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Abstract

We are interested in the ability to lie convincingly about the contents of an encrypted file. For example, a

businessman traveling through dangerous territory with sensitive documents may want, if kidnapped, to convincingly

lie to his captors about the contents of the documents. Our approach encrypts a plaintext into a ciphertext plus a

private key. The ciphertext can be decrypted back into the plaintext using this key, or it can be decrypted into other

(decoy) plaintexts using decoy keys. The decoy plaintexts can be chosen at encryption time, or, in some cases,

after encryption. Our implementation is based upon an existing framework for reconciling similar strings using

little communication.

I. INTRODUCTION

This work considers the technical ability to plausibly deny or obscure the existence of certain data (as

distinguished from the corresponding political variant). This ability is important whenever a person may

be coerced to decrypt an encrypted document in a hostile environment, or when a decryption occurs under

observation.

More precisely, this paper provides a means of encrypting a text into a ciphertext c that can be decrypted

back into either the original text or to one of several variant texts, depending on the decryption key

presented. For example, a user might encrypt the text “Don’t try to meet Angelina” using a key k into a

ciphertext c, which could then be decryptable back to the original text with key k, but to a different text,

say “Don’t cry for me Argentina”, when decrypted with a different key k′, and possibly yet another text

using an even different key k′′.

Consider three example scenarios to motivate this need.

a) Rubberhose: In the most straightforward scenario, a businessman is traveling through dangerous

territory with sensitive documents. If kidnapped with his laptop, the businessman may be coerced (e.g.

with a traditional rubberhose) to decrypt its contents or face emotional or physical consequences. Such a

person might satisfy his kidnappers by decrypting the contents with a decoy key that produces plausible

but modified (or redacted) plain text.

b) Eavesdropping: Another scenario involves a woman who feels she is being observed (e.g. by an

abusive spouse) during communications with third parties. She could (incorrectly) alleviate the suspicion

of her observer by decrypting sensitive communication with a decoy key (or by releasing the decoy key

to observation) without compromising the correspondence.

c) Voting: A final scenario involves voting in an untrusted environment, where, for example, com-

munication between the voting machine and the national authority is being observed. A voter may vote

using a secret shared with the national authority, and, if coerced to reveal her vote locally based on

eavesdropped communication, may decrypt the communication to suggest a different vote.
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II. LITERATURE

A great body of work exists in the general area of technical plausible deniability.

The simplest method of providing deniable security involves the one-time pad, wherein a user XORs

his plaintext with an equally long collection of random bits (i.e. his key) to produce a ciphertext. By using

a differing sequence of random bits, the user can decode the ciphertext into any string of equal (or lesser)

length than his plaintext. This approach provides information theoretic security, in that ciphertext alone

provides no information about the content of the string, but it suffers from an exceedingly long key.

This approach and its more sophisticated analogs are known in the cryptography community under

the name of deniable encryption [5]. In the general framework, the user employs random bits r in his

encryption of a message m; in the face of coercion, the user produces a different message m′ and random

bits r′ that also produce the same encryption, leading the coercer to believe that this was the original

message. A modification in [9] based on ElGamal encryption and an established secret allows a user

to encrypt one text and decrypt to one of two texts, and there is a fair amount of other related work

(e.g. [13]) in the literature.

Forms of deniable encryption have also been implemented in code, with notable examples such as the

Rubberhose File System [1] (no longer supported), StegFS [11], [4] and TrueCrypt [2]. In its “hidden

volume” usage, the latter hides data steganographically in random-appearing bits on the free space of a

volume. Since TrueCrypt always writes random data into free space, an adversary will not know whether

the free space is truly free or contains hidden data.

In contrast with these approaches, we are interested in the ability to deterministically encrypt a text

with one key in such a way that it can be decrypted either to the original text, or to a variety of other texts,

depending on the decryption key provided by the user. Our approach is information-theoretic, rather than

computational, in nature, in that the adversary cannot distinguish between possible decryptions without

side-information. In our case, the alternate plaintexts can be chosen up front in a “plan-ahead” fashion,

or, in some cases, after encryption has been completed.

III. FORMULATION

Formally, we wish to develop two functions:

• an encoding function

encrypt(k0, T0) −→ C

that encodes plaintext T0 with an authentic key k0 into a ciphertext C, and

• a decoding function

decrypt(k, C)

that produces plaintext from the given ciphertext C with a number (≥ 1) of possible keys k, although

decoding with k0 produces the plain text (i.e. decrypt(k0, C) = T0).

The key k0 is the authentic key for the ciphertext, and all other keys that produce text are decoy keys. It

may be desirable to engineer the encoding/decoding so that certain decoy keys will produce predetermined

alternate texts. For example, different decoding keys might produce texts that are subtly different from

the original text (but in important details).

