects (2.6.2) in the

frame process also provide additional services that are used by the shim mechanism and other components in the

tab process.

For uniformity, the rest of this paper will use the term “broker process” for the higher-privileged frame process and

the term “sandboxed process” for the lower-privileged tab process.

2.2. SANDBOX RESTRICTIONS
The sandboxed process is mainly restricted via the AppContainer [6, 7, 8, 9] process isolation feature first

introduced in Windows 8. In this new process isolation mechanism, a process runs in an AppContainer which limits

its read/write access, and also limits what the process can do.

In a very high level, an AppContainer has the following properties:

 Name: A unique name of the AppContainer

 SID (security identifier): AppContainer SID – SID generated from the AppContainer name using userenv!

DeriveAppContainerSidFromAppContainerName()

 Capabilities: Security capabilities [10] of the AppContainer - it is a list of what processes running in the

AppContainer can do or access

In the case of IE’s AppContainer, the

AppContainer name is generated using the

format “windows_ie_ac_%03i”. And by

default, the capabilities assigned to IE’s

AppContainer are as follows (see Figure 1):

 internetExplorer (S-1-15-3-4096)

 internetClient (S-1-15-3-1)

 sharedUserCertificates (S-1-15-3-9)

 location (S-1-15-3-3215430884-

1339816292-89257616-1145831019)

 microphone (S-1-15-3-787448254-

1207972858-3558633622-

1059886964)

 webcam (S-1-15-3-3845273463-

1331427702-1186551195-

1148109977)

If private network access (2.2.5) is turned on, IE uses a separate AppContainer with the following additional

capabilities assigned in order to allow access to private network resources:

 privateNetworkClientServer (S-1-15-3-3)

 enterpriseAuthentication (S-1-15-3-8)

The broker process calls iertutil!MICSecurityAware_CreateProcess(), an internal IE function responsible for

spawning the sandboxed process in IE’s AppContainer. The actual spawning of the sandboxed process is done via a

Figure 1 – IE EPM AppContainer and Capabilities

DIVING INTO IE 10’S ENHANCED PROTECTED MODE SANDBOX > SANDBOX INTERNALS

IBM Security Systems | ©2014 IBM Corporation

|6

call to kernel32!CreateProcesW() in which the passed lpStartupInfo.lpAttributeList has a SECURITY_CAPABILITIES

[11] attribute to signify that the process will be running in an AppContainer.

At a low level, processes running in an AppContainer are assigned a Lowbox token which, among other things, has

the following information set:

 Token flags – TOKEN_LOWBOX (0x4000) is set

 Integrity – Low Integrity

 Package – AppContainer SID

 Capabilities –Array of Capability SIDs

 Lowbox Number Entry – A structure which links the token with an AppContainer number (also called

Lowbox Number or Lowbox ID), a unique per-session value that identifies an AppContainer and is used by

the system in various AppContainer isolation/restriction schemes.

With the additional information stored in the token of an AppContainer process, additional restrictions and

isolation schemes can be enforced by the system. The next subsections will discuss some of these restrictions and

isolation schemes in details.

2.2.1. SECURABLE OBJECT RESTRICTIONS
One of the important restrictions afforded by AppContainer is that for an AppContainer process to access

securable objects (such as files and registry keys), the securable object would need to have an additional access

control entry for any of the following:

 The AppContainer

 “ALL APPLICATION PACKAGES” (S-1-15-2-1)

 A capability that matches one of the AppContainer’s capabilities

What this means, for example, is that personal user files such

as those stored in the user’s Documents, Pictures and Videos

folder (i.e. C:\Users\<UserName>\Documents,Pictures,Videos)

will not be accessible to the sandboxed process because they

do not have an access control entry for any of the above.

There are AppContainer-specific locations which are available

for an AppContainer process for data storage. These locations

are as follows:

 File System:

o %UserProfile%\AppData\Local\Packages\

<AppContainer Name>\AC

 Registry:

o HKCU\Software\Classes\Local Settings\

Software\Microsoft\Windows\

CurrentVersion\AppContainer\Storage\

<AppContainer Name>

AppContainer processes are able to access the above locations

because they have an access control entry for the AppContainer
Figure 2 - AppContainer ACE in an AppContainer-specific
location

DIVING INTO IE 10’S ENHANCED PROTECTED MODE SANDBOX > SANDBOX INTERNALS

IBM Security Systems | ©2014 IBM Corporation

|7

(see Figure 2).

The sandboxed IE process can also access browser-related

data located outside the previously described AppContainer

locations because they are stored in locations that have an

access control entry for the internetExplorer capability (see

Figure 3).

Examples of these locations are:

 File System:

o %UserProfile%\AppData\Local\

Microsoft\Feeds (Read access)

o %UserProfile%\Favorites (Read/Write

access)

 Registry:

o HKCU\Software\Microsoft\Feeds (Read

access)

o A few subkeys of

HKCU\Software\Microsoft\Internet

Explorer (Read or Read/Write access)

2.2.2. OBJECT NAMESPACE ISOLATION
An isolation scheme provided by AppContainer is that processes running in an AppContainer will have their own

object namespace. With this isolation feature, named objects that will be created by the AppContainer process will

be inserted in the following AppContainer-specific object directory (see Figure 4):

 \Sessions\<Session>\AppContainerNamedObjects\<AppContainer SID>

Object namespace isolation prevents named object squatting [12], a privilege escalation technique that relies on

multiple processes with different privileges sharing the same object namespace.

2.2.3. GLOBAL ATOM TABLE RESTRICTIONS
AppContainer processes are also restricted from querying and deleting global atoms. Querying and deletion is

limited to global atoms that are created by processes running in the same AppContainer or existing global atoms

that are referenced (which can occur via a call to kernel32!GlobalAddAtom()) by processes running in the same

Figure 3 - internetExplorer capability ACE in a browser-
related location

Figure 4 - AppContainer-specific object directory

DIVING INTO IE 10’S ENHANCED PROTECTED MODE SANDBOX > SANDBOX INTERNALS

IBM Security Systems | ©2014 IBM Corporation

|8

AppContainer. The query restriction is lifted if the ATOM_FLAG_GLOBAL flag is set in the atom (more details on

this is in the reference mentioned below).

The query restriction prevents leaking of potentially sensitive information stored in global atoms while the delete

restriction prevents an AppContainer process from freeing atoms that are referenced by more privileged processes

which can be an opportunity for a sandbox escape.

Internally, in Windows 8, atoms in the global atom table are represented by an updated

nt!_RTL_ATOM_TABLE_ENTRY structure which additionally keeps track of which AppContainers are referencing the

atom. The kernel uses the previously mentioned AppContainer number (termed as Lowbox ID in the related atom

table entry structures) to identify which AppContainers are referencing a particular atom.

More information regarding the atom table changes in Windows 8, including privilege escalation attacks relating to

atoms can be found in Tarjei Mandt’s presentation "Smashing the Atom: Extraordinary String Based Attacks" [13].

