
You can't see me
A Mac OS X Rootkit uses the tricks you haven't known yet

Team T5

Ming-chieh Pan
Sung-ting Tsai

About Us

Team T5

We	 monitor,	 analyze,	 and	
track	 cyber	 threats.	

Team T5 Research

Sourcing Analysis Product

Unique
Collections

Deep Insight
of Threats

Intelligence
Report

Sung-ting Tsai (TT)

Team T5

Leader

Research

New security technology
Malicious document
Malware auto-analyzing system (sandbox
technologies)
Malware detection
System vulnerability and protection
Mobile security

Speech

Black Hat USA 2011 / 2012
Codegate 2012
Syscan 10’ / 12’
HITCon 08’

Ming-chieh Pan (Nanika)

Team T5 Inc.

Chief Researcher

Speech

Black Hat USA 2011 / 2012

Syscan Singapore/Taipei/Hong Kong 08/10

Hacks in Taiwan Conference
05/06/07/09/10/12

Research

Vulnerability discovery and analysis
Exploit techniques
Malware detection
Mobile security

Agenda	

Advanced	 Process	 Hiding	

A	 Privileged	 Normal	 User	

A	 Trick	 to	 Gain	 Root	 Permission	

Direct	 Kernel	 Task	 Access	 (Read/Write)	

Loading	 Kernel	 Module	 Without	 Warnings	

Advanced Process Hiding
DKOM
launchd

The rubilyn Rootkit

Using DKOM to hide
process

Process Structure in Kernel

Detecting rubilyn Process Hiding

DKOM

Rubilyn uses a simple DKOM (direct kernel object modification)
to hide processes. It just unlinks p_list to hide process

So we can easily detect rubilyn process hiding by listing tasks
and comparing with process list.

Volatility and Bypass Volatility

Volatility
Volatility is a well-know memory forensic tool. New version of
Volatility can detect rubilyn rootkit.

Bypass
After some study on Volatility, we found that it checks p_list,
p_hash, p_pglist, and task. So we can unlink p_list, p_hash,
p_pglist, and task list, then Volatility cannot detect us.

DEMO 0x01
Bypass Volatility

Launchd Magic

User mode magic
In previous chapters, we did lots of hard works in kernel in order
to hide process. However, there is a trick that we can easily find
an invisible process from user mode.

launchd
Launchd is monitoring all process creation and termination. It
maintains a job list in user mode. ‘launchctl’ is the tool to
communicate with launchd. It can easily list jobs.

Unlink a job in Launchd

Get root permission

Enumerate process launchd and get launchd task

Read launchd memory and find data section

Find root_jobmgr
Check root_jobmgr->submgrs and submgrs->parentmgr

Enumerate jobmgr and get job

Enumerate job and find the target job
Information Storage

Unlink the job

DEMO 0x02
Remove job from launchd

A Privileged Normal User
host privilege

Running Privileged Tasks as a Normal User

Host Privilege

processor_set_default
host_processor_set_priv
processor_set_tasks

How to Get Host Privilege

Assign host privilege to a task
VParse mach_kernel and find _realhost
Find task structure
Assign permission: task->itk_host = realhost->special[2]
Then the task/process can do privilege things

Hook system call (Global)
When process is retrieving the task information, make it return
with host privilege.

Patch code (Global, good for rootkit)
When process is retrieving the task information, make it return
with host privilege.
Patch code (Global, good for rootkit)

call _host_self
mov rax, [rax+0x20]
mov rdi, rax

Direct Kernel Task Access

Since Mac OS X 10.6, it restricted task
access for kernel task 	

Direct Task Access

We don’t use task_for_pid()

processor_set_tasks(p_default_set_control,
&task_list, &task_count)

task_list[0] is the kernel task

We can control all of tasks and read / write
memory, even use thread_set_state() to
inject dynamic libraries.

Bypass Kernel Module
Verification in 10.9

In Mac OS 10.9, if you want to load a kernel module

Put the kernel module file into /System/
Library/Extensions/

Run kextload to load the file

If the kernel module is not signed, OS will
pop up a warning message

mykextload

Load a kernel module from any path.

Load a kernel module on the fly, from a
memory buffer, etc. File is not required

Load a kernel module without verification.
(no warning message)

No need to patch kextd.

kext_request()

A Trick to Gain Root Permission

securityd
com.apple.SecurityServer!

Securityd

APP SMJobSumit

security.framework

ucsp_client_authorizationCreate -> mach_msg

etc/
authorizatio

ServiceManagement
launchdadd_msg_launchd_request -> mach_msg

com.apple.bsd.launchdadd launchd
ldclient_request_launchd_request -> mach_msg

OpenPAM

system.privilege.admin
system.privilege.taskport
com.apple.ServiceManagement.daemons.modify
com.apple.ServiceManagement.blesshelper	

com.apple.SoftwareUpdate.scan	

Conclusion

Advanced Process Hiding
it could hide processes and bypass detection by all existing
security software.

A Privileged Normal User
rootkit can use this trick to create a ‘normal’ power user. It won’t
be noticed easily.

Direct Kernel Task Access
easier to access process memory.

Loading Kernel Module Without Warnings
more flexible way to load rootkit modules.

A Trick to Gain Root Permission
the trick might be used by malware to gain the 1st permission.

Contact: tt@teamt5.org / ttsecurity@gmail.com