IV. BACKGROUND

Our approach is based on a solution to the set reconciliation problem [12], which we briefly describe

hereafter, together with one of its applicable variants. A different approach to this reconciliation is

described in [6] with reference to fuzzy extractors.



3

A. Set reconciliation

In this problem, two remote hosts A and B have, respectively, similar sets SA and SB of b-bit vectors;

the approach we describe can also be adapted for multi-sets, which allow multiple instances of the same

element.

The hosts seek to determine the mutual difference of their sets

SA ⊕ SB = (SA − SB) ∪ (SB − SA)

using as little communication as possible. As a simple example, if one host has SA = {1, 3, 4, 5} and

the other host has SB = {1, 3, 5, 6, 7}, then the goal would be to convey information so that both hosts

learn that A is missing 6, and 7, while B is missing 4. We will use the letter m to denote the number of

differences between the two sets (in this case, 3).

The solution proposed in [12] involves the use of a characteristic polynomial to mathematically deter-

mine the differences between the two sets. We briefly sketch the algorithm below, which is implemented

over arithmetic in a finite field, but we refer the reader to the paper for a more complete explanation and

examples:

• Host A generates the polynomial χSA
(x) =

∏
s∈SA

(x− s), and similarly Host B generates χSB
(x).

• Host A evaluates χSA
(x) on m points and exchanges these with similar evaluations on host B.

• Hosts A and B interpolate the unique rational function f(x) that matches
χSA

(x)

χSA
(x)

on the m evaluation

points.

• Hosts A and B each factor f(x) to get exactly those elements in the mutual difference of sets SA

and SB .

The key feature of this reconciliation algorithm is that its communication is linearly tied to the number

of differences between the two sets, and only logarithmically tied to the sizes of the sets themselves.

Thus, if two sets of one billion elements differ in just 5 elements, then communication of roughly five

20-bit packets is enough to determine these elements.

B. String reconciliation

This reconciliation approach can be extended to remote strings and not just sets, the main difference

being that the order of set elements is not significant within a set but the order of string characters is

significant [3]; for example, sets 1, 2, 3 and 3, 2, 1 are identical, whereas strings 123 and 321 are not.

The general idea then is to start by shingling each string into contiguous, overlapping substrings, so that

the string Hello_There is transformed into the multiset of length 4 shingles:

S = {Hell, ello, llo_, lo_T, o_Th, _The, Ther, here}.

This multiset of shingles can always be put back together into the original string by combining

overlapping shingles in the same order as they appear in the original string. However, there may be

cases where the shingles can be consistently combined into a different string [10]; for example, the string

katana has the following shingling into length 2 substrings:

S ′ = {ka,at,ta,an,na}.

However, S ′ can also be put together into the string kanata.

The work in [7] provides an efficient algorithm for determining when a given collection of shingles can

be uniquely decoded into a string, together with an algorithm for merging nearby shingles, if necessary,

to provide this unique decodability property.

V. THE APPROACH

We next describe our approach for meeting the goals of our deniable encryption formulation from

Section III.
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A. Encryption - encrypt

The encryption of a plaintext p makes use of two parameters: δ, which affects the number of decoy

texts that can be extracted, and ǫ, which affects the length and security of the private key. Encryption

proceeds as follows:

1) Shingle text p into a multiset of substrings Sp. If Sp is not uniquely decodable, increase the length

as needed to guarantee this property.

2) Pick a subset Si ⊆ Sp of size at most |Sp| − δ and generate the characteristic polynomial χSi
(x).

3) The encrypted text C is the evaluation of χSi
(x) at |Si| − ǫ publicly known points.

4) The user’s private key k0 is the union of Sp − Si and any ǫ elements of Si.

B. Decryption - decrypt

To decrypt C into the original plaintext p:

1) Compute |Si| − ǫ evaluations of the characteristic polynomial χk0(x) of the elements in his private

key.

2) Utilize these evaluations together with those published in C to produce the multiset Sp. This is done

using the set reconciliation algorithm detailed above from [12].

3) Combine the shingles in Sp (in the only way possible) to produce the plaintext p.

C. Deception

The user may deceive an observer into believing that he has decrypted C into an (incorrect) text p′ as

follows:

1) The user computes a new key k′

0 as the union of Sp′ − Si and any ǫ elements of Si. Here we need

that Sp′ is comprised of Si and at most δ additional shingles.

2) Decoding with the new key should produce the different shingle multiset Sp′ , which should decode

to a different plaintext.

The user can chooses as a decoy any multiset Sp′ ⊇ Si with the property that |Sp′−Si| ≤ δ. As such, he

can implement “plan-ahead” deniability by producing several similar versions of a text and precomputing

keys that produce each one, or he can compute decoy keys after the encryption as long as they satisfy

the deception requirements.