2.2.4. USER INTERFACE PRIVILEGE ISOLATION (UIPI) ENHANCEMENTS
Initially introduced in Windows Vista, User Interface Privilege Isolation (UIPI) [14, 15] prevents a lower integrity

process from sending write-type windows messages or installing hooks in a higher-integrity process. It mitigates

shatter attacks [16], which is another privilege escalation technique that relies on the ability of processes with

different privileges to exchange window messages.

In Windows 8, an additional check was added to restrict the sending of write-type messages across AppContainers.

The additional check involves comparing the AppContainer number of the processes if their integrity level is equal.

This, for example, prevents the sandboxed IE process from sending write-type messages to another Windows Store

App or to a process which also runs at low integrity but is not running in an AppContainer (AppContainer number 0

is given to non-AppContainer processes).

2.2.5. NETWORK ISOLATION
Another restriction provided by AppContainer is network isolation [17]. With network isolation, the AppContainer

needs to have specific capabilities in order for the AppContainer process to connect to Internet and public network

endpoints (internetClient), connect to and receive connections from Internet and public network endpoints

(internetClientServer), and connect to and receive connections from private (trusted intranet) network endpoints

(privateNetworkClientServer). There are certain checks [17] that are used by the system to determine whether an

endpoint is classified as part of the Internet/public network or the private network.

By default, the sandboxed IE process only has the internetClient capability which means that it can only connect to

Internet and public network endpoints. Connections to private network endpoints such as those that are part of

trusted home and corporate intranets are blocked. Additionally, receiving connections from Internet, public

network and private network endpoints are also blocked.

There are instances where a user needs access to a site hosted on a private network endpoint but the site is

categorized in a security zone in which EPM will be enabled. For these cases, in IE10, the user is given an option to

enable “private network access”, which if enabled, will result in the sandboxed process to run in a separate IE

AppContainer that includes the privateNetworkClientServer and enterpriseAuthentication capability. In IE11,

private network access is automatically enabled when visiting private network sites.

DIVING INTO IE 10’S ENHANCED PROTECTED MODE SANDBOX > SANDBOX INTERNALS

IBM Security Systems | ©2014 IBM Corporation

|9

2.2.6. ANALYSIS: UNAPPLIED RESTRICTION/ISOLATION MECHANISMS
Compared to other sandbox implementations, such as the Google Chrome sandbox [18], there are still well-known

sandbox restrictions or isolation mechanisms that IE EPM does not apply.

The first unapplied restriction is job object [19] restrictions. Using job object restrictions, a sandboxed process can

be restricted from performing several types of operations, such as preventing access to the clipboard, spawning

additional processes, and preventing the use of USER handles (handles to user interface objects) owned by process

not associated with same job, etc. Though the sandboxed process is associated with a job, the job object

associated to it doesn’t have any strict restrictions in place.

Also, EPM does not implement window station and desktop isolation [20], therefore, the sandboxed process can

still access the same clipboard used by other processes associated to the same windows station, and can still send

messages to windows owned by other processes on the same desktop.

Finally, EPM does not use a restricted token [21] which can further restrict its access to securable resources.

Interestingly, Windows 8 allows the use of restricted tokens in AppContainer processes, giving developers of

sandboxed applications the ability to combine the two restriction/isolation schemes.

Without these restrictions or isolation mechanisms applied, some attacks, mostly resulting to disclosure of some

types of potentially sensitive or personal information can still be performed by the sandboxed process. Details

regarding these attacks are discussed in the Sandbox Limitations/Weaknesses section (3.1).

2.3. IE SHIMS (COMPATIBILITY LAYER)
For compatibility with existing binary extensions [22], IE includes a shim mechanism that redirects certain API calls

so that they will work on a low-privilege environment. An example of this is altering a file’s path to point to a

writable location such as “%UserProfile%\AppData\Local\Microsoft\Windows\Temporary Internet

Files\Virtualized\<original path>” before calling the actual API.

There are also certain instances in which an API needs to be executed in the context of the broker in order to

support a particular functionality. An example is forwarding kernel32!CreateFileW() calls to the CShdocvwBroker

Known Broker Object (2.6.2) in order to allow the loading of local files that passes the Mark-of-the-Web (MOTW)

check [23] in EPM.

Additionally, the shim mechanism allows IE to apply elevation policies (2.4) to API calls that would potentially

result in the launching of a process or a COM server. These APIs are as follows:

 kernel32.dll!CreateProcessA

 kernel32.dll!CreateProcessW

 kernel32.dll!WinExec

 ole32.dll!CoCreateInstance

 ole32.dll!CoCreateInstanceEx

 ole32.dll!CoGetClassObject

When the above APIs are called in the sandboxed process, IE Shims first checks if the API call needs to be

forwarded to the broker process by checking the elevation policies. If the API call needs to be forwarded to the

broker process, via the COM IPC (2.5.2), the call will be forwarded to the User Broker Object (2.6.1) in the broker

process. The User Broker Object will in turn re-check the API call against the elevation policies and then execute

the API call if allowed by the elevation policies.

DIVING INTO IE 10’S ENHANCED PROTECTED MODE SANDBOX > SANDBOX INTERNALS

IBM Security Systems | ©2014 IBM Corporation

|10

The shim mechanism is provided by the ieshims.dll module which sets up a callback that is called every time a DLL

is loaded via the ntdll!LdrRegisterDllNotification() API. When the DLL load callback is executed, the DLL’s entry

point (via LDR_DATA_TABLE_ENTRY.EntryPoint) is updated to execute ieshims!CShimBindings::s_DllMainHook()

which in turn performs the API hooking and then transfers controls to the DLL’s original entry point. API hooking is

done via import address table patching, for dynamically resolved API addresses, kernel32!GetProcAddress() is

hooked to return a shim address.

2.4. ELEVATION POLICIES
Elevation policies determine how a process or a COM server will be launched and at what privilege level. As

discussed in the previous section, the IE Shims mechanism uses the elevation policies to determine if certain

launch-type API calls will be executed in the sandboxed process or will be forwarded to the User Broker Object in

the broker process.

Elevation policies are stored in registry keys with the following format:

 HKLM\Software\Microsoft\Internet Explorer\Low Rights\ElevationPolicy\<GUID>

With each registry key having the following values:

 AppName – For executables: Application executable name

 AppPath – For executables: Application path

 CLSID – For COM servers: COM class CLSID

 Policy – Policy value. Based on Microsoft’s documentation [1], can be any of the following values:

Policy Description

0 Protected Mode prevents the process from launching.

1 Protected Mode silently launches the broker as a low integrity process.

2 Protected Mode prompts the user for permission to launch the process. If permission is granted, the
process is launched as a medium integrity process.

3 Protected Mode silently launches the broker as a medium integrity process.

Note that if EPM is enabled and if the policy is 1 (low integrity), the process will actually be launched in the

sandboxed process’ AppContainer. If there is no policy for a particular executable or a COM class, the default policy

used is dictated by the following registry value:

 HKLM\Software\Microsoft\Internet Explorer\Low Rights::DefaultElevationPolicy

Internally, in IE Shims, the elevation policy checks are done via ieshims!

CProcessElevationPolicy::GetElevationPolicy(), and in the User Broker Object, the elevation policy checks are done

via ieframe!CProcessElevationPolicy::GetElevationPolicy() and

ieframe!CProcessElevationPolicy::GetElevationPolicyEx().

2.5. INTER-PROCESS COMMUNICATION
Inter-Process Communication (IPC) is the mechanism used by the broker and sandboxed process for sharing data,

exchanging messages and invoking services. There are two types of IPC mechanism used by IE - shared memory IPC

and COM IPC. Each IPC mechanism is used for a particular purpose and details of each are discussed in the sections

below.

DIVING INTO IE 10’S ENHANCED PROTECTED MODE SANDBOX > SANDBOX INTERNALS

IBM Security Systems | ©2014 IBM Corporation

|11

2.5.1. SHARED MEMORY IPC
The shared memory IPC is used by the broker and sandboxed process for sharing data and exchanging inter-

process messages between their components. An example use of the shared memory IPC is when the

CShellBrowser2 component in the sandboxed process wanted to send a message to the CBrowserFrame

component in the broker process.

BROKER INITIALIZATION

Upon broker process startup, three shared memory sections (internally called Spaces) are created in a private

namespace. The name of these shared memory sections are as follows:

 IsoScope_<broker_pid_hex>\IsoSpaceV2_ScopeTrusted

 IsoScope_<broker_pid_hex>\IsoSpaceV2_ScopeLILNAC

 IsoScope_<broker_pid_hex>\IsoSpaceV2_ScopeUntrusted

The broker process also creates messaging events so that it can be notified if a message destined to it is available

in the shared memory sections. The messaging events are created in a private namespace with the format

“IsoScope_<broker_pid_hex>\iso_sm_e_<broker_pid_hex>_<broker_iso_process_hex>_<iso_integrity_hex>”.

Where broker_iso_process_hex is the ID of the IsoProcess Artifact (Artifacts are further discussed below) that

contains the broker process information and iso_integrity_hex is a value pertaining to a trust level (the value 1 is

used if the event can be accessed by an untrusted AppContainer-sandboxed IE process).

SANDBOXED INITIALIZATION

Next, when the sandboxed process starts, the sandboxed process opens the shared memory sections previously

created by the broker process with the following access rights:

 IsoScope_<broker_pid_hex>\IsoSpaceV2_ScopeTrusted (Read)

 IsoScope_<broker_pid_hex>\IsoSpaceV2_ScopeLILNAC (Read/Write)

 IsoScope_<broker_pid_hex>\IsoSpaceV2_ScopeUntrusted (Read/Write)

Similar to the broker process, the sandboxed process creates a messaging event so that it can be notified if a

message destined to it is available in the shared memory sections. The messaging event is created in a private

namespace with the format “IsoScope_<broker_pid_hex>\

iso_sm_e_<broker_pid_hex>_<sandboxed_iso_process_hex>_<iso_integrity_hex>”.

ARTIFACTS

Data communicated or shared between processes are called Artifacts. There are different types of Artifacts and

the following are the identified types of Artifacts so far (including their unique ID and purpose):

 SharedMemory (0x0B) – Shared data

 IsoMessage (0x0D) – IPC message

 IsoProcess (0x06) – Process information

 IsoThread (0x08) - Thread information

The Artifacts are stored in the shared memory via several layer of structures, these structures are described in the

next sections.

DIVING INTO IE 10’S ENHANCED PROTECTED MODE SANDBOX > SANDBOX INTERNALS

IBM Security Systems | ©2014 IBM Corporation

|12

SPACE STRUCTURE

The top level structure of each shared memory is called a Space. A Space contains multiple Containers with each

Container designed to hold a specific type of Artifact.

Offset Size Description

00 dw ?

02 dw ?

04 dd Unique Space Index

08 dd ?

0C dd Creator process ID

10 dd ?

14 dd ?

18 dd ?

1C dd ?

20 dd ?

24 dd ?

28 Container[…] Array of Container

CONTAINER STRUCTURE

A Container is a block of memory that holds an array of ContainerEntry which in turn contains the actual Artifacts.

The following is the structure of a Container, it tracks which ContainerEntry is available for use:

Offset Size Description

00 dw Next Available ContainerEntry Index

02 dw ?

04 dd ?

08 dd ?

0C dw ?

0E dw Maximum Number of ContainerEntry

10 ContainerEntry […] Array of ContainerEntry

There are instances where a ContainerEntry is needed but there is none left available in the Container. In these

cases, an “expansion” Container is created in a separate shared memory section which is named as follows:

 <original shared memory section name>_<unk_hex>:<unk_hex>_<unk_hex>

CONTAINERENTRY STRUCTURE

Each ContainerEntry acts as a header for the Artifact it holds, wherein it tracks the type and the reference count of

the Artifact. The following is the structure of a ContainerEntry:

Offset Size Description

00 db ?

01 db Artifact Type

02 dw ?

04 dd Reference Count

08 Varies Artifact

DIVING INTO IE 10’S ENHANCED PROTECTED MODE SANDBOX > SANDBOX INTERNALS

IBM Security Systems | ©2014 IBM Corporation

|13

ARTIFACT (ISOARTIFACT) STRUCTURE

Finally, each Artifact has a 12 byte metadata described below. The actual Artifact data is stored starting at offset

0xC of the Artifact structure.

Offset Size Description

00 db Artifact Type

01 db ?

02 dw ?

04 dd Unique Artifact ID

08 dd Creator Process IsoProcess Artifact ID or Destination Process IsoProcess
Artifact ID (if Artifact type is IsoMessage)

0C Varies (Artifact Data)

SHARED MEMORY (“SPACE”) STRUCTURE ILLUSTRATION

The illustration below shows how the shared memory (Space) structure is laid out:

Space Header

Container

[…]

Container

Container Header

Container Entry Header

Artifact Meta

Artifact Data

Container Entry Header

Artifact Meta

Artifact Data

Container Entry Header

Artifact Meta

Artifact Data

SENDING A MESSAGE

Sending a message involves a source process allocating an IsoMessage Artifact in the shared memory. The

destination process is then notified that an IsoMessage is available in the shared memory by setting the messaging

event.

RECEIVING A MESSAGE

When the destination process is notified via the messaging event, the function

iertutil!CIsoSpaceMsg::MessageReceivedCallback() is invoked. iertutil!CIsoSpaceMsg::MessageReceivedCallback()

then looks for an IsoMessage Artifact in the Spaces. All IsoMessage Artifacts destined to the process are

dispatched to the appropriate handlers by posting a message to a thread’s message queue.

DIVING INTO IE 10’S ENHANCED PROTECTED MODE SANDBOX > SANDBOX INTERNALS

IBM Security Systems | ©2014 IBM Corporation

|14

2.5.2. COM IPC
COM IPC is the second IPC mechanism used by IE. It is used by the sandboxed process to call the services exposed

by COM objects in the broker process. One example of a COM object in the broker process is the User Broker

Object (2.6.1) which handles the launch-type APIs forwarded by IE Shims (2.3).