VI. ANALYSIS

The work in [3] shows that a shingle length l roughly logarithmic in the length of p is sufficient for

unique decodability of random text (i.e., a string of identical, identically distributed random characters),

and empirical evidence suggests that this is the case for English text as well [8]. Although it is possible

to get unique decodability with shorter lengths, say by merging certain shingles [7], our analysis herein

assumes a shingle length logarithmic in plaintext length for purposes of simplicity of exposition.

A. Algorithm

In the following work, we assume an input plaintext of length n characters.

Theorem 1 A ciphertext produced by encrypt has length O ((n− ǫ) log n)) bits and requires O(n2 log n)
time to compute.

Note that the ciphertext is at most logarithmically longer the plaintext, but it can also be shorter (if ǫ

is large).
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Proof: The length of the encrypted plaintext is |Si| + δ − ǫ characteristic polynomial evaluations in

a finite field of size log(n).1 For a plaintext of length n, |Si| ≤ (n − δ) − l + 1 by design, and, with

logarithmically-sized shingles, this produces an overall ciphertext length that is as described. Once a

shingle length is determined, the entire encryption requires at most n evaluations of a polynomial of

degree at most n over a finite field whose size is exponential in shingle length, and this dominates the

computation time.

Theorem 2 A key produced by encrypt has length O((δ + ǫ) log n) bits. For constant δ and ǫ, decoding

requires time O(n3).

The length of the key is at most δ+ ǫ characteristic polynomial evaluations (plus metadata), or roughly

(δ + ǫ) logn bits for logarithmically sized shingles. When δ and ǫ are small, this is logarithmic in the

plaintext size; in this case, decoding complexity is dictated by the cost of set reconciliation. Altogether,

the ciphertext and key represent roughly a logarithmic overhead over the information-theoretic content of

the average plaintext (i.e. n characters).

B. Security

The security guarantees are summarized in the following theorem.

Theorem 3 No shingle in a ciphertext can be decoded with certainty without knowledge of ǫ log(n)
additional bits.

This follows because the ciphertext represents |Si| − ǫ equations of a linear system with |Si| equations

that uniquely determine a part of the plaintext.

Plan-ahead encryption: Any collection of plaintexts Tj, j = 1 . . . k can be encrypted into one ciphertext

C and keys kj , j = 1 . . . k. The length of the ciphertext will be determined by the number of shingles

common to the plaintexts.

To accomplish this encryption, the user finds the intersection of the shingles of all texts, and decrees

this to be Si in the encryption algorithm ENC (shingles can be randomly deleted to increase security).

The key for text Tj will thus be the difference between the shingles for Tj and Si.

After-the-fact encryption: After encryption, keys can also be added for some additional texts. The

following theorem provides the minimum number of additional texts that can be supported (although, in

practice, the number should be much higher).

Theorem 4 For long n, there are at least δ
logn

decoy texts that be decoded from any given ciphertext

produced by ENC.

Proof: One may add at least δ shingles to Si to produce a decryptable decoy text. Since each insertion

of a character into the text adds at most log n shingles, the result follows.

Finally, we note that knowledge of a specific decoy key does not provide any specific information about

the other decoy keys (beyond that they are not the same); it does, however, provide information about Si,

which contains some of the shingles of the plaintext.

VII. CONSIDERATIONS

We next detail several natural considerations of our approach.

1It is possible that Si does not contain ǫ elements (i.e. it is too small), in which case encryption fails with a suggestion that the security

parameter cannot be supported.
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A. Hashed keys

In the current implementation, keys are comprised of plaintext shingles, which makes them vulnerable

to dictionary attacks. One solution is to encrypt the key using a one-time pad and include this encryption in

the ciphertext; the random characters added to form the one-time pad become the new key. For example, if

the key k ={TES, EST}, then it can be character-wise added to a random r ={NES, OTH} to produce

the cipher {GIK,SLA}, which is appended to the ciphertext, and the new key becomes r.

B. Shortened keys

Several techniques exist for shortening keys.

• Shingle compression - Key shingles that overlap can be combined into one longer text from which the

shingles can be extracted upon decoding. For example, a shingle [ b l a g i ] can be combined

with the shingle [ l a g i s ] to produce [ b l a g i s ].

• Flexible shingle length - Rather than increasing all shingle lengths until a uniquely decodable string

is produced, only a few specific shingles can be merged [7], leaving the remaining shingles to be

short.

• Re-encoding - Where decoy keys have similarity, they themselves may be encoded using encrypt.

C. Large files

For large files, computational complexity is a serious bottleneck for the current implementation. Possible

solutions include block-based encryption and using more efficient set reconciliation algorithms at the

expense of larger ciphertexts.
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