INITIALIZATION/BOOTSTRAPPING

To bootstrap the COM IPC, the broker process first marshals the IEUserBroker interface of the User Broker Object.

The marshaled interface is stored in a structure called IsoCreationProcessData which, thru the shared memory IPC

mechanism (2.5.1), is shared with the sandboxed process by storing it in a SharedMemory Artifact. The Artifact ID

of the SharedMemory Artifact is passed by the broker process to the sandboxed process via the “CREADAT”

command line switch.

When the sandboxed process loads, it uses the “CREADAT” switch to find the SharedMemory Artifact and retrieve

the IsoCreationProcessData structure. The IEUserBroker interface is then unmarshalled from the

IsoCreationProcessData structure and will become ready for use in the sandboxed process.

Once the IEUserBroker interface is unmarshalled, code running the sandboxed process can use the helper function

iertutil!CoCreateUserBroker() and similarly named functions in iertutil.dll to retrieve a pointer to the IEUserBroker

interface.

INSTANTIATION OF BROKER COM OBJECTS

The sandboxed process uses the IEUserBoker->BrokerCreateKnownObject() method to instantiate known/allowed

broker COM objects (also known as “Known Broker Objects”) in the broker process. These Known Broker Objects

(2.6.2) are listed in the Services section.

2.6. SERVICES
In this paper, the term service refers to any functionality exposed by the broker process that is reachable or

callable from the sandboxed process. These services are typically code that needs to be executed in a higher-

privileged level or code that needs to be executed in the context of the frame/broker process. An example service

is IEUserBroker->WinExec(), a functionality exposed by the User Broker Object that is used by IE Shims to launch an

elevated process.

2.6.1. USER BROKER OBJECT SERVICES
The sandboxed IE process uses the User Broker Object to perform privileged operations such as launching elevated

processes/COM servers and instantiating known/allowed COM broker objects. As mentioned in the COM IPC

section, the sandboxed process uses the iertutil!CoCreateUserBroker() and similarly named functions to retrieve an

IEUserBroker interface pointer.

The COM class that implements the User Broker Object is the ieframe!CIEUserBrokerObject class. The following are

the services exposed by the User Broker Object including the available interfaces and their corresponding

methods:

Interface* Method Notes

IID_IEUserBroker

{1AC7516E-E6BB-4A69-B63F-E841904DC5A6}

Initialize() Returns the PID of the broker
process.

 CreateProcessW() Invoke CreateProcessW() in the

DIVING INTO IE 10’S ENHANCED PROTECTED MODE SANDBOX > SANDBOX INTERNALS

IBM Security Systems | ©2014 IBM Corporation

|15

context of the broker process as
dictated by the elevation
policies. Handles forwarded
CreateProcessW() calls from IE
Shims.

 WinExec() Invoke WinExec() in the context
of the broker process as
dictated by the elevation
policies. Handles forwarded
WinExec() calls from IE Shims.

 BrokerCreateKnownObject() Instantiate a “Known Broker
Object” (2.6.2).

 BrokerCoCreateInstance() Invoke CoCreateInstance() in the
context of the broker process as
dictated by the elevation
policies. Handles forwarded
CoCreateInstance() calls from IE
Shims.

 BrokerCoCreateInstanceEx() Invoke CoCreateInstanceEx() in
the context of the broker
process as dictated by the
elevation policies. Handles
forwarded
CoCreateInstanceEx() calls from
IE Shims.

 BrokerCoGetClassObject() Invoke CoGetClassObject() in the
context of the broker process as
dictated by the elevation
policies. Handles forwarded
CoGetClassObject() calls from IE
Shims.

IID_IERegHelperBroker
{41DC24D8-6B81-41C4-832C-FE172CB3A582}

DoDelSingleValue() Delete known/allowed registry
key value.

 DoDelIndexedValue() Delete known/allowed registry
key value.

 DoSetSingleValue() Set data of a known/allowed
registry key value.

 DoSetIndexedValue() Set data of a known/allowed
registry key value.

 DoCreateKey()

Create a known/allowed registry
key.

DIVING INTO IE 10’S ENHANCED PROTECTED MODE SANDBOX > SANDBOX INTERNALS

IBM Security Systems | ©2014 IBM Corporation

|16

IID_IEAxInstallBrokerBroker
{B2103BDB-B79E-4474-8424-4363161118D5}

BrokerGetAxInstallBroker() Instantiate “Internet Explorer
Add-on Installer” COM object
which causes the launching of
the “%ProgramFiles%\Internet
Explorer\ieinstal.exe” COM
server.

*Interface ID may change in newer IE updates as new interface methods are added or removed. Refer to

ieframe!CIEUserBrokerObject::QueryInterface() for an updated list of interface IDs.

2.6.2. KNOWN BROKER OBJECTS SERVICES
As previously mentioned, the IEUserBroker->CreateKnownBrokerObject() service allows the sandboxed process to

instantiate known/allowed COM objects in the broker process. These known/allowed COM objects provide

additional services to the sandboxed process and are listed below:

COM Class and CLSID(s) Interface* Methods/Description/Notes
(if any)

ieframe!CShdocvwBroker

CLSID_ShdocvwBroker
{9C7A1728-B694-427A-94A2-A1B2C60F0360}

CLSID_CShdocvwBrokerNoFrameAffinity
{20CCEF1E-0185-41A5-A933-509C43B54F98}

IID_IShdocvwBroker
{A9968B49-EAF5-4B73-AA93-
A25042FCD67A}

In IE11:
{FED6B29E-13A0-48FA-8835-
093F6F419388}

Interface has large number
of services called by various
parts of the sandboxed code.
An example service is the
service that handles the
forwarded
kernel32!CreateFileW() API
by IE Shims and displaying
the Internet Options dialog
box.

 IID_IEBrokerAttach
{7673B35E-907A-449D-A49F-
E5CE47F0B0B2}

Method:
AttachIEFrameToBroker()

 IID_IHTMLWindow
ServicesBroker
{806D58DF-EE78-4630-9475-
F9B337A2DFCB}

Methods: Blur(), Focus(),
BlurBrowser(),
FocusBrowser()

msfeeds!CLoriBroker

CLSID_FeedsLoriBroker

{A7C922A0-A197-4AE4-8FCD-2236BB4CF515}

IID_ILoriEvents
{07AB1E58-91A0-450F-B4A5-
A4C775E67359}

“Microsoft Feeds LoRi

Broker”

msfeeds!CArbiterBroker

CLSID_FeedsArbiterLoRiBroker

{34E6ABFE-E9F4-4DDF-895A-7350E198F26E}

IID_IArbiterBroker
{EDB9EF13-045C-4C0A-808E-
3294C59703B4}

“Microsoft Feeds Arbiter LoRi

Broker”

ieframe!CProtectedModeAPI

IID_IProtectedModeAPI
{3853EAB3-ADB3-4BE8-9C96-

Handles the following
Protected Mode API

DIVING INTO IE 10’S ENHANCED PROTECTED MODE SANDBOX > SANDBOX INTERNALS

IBM Security Systems | ©2014 IBM Corporation

|17

CLSID_CProtectedModeAPI

{ED72F0D2-B701-4C53-ADC3-F2FB59946DD8}

CLSID_CProtectedModeAPINoFrameAffinity
{8C537469-1EA9-4C85-9947-7E418500CDD4}

C883B98E76AD} functions [24]
IEShowSaveFileDialog(),
IESaveFile(),
IERegCreateKeyEx(), and
IERegSetValueEx()

 IID_IEBrokerAttach
{7673B35E-907A-449D-A49F-
E5CE47F0B0B2}

Method:
AttachIEFrameToBroker()

iertutil!SettingStore::CSettingsBroker

CLSID_CSettingsBroker

{C6CC0D21-895D-49CC-98F1-D208CD71E047}

IID_ISettingsBroker
{EA77E0BC-3CE7-4CC1-928F-
6F50A0CE5487}

“Internet Explorer Settings

Broker”

ieframe!CRecoveryStore

CLSID_IERecoveryStore
{10BCEB99-FAAC-4080-B2FA-D07CD671EEF2}

IID_IRecoveryStore
{A0CEE1E8-9548-425D-83E3-
A47E69F39D30}

In IE11:
{5C333B75-A015-4564-8BF3-
998CCC4FF9F5}

“IE Recovery Store”. This

particular interface has a

number of services.

 IID_ICookieJarRecoveryData
{8FD276BB-5A9D-4FC0-B0BD-
90FA7CF1283D}

Methods: SetCookie(),
SetCookiesFromBlob(),
DeleteCookie(),
EnumCookies(),
ClearCookies()

 IID_ICredentialRecoveryData
{239D58CC-793C-4B64-8320-
B51380087C0B}

Methods: SetCredential(),

SetCredentialFromBlob(),

EnumCredentials(),

ClearCredentials()

wininet!WininetBroker

CLSID_WininetBroker
{C39EE728-D419-4BD4-A3EF-EDA059DBD935}

IID_IWininetBroker
{B06B0CE5-689B-4AFD-B326-
0A08A1A647AF}

“WinInetBroker Class”

*Interface ID may change in newer IE updates as new interface methods are added or removed. Refer to the

corresponding QueryInterface() method of the listed COM classes for an updated list of interface IDs.

2.6.3. BROKER COMPONENTS MESSAGE HANDLERS
Finally, another set of broker functionality that are reachable or callable from the sandboxed process are the

message handlers of broker components. These message handlers are invoked when inter-process messages via

the shared memory IPC are received. Examples of broker component message handlers are:

 ieframe!CBrowserFrame::_Handle*()

 ieframe!CDownloadManager::HandleDownloadMessage()

DIVING INTO IE 10’S ENHANCED PROTECTED MODE SANDBOX > SANDBOX INTERNALS

IBM Security Systems | ©2014 IBM Corporation

|18

Typically, message handlers will directly or indirectly invoke iertutil!IsoGetMessageBufferAddress() to retrieve the

IsoMessage Artifact and then parse/use it according to an expected format.

2.7. SUMMARY: SANDBOX INTERNALS
The first part of this paper described in details the different mechanisms that make up the EPM sandbox. First

discussed is the overall sandbox architecture which described in a high level each sandbox mechanism and how

they are interconnected.

A new process isolation mechanism introduced in Windows 8, called AppContainer, is the main mechanism used

by EPM to isolate and limit the privileges and capabilities of the sandboxed process.

Through API hooking, the IE Shims (Compatibility Layer) mechanism enables binary extensions to work on a low-

privileged environment by redirecting operations to writable locations, it is also used for forwarding API calls to the

broker in order to support certain functionalities, furthermore, it is also the mechanism used to apply elevation

policies to operations that would result in the launching of a process or a COM server.

For inter-process communication, the sandboxed and the broker process use two types of IPC mechanism to

communicate – COM IPC which is used by the sandboxed process to perform calls to COM objects in the broker

process, and shared memory IPC which is used by components of the sandboxed process and the broker process to

exchange inter-process messages and to share data.

Finally, the broker processes exposes several services which are callable from the sandboxed process via the IPC

mechanisms. The services are typically code that needs to run in a higher-privilege level or code that needs to run

in the context of the frame/broker process.

DIVING INTO IE 10’S ENHANCED PROTECTED MODE SANDBOX > SANDBOX SECURITY

IBM Security Systems | ©2014 IBM Corporation

|19

3. SANDBOX SECURITY
After discussing how the EPM sandbox works, in this second part of the paper, we’ll take a look at the security

aspect of the EPM sandbox. This part is divided into two sections – the first section discusses the limitations or

weaknesses of the EPM sandbox, and the second section discusses the different ways how code running in the

sandboxed process can gain additional privileges or achieve code execution in a more privileged context.

3.1. SANDBOX LIMITATIONS/WEAKNESSES
This section lists the limitations or weaknesses of the EPM sandbox. It answers the important question “what can

malicious code still do or access once it is running inside the sandboxed process?” The most likely reason for the

existence of some of these limitations/weaknesses is because of compatibility reasons or that addressing them

would require significant development effort. Nonetheless, the items discussed here are current

limitations/weaknesses, future patches or EPM improvements may address some, if not all of them.

3.1.1. FILE SYSTEM ACCESS
In a default Windows 8 install, the sandboxed process can still list and read most files from the following folders

(including their subfolders) because of the read access control entry for ALL APPLICATION PACKAGES:

 %ProgramFiles% (C:\Program Files)

 %ProgramFiles(x86)% (C:\Program Files (x86))

 %SystemRoot% (C:\Windows)

The reason for the read access control entry for ALL APPLICATION PACKAGES in most system/common files and

folders is for compatibility with AppContainer-sandboxed applications (such as IE running in EPM and Windows

Store Apps), because they need access to system/common resources in order to properly launch or operate [25].

The consequence of the read access to system/common files and folders is that the sandboxed code can list

installed applications in the system - information which can be used for future attacks. Additionally, configuration

files or license keys used by 3
rd

 party application (both of which may contain sensitive information) can be stolen if

they are stored in the above folders.

Additionally, EPM uses the following AppContainer-specific folders to store EPM cache files and cookies:

 %UserProfile%\AppData\Local\Packages\<AppContainer Name>\AC\InetCache

 %UserProfile%\AppData\Local\Packages\<AppContainer Name>\AC\InetCookies

Since the AppContainer process has full access to files on the above folders, the sandboxed process will be able to

read potentially sensitive information, especially from cookies which may contain authentication information to

websites. Note that EPM uses a separate AppContainer when browsing private network sites (i.e. when private

network access is turned on), therefore, cookies and cache files for private network sites will be stored in a

different AppContainer-specific location. Also, cookies and cache files for sites visited with EPM turned off are also

stored in a different location [26].

Finally, the sandboxed code can take advantage of its read/write access to files on the %UserProfile\Favorites

folder (due to the access control entry for the internetExplorer capability), whereby, it can potentially modify all

shortcut files so that they will point to an attacker-controlled site.

DIVING INTO IE 10’S ENHANCED PROTECTED MODE SANDBOX > SANDBOX SECURITY

IBM Security Systems | ©2014 IBM Corporation

|20

3.1.2. REGISTRY ACCESS
Most of the subkeys in the following top-level registry keys can still be read by the sandboxed process because of

the read access control entry for ALL APPLICATION PACKAGES:

 HKEY_CLASSES_ROOT

 HKEY_LOCAL_MACHINE

 HKEY_CURRENT_CONFIG

Similar to system/common files and folders, the reason for the read access control entry for ALL APPLICATION

PACKAGES in most system/common registry keys is for compatibility with AppContainer-sandboxed applications.

The consequence of the read access to system/common registry keys is that the sandboxed process will be able to

retrieve system and general application configuration/data which may contain sensitive information or may be

used in future attacks. Example of such registry keys are:

 HKLM\Software\Microsoft\Internet Explorer\Low Rights\ElevationPolicy (IE Elevation Policies)

 HKLM\Software\Microsoft\Windows NT\CurrentVersion (Registered Owner, Registered Organization, etc.)

Furthermore, there are also several user-specific configuration/information contained in the subkeys of

HKEY_CURRENT_USER which are still readable from the sandboxed process. Read access to these subkeys is due to

the read access control entry for ALL APPLICATION PACKAGES or the internetExplorer capability. Examples of these

registry keys are:

 Readable via the ALL APPLICATION PACKAGES access control entry:

o HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\RunMRU (Run command MRU)

o HKCU\Software\Microsoft\Windows\CurrentVersion\Explorer\RecentDocs (Recent Items)

 Readable via the internetExplorer capability or the ALL APPLICATION PACKAGES access control entry:

o HKCU\Software\Microsoft\Internet Explorer\TypedURLs (Typed URLs in IE)

Access to user-specific locations in the registry (HKCU) and the file system (%UserProfile%) could potentially be

further locked down by EPM using a restricted token. However, it would mean that access to resources that the

EPM-sandboxed process normally has direct access to (such as AppContainer-specific locations and those have an

access control entry for the internetExplorer capability) would need to be brokered.

3.1.3. CLIPBOARD ACCESS
Because clipboard read/write restrictions are not set in the job object associated to the sandboxed process, the

sandboxed process can still read from and write to the clipboard. Additionally, as discussed in the Sandbox

Restrictions section, EPM does not support window station isolation, therefore, the sandboxed process shares the

clipboard with other processes that are associated to the same window station.

A caveat, however, is that the AppContainer process should be the process that is currently actively receiving

keyboard input, otherwise, user32!OpenClipboard() will fail with an access denied error. One way for this to

happen is to coerce the user to press a key while a window or control owned by the AppContainer process is

focused.

Nonetheless, because the sandboxed process still has access to the clipboard, the sandboxed process will be able

to read potentially sensitive information from the clipboard (such as passwords – if the user uses an insecure

DIVING INTO IE 10’S ENHANCED PROTECTED MODE SANDBOX > SANDBOX SECURITY

IBM Security Systems | ©2014 IBM Corporation

|21

password manager that does not regularly clear the clipboard). Moreover, clipboard write access can lead to

arbitrary command execution if malicious clipboard content is inadvertently pasted to a command prompt. Also, if

a higher-integrity application fully trusts and uses the malicious clipboard content, its behavior can be controlled,

potentially leading to a sandbox escape - these are described by Tom Keetch in the paper “Practical Sandboxing on

the Windows Platform” [12].

3.1.4. SCREEN SCRAPING AND SCREEN CAPTURE
Another information disclosure attack that can still be performed by the sandboxed process is screen scraping [27].

Because EPM does not support desktop isolation and the UILIMIT_HANDLE restriction is not set in the job object

associated to the sandboxed process, the sandboxed process can still send messages that are not blocked by UIPI

to windows owned by other processes. By sending allowed query messages such as WM_GETTEXT, the sandboxed

process will be able to capture information from windows or controls of other applications.

Additionally, another interesting information disclosure attack that is possible is performing a screen capture. The

resulting screen capture data may also contain potentially sensitive information or information that can be used in

future attacks, such as what applications the user usually uses (via pinned programs in the taskbar) or what

security software is running (via the tray icons), etc.

3.1.5. NETWORK ACCESS
Finally, because of the internetClient capability, the sandboxed process can still connect to Internet and public

network endpoints. This allows malicious code running in the sandboxed process to communicate and send stolen

information to a remote attacker. Additionally, this capability can be leveraged by a remote attacker in order to

use the affected system to connect or attack other Internet/public network endpoints, thereby concealing the real

source of the connection or the attack.

3.2. SANDBOX ESCAPE
After discussing the limitations and weaknesses of the EPM sandbox, we will now take a look at ways how code

running in the sandboxed process could gain additional privileges which would otherwise be limited by the

sandbox. This section attempts to answer the question “how might malicious code escape the EPM sandbox?”

3.2.1. LOCAL ELEVATION OF PRIVILEGE (EOP) VULNERABILITIES
A common escape vector among sandbox implementations is to elevate privileges by exploiting Local Elevation of

Privilege (EoP) vulnerabilities. Exploiting local EoP vulnerabilities, especially those that can result in arbitrary code

execution in kernel mode are an ideal way to bypass all the restrictions set on the sandboxed code. With multiple

kernel attack vectors [28] such as system calls, parsers and device objects which are available to a sandboxed code,

we can expect that local EoP vulnerabilities will become more valuable as more and more widely-deployed

applications are being sandboxed.

A recent example of using a kernel mode vulnerability to escape a browser sandbox is CVE-2013-1300 [29], a

vulnerability in Win32k that Jon Butler and Nils discovered and used to escape the Google Chrome sandbox in

Pwn2Own 2013.

3.2.2. POLICY/PERMISSION VULNERABILITIES
Policy/permission vulnerabilities involve permissive write-allowed sandbox policies or resource permissions (such

as permissive ACLs) that can be leveraged by the sandboxed process to control the behavior of a higher-privileged

DIVING INTO IE 10’S ENHANCED PROTECTED MODE SANDBOX > SANDBOX SECURITY

IBM Security Systems | ©2014 IBM Corporation

|22

process. These also include elevation policies that could result in the execution of arbitrary code in a more

privileged context.

An example policy vulnerability in IE is CVE-2013-3186 [30], a vulnerability discovered by Fermin Serna which

involves an elevation policy that allows the execution of msdt.exe in medium integrity without prompt. The issue is

that there are certain arguments that can be passed to msdt.exe that would result in the execution of arbitrary

scripts at medium integrity.

3.2.3. POLICY CHECK VULNERABILITIES
Because the elevation policy checks in IE determine how executables will run (e.g. with prompt or without prompt)

and at what privilege level, weaknesses, particularly logic vulnerabilities that lead to an incorrect policy check

result is a vector for sandbox escape. Typically, these policy check logic vulnerabilities are easier to exploit than

memory corruption vulnerabilities since exploiting them will just involve evading the policy checks via specially

formed resource names, execution of the privileged operation such as spawning a given executable or writing to a

privileged resource will be done by the broker using its own code.

In the course of my research for this paper, I discovered a policy check vulnerability in IE (CVE-2013-4015) [31]

which allows execution of any executable in medium integrity without prompt. Specifically, the vulnerability exists

in ieframe!GetSanitizedParametersFromNonQuotedCmdLine(), a helper function used (directly and indirectly) by

the User Broker Object to parse a non-quoted command line into its application name and argument components,

and the result of which are eventually used in an elevation policy check.

By using a whitespace other than the space character to delimit an application name and its arguments,

ieframe!GetSanitizedParametersFromNonQuotedCmdLine() will be misled to extract an incorrect application name.

Consider the following command line:

C:\Windows\System32\cmd.exe\t\..\notepad.exe /c calc.exe

In the above case, ieframe!GetSanitizedParametersFromNonQuotedCmdLine() will treat the string

“C:\Windows\System32\cmd.exe\t\..\notepad.exe” (normalized to “C:\Windows\System32\notepad.exe”) as the

application name, and the string “/c calc.exe” as the argument. Because of a default elevation policy, the

executable “C:\Windows\System32\notepad.exe” is allowed to execute in medium integrity without prompt, thus,

the application name will pass the elevation policy check and the command line is passed to the

kernel32!WinExec() API by the User Broker Object.

However, when the command line is executed by kernel32!WinExec(), instead of spawning Notepad, the actual

application that will be executed will be “C:\Windows\System32\cmd.exe” with the argument “\..\notepad.exe /c

calc.exe”. We reported this vulnerability to Microsoft and it was patched last July 2013 (MS13-055) [32].

Another example of a policy check vulnerability in another sandbox implementation is CVE-2011-1353 [33], a

vulnerability that Paul Sabanal and I discovered (and also independently discovered by Zhenhua Liu) in the policy

engine of the Adobe Reader X sandbox [34]. The vulnerability is due to lack of canonicalization of a resource name

when evaluating registry deny-access policies. By using a registry resource name that contains additional

backslashes, it is possible to bypass the registry-deny policy check, thereby, allowing a sandboxed code to write to

a critical registry key.

DIVING INTO IE 10’S ENHANCED PROTECTED MODE SANDBOX > SANDBOX SECURITY

IBM Security Systems | ©2014 IBM Corporation

|23

3.2.4. SERVICE VULNERABILITIES
The services exposed by higher-privileged processes make up a large part of the attack surface in a sandbox

implementation, including IE. To support features or functionality that needs to be executed in a higher privilege

level, the broker process or another process running with a higher privilege level would need to implement those

capabilities and expose them to the sandboxed process as services. From a developer’s perspective, writing the

code of these services requires additional precautions since they run in the context of a higher-privileged process

and uses untrusted data as input.

A notable example of a service vulnerability in another sandbox implementation is CVE-2013-0641 [35], a Reader

sandbox vulnerability that was leveraged by the first in-the-wild Reader sandbox escape exploit. The vulnerability

is in the service that handles the execution of user32!GetClipboardFormatNameW() in the context of the broker

process. Because of an incorrect output buffer size being passed to the API, a buffer overflow can be triggered in

the broker process by the sandboxed process. By overwriting a virtual function table pointer, the exploit was able

to control the execution flow of the broker process, eventually leading to the execution of an attacker-controlled

code in the higher-privileged broker process.

Two more examples of a service vulnerability are CVE-2012-0724 and CVE-2012-0725 [33], two vulnerabilities that

Paul Sabanal and I discovered (and also independently discovered by Fermin Serna) in the Chrome Flash sandbox.

The vulnerabilities were due to services in a broker process fully trusting a pointer they received from the

sandboxed process. Because the attacker-controlled pointer is dereferenced for a function call, execution flow of

the broker process can be controlled and arbitrary code execution in the higher-privileged broker process can be

achieved.

As discussed and listed in the Services section (2.6), there are numerous services exposed to the IE sandboxed

process. From an attacker’s perspective, these exposed services are potential opportunities for sandbox escape

and therefore, we can expect attackers will be (or currently are) auditing these services for vulnerabilities. We can

anticipate that in the future, additional services would be exposed to the sandboxed process in order to

accommodate new browser features and functionality.

3.3. SUMMARY: SANDBOX SECURITY
In terms of limitations or weakness, there are still some of types of potentially sensitive or personal information

that can be accessed from the file system and the registry because of how the access control list of certain files,

folders and registry keys are setup. EPM browser cookies and cache files stored in the AppContainer-specific folder

which also contains sensitive information can also be accessed. Additionally, EPM currently does not protect

against screen scraping, screen capture and clipboard access. Finally, because the sandboxed process can still

connect to Internet and pubic network endpoints, stolen information can be sent to a remote attacker.

In terms of sandbox escape, there are multiple options for an attacker to gain code execution in a more privileged

context. Ranging from generic attacks such as exploiting local elevation of privilege vulnerabilities and leveraging

write-allowed resource permissions, to taking advantage of the sandbox mechanisms, such as evading policy

checks, taking advantage of sandbox policy issues, and attacking the services exposed by the broker process.

DIVING INTO IE 10’S ENHANCED PROTECTED MODE SANDBOX > CONCLUSION

IBM Security Systems | ©2014 IBM Corporation

|24

4. CONCLUSION
Enhanced Protected Mode is a welcome incremental step done by Microsoft in improving IE’s sandbox. Its use of

the new AppContainer process isolation mechanism will certainly help in preventing theft of personal user files and

corporate assets from the network. However, as discussed in this paper, there are still some limitations or

weaknesses in the EPM sandbox that can lead to the exfiltration of some other types of potentially sensitive or

personal information and there are still some improvements that can be done to prevent the attacks described in

this paper.

Also, the new AppContainer process isolation mechanism is a great addition to Windows 8 as it gives vendors an

additional option in developing sandboxed applications. For security researchers, AppContainer is an interesting

feature to further look at as there are certainly more isolation/restriction schemes that it provides than what are

listed in this paper.

Finally, I hope this paper had helped you, the reader, understand the inner workings of IE10’s Enhanced Protected

Mode sandbox.

DIVING INTO IE 10’S ENHANCED PROTECTED MODE SANDBOX > BIBLIOGRAPHY

IBM Security Systems | ©2014 IBM Corporation

|25

5. BIBLIOGRAPHY

[1] M. Silbey and P. Brundrett, "MSDN: Understanding and Working in Protected Mode Internet Explorer,"

[Online]. Available: http://msdn.microsoft.com/en-us/library/bb250462(v=vs.85).aspx.

[2] T. Keetch, "Escaping from Protected Mode Internet Explorer," [Online]. Available:

http://archive.hack.lu/2010/Keetch-Escaping-from-Protected-Mode-Internet-Explorer-slides.ppt.

[3] J. Drake, P. Mehta, C. Miller, S. Moyer, R. Smith and C. Valasek, "Browser Security Comparison - A Quantitative

Approach," [Online]. Available: http://files.accuvant.com/web/files/AccuvantBrowserSecCompar_FINAL.pdf.

[4] A. Zeigler, "Enhanced Protected Mode," [Online]. Available:

http://blogs.msdn.com/b/ie/archive/2012/03/14/enhanced-protected-mode.aspx.

[5] A. Zeigler, "IE8 and Loosely-Coupled IE (LCIE)," [Online]. Available:

http://blogs.msdn.com/b/ie/archive/2008/03/11/ie8-and-loosely-coupled-ie-lcie.aspx.

[6] Ollie, "Windows 8 App Container Security Notes - Part 1," [Online]. Available:

http://recxltd.blogspot.com/2012/03/windows-8-app-container-security-notes.html.

[7] A. Ionescu, "Windows 8 Security and ARM," [Online]. Available:

https://ruxconbreakpoint.com/assets/Uploads/bpx/alex-breakpoint2012.pdf.

[8] A. Allievi, "Securing Microsoft Windows 8: AppContainers," [Online]. Available:

http://news.saferbytes.it/analisi/2013/07/securing-microsoft-windows-8-appcontainers/.

[9] S. Renaud and K. Szkudlapski, "Windows RunTime," [Online]. Available: http://www.quarkslab.com/dl/2012-

HITB-WinRT.pdf.

[10] Microsoft, "MSDN: App capability declarations (Windows Store apps)," [Online]. Available:

http://msdn.microsoft.com/en-us/library/windows/apps/hh464936.aspx.

[11] Microsoft, "MSDN: SECURITY_CAPABILITIES Structure," [Online]. Available: http://msdn.microsoft.com/en-

us/library/windows/desktop/hh448531(v=vs.85).aspx.

[12] T. Keetch, "Practical Sandboxing on the Windows Platform," [Online]. Available:

http://www.tkeetch.co.uk/slides/HackInParis_2011_Keetch_-_Practical_Sandboxing.ppt.

[13] T. Mandt, "Smashing the Atom: Extraordinary String Based Attacks," [Online]. Available:

www.azimuthsecurity.com/resources/recon2012_mandt.pptx.

[14] Microsoft, "MSDN: Windows Integrity Mechanism Design," [Online]. Available:

http://msdn.microsoft.com/en-us/library/bb625963.aspx.

DIVING INTO IE 10’S ENHANCED PROTECTED MODE SANDBOX > BIBLIOGRAPHY

IBM Security Systems | ©2014 IBM Corporation

|26

[15] E. Barbosa, "Windows Vista UIPI (User Interface Privilege Isolation)," [Online]. Available:

http://www.coseinc.com/en/index.php?rt=download&act=publication&file=Vista_UIPI.ppt.pdf.

[16] Wikipedia, "Shatter attack," [Online]. Available: http://en.wikipedia.org/wiki/Shatter_attack.

[17] Microsoft, "MSDN: How to set network capabilities," [Online]. Available: http://msdn.microsoft.com/en-

us/library/windows/apps/hh770532.aspx.

[18] The Chromium Authors, "The Chromium Projects - Sandbox," [Online]. Available:

http://www.chromium.org/developers/design-documents/sandbox.

[19] D. LeBlanc, "Practical Windows Sandboxing, Part 2," [Online]. Available:

http://blogs.msdn.com/b/david_leblanc/archive/2007/07/30/practical-windows-sandboxing-part-2.aspx.

[20] D. LeBlanc, "Practical Windows Sandboxing – Part 3," [Online]. Available:

http://blogs.msdn.com/b/david_leblanc/archive/2007/07/31/practical-windows-sandboxing-part-3.aspx.

[21] D. LeBlanc, "Practical Windows Sandboxing – Part 1," [Online]. Available:

http://blogs.msdn.com/b/david_leblanc/archive/2007/07/27/practical-windows-sandboxing-part-1.aspx.

[22] E. Lawrence, "Brain Dump: Shims, Detours, and other “magic”," [Online]. Available:

http://blogs.msdn.com/b/ieinternals/archive/2012/07/31/internet-explorer-compatibility-detours-shims-

virtualization-for-toolbars-activex-bhos-and-other-native-extensions.aspx.

[23] E. Lawrence, "Enhanced Protected Mode and Local Files," [Online]. Available:

http://blogs.msdn.com/b/ieinternals/archive/2012/06/20/loading-local-files-in-enhanced-protected-mode-in-

internet-explorer-10.aspx.

[24] Microsoft, "MSDN: Protected Mode Windows Internet Explorer Reference," [Online]. Available:

http://msdn.microsoft.com/en-us/library/ms537312(v=vs.85).aspx.

[25] Microsoft, "Win8: App: Modern: Apps fail to start if default registry or file permissions modified," [Online].

Available: http://support.microsoft.com/kb/2798317.

[26] E. Lawrence, "Understanding Enhanced Protected Mode," [Online]. Available:

http://blogs.msdn.com/b/ieinternals/archive/2012/03/23/understanding-ie10-enhanced-protected-mode-

network-security-addons-cookies-metro-desktop.aspx.

[27] Wikipedia, "Data scraping - Screen scraping," [Online]. Available:

http://en.wikipedia.org/wiki/Data_scraping#Screen_scraping.

[28] T. Ormandy and J. Tinnes, "There's a party at Ring0, and you're invited," [Online]. Available:

http://www.cr0.org/paper/to-jt-party-at-ring0.pdf.

[29] J. Butler and Nils, "MWR Labs Pwn2Own 2013 Write-up – Kernel Exploit," [Online]. Available:

https://labs.mwrinfosecurity.com/blog/2013/09/06/mwr-labs-pwn2own-2013-write-up---kernel-exploit/.

DIVING INTO IE 10’S ENHANCED PROTECTED MODE SANDBOX > BIBLIOGRAPHY

IBM Security Systems | ©2014 IBM Corporation

|27

[30] F. Serna, "CVE-2013-3186 - The case of a one click sandbox escape on IE," [Online]. Available:

http://zhodiac.hispahack.com/index.php?section=blog&month=8&year=2013.

[31] IBM Corporation, "Microsoft Internet Explorer Sandbox Bypass," [Online]. Available:

http://www.iss.net/threats/473.html.

[32] Microsoft, "Microsoft Security Bulletin MS13-055 - Critical," [Online]. Available:

https://technet.microsoft.com/en-us/security/bulletin/ms13-055.

[33] P. Sabanal and M. V. Yason, "Digging Deep Into The Flash Sandboxes," [Online]. Available:

https://media.blackhat.com/bh-us-12/Briefings/Sabanal/BH_US_12_Sabanal_Digging_Deep_WP.pdf.

[34] P. Sabanal and M. V. Yason, "Playing In The Reader X Sandbox," [Online]. Available:

https://media.blackhat.com/bh-us-11/Sabanal/BH_US_11_SabanalYason_Readerx_WP.pdf.

[35] M. V. Yason, "A Buffer Overflow and Two Sandbox Escapes," [Online]. Available:

http://securityintelligence.com/a-buffer-overflow-and-two-sandbox-escapes/.

