

Solutum cumulus mediocris

Blackhat Asia 2014

AGENDA

- Introduction
- Why
- What
- How

@WIREGHOUL

- Husband
- Father
- Penetration tester
- Geek
- Blogger http://www.justanotherhacker.com
- Projects
 - htshells
 - Graudit
 - Doona and more
- Contributor
 - Nikto
 - Dotdotpwn
 - PadBuster and more

INTRODUCTION – PAYMENT GATEWAY

A payment gateway is an e-commerce application service provider service that authorizes payments online. It is the equivalent of a physical point of sale terminal. Payment gateways protect credit card details by encrypting sensitive information, such as credit card numbers, to ensure that information is passed securely between the customer and the merchant and also between merchant and the payment processor.

INTRODUCTION

- Actors
- Definitions
- Payment gateway APIs
- Design vulnerabilities
- Cryptography
- Implementation bugs

CUSTOMER

MERCHANT

PAYMENT GATEWAY

BAE SYSTEMS INSPIRED WORK

ATTACKER

TESTING PAYMENT

- Use test card numbers
- VISA 4111 1111 1111 1111
- Mastercard 5555 5555 4444
- American Express 378282246310005

API

- Primary means of interaction between online payment form and payment gateway
- Typical operations include:
- Charge card
- Query payment status
- Manage recurring payments
- Refund payments

API ACCESS POINTS

- Production
- https://api.paymentgateway.url

- Sandbox
- https://test.paymentgateway.url

LEVERAGING THE SANDBOX

Error 506 Invalid account configuration. Please contact the merchant.

API - DIRECT

API - DIRECT

TRADITIONAL ATTACKS

TRADITIONAL ATTACKS

TRADITIONAL ATTACKS

- Change payment amount
 https://paymentgateway.com/pay? amount=0.01
 Solved with request validation!
- Spoof payment received message to return url https://merchant.com/return?Success=1&Amount=100.00&Message=P aid

Solved with response validation!

REQUEST VALIDATION

To validate the request of the payment page result, signed request is often used - which
is the result of the hash function in which the parameters of an application confirmed by a
«secret word», known only to the merchant and payment gateway.

REQUEST VALIDATION

Protects the "vital" details of the transaction

Example:

• SHA1 of MERCHANTID, TXNTYPE, REFERENCEID, AMOUNT, CURRENCY, TIMESTAMP

REQUEST VALIDATION EXAMPLE

sha1('ABC9999|password123|1|Invoice 986616|100.00|20140121222324')

4e65a02daacaf2f94f057fbc3d09c43883d10dc8

md5('password123abc9999100.00aud')

ce9b54a5bc2f08dd2a2bf5f3b2d2d8f0

md5(md5('20140121222324.ABC99999.Invoice 986616.100.AUD').'.Secrit123')

6a0a4eb970340d98fa33daf21400e5eb

RESPONSE VALIDATION

- Protects the "vital" details of the payment receipt
- Example:
- SHA1 of MERCHANTID, TRANSACTIONID, AMOUNT

RESPONSE VALIDATION EXAMPLE

sha1('ABC9999|Secrit123|Invoice 986616|100.00')

c5af7bd81fec9eee6415fd1a4d77edc1e8ca9df6

md5('secrit123saltabc9999approved1-918490ae-9a1c-11de')

04beffd2eaf481e0d50ef2134188c6d0

md5(md5('20140121222324.ABC99999.Invoice 986616.00.Completed.auth.0000').'.Secrit123')

1f35ae73cf918f446cc45875948bd300

ABUSING REQUEST VALIDATION

- Bypass validation
- Abuse cryptographic properties
- Defeat secret key

BYPASSING REQUEST VALIDATION

- HTTP Parameter Pollution
 https://url/pay?amount=100.00&amount=0.01
- Abusing unprotected parameters
 https://url/pay?expiry_date=31/12/2099
- Abusing application logic
 https://url/pay?pre_auth=1

ABUSE CRYPTOGRAPHIC PROPERTIES

LENGTH EXTENSION ATTACK

- The reason \$H(k|m)\$ is not the standard comes from the message extension attack
- Hashes operate on block of text
- Padding is used to fill out the blocks
- Attacker knows \$H(k|m)\$ and \$m\$
- Compute \$H(k|m|p|m2)\$
- \$p\$ is the padding that would have applied to \$k|m\$
- \$m2\$ is an arbitrary message
- Attacker can now use \$H(k|m|p|m2)\$ and \$m|p|m2\$ to pass validation checks

LENGTH EXTENSION ATTACKS ARE COSTLY

Fingerprint	
EPS_MERCHANTID	
Password	
EPS_TXNTYPE	
EPS_REFERENCEID	
EPS_AMOUNT	
EPS_TIMESTAMP	

- <input hidden EPS_MERCHANT = "ABC999">
- <input hidden EPS_TXNTYPE = "0">
- <input hidden EPS_REFERENCEID ="Invoice 986616">
- <input hidden EPS_AMOUNT ="100.00">
- <input hidden EPS_TIMESTAMP ="20140121222324">
- <input hidden EPS_FINGERPRINT</pre>
- ="5f330cea9480efd63669b1b1464db1339c964bdf">
- <input hidden EPS_RESULTURL = "https://www.merchantsite.com/">

Fingerprint	Web form
EPS_MERCHANTID	EPS_MERCHANT
Password	
EPS_TXNTYPE	EPS_TXNTYPE
EPS_REFERENCEID	EPS_REFERENCEID
EPS_AMOUNT	EPS_AMOUNT
EPS_TIMESTAMP	EPS_TIMESTAMP
	EPS_FINGERPRINT

Fingerprint	Web form
EPS_MERCHANTID	EPS_MERCHANT
Password	
EPS_TXNTYPE	EPS_TXNTYPE
EPS_REFERENCEID	EPS_REFERENCEID
EPS_AMOUNT	EPS_AMOUNT
EPS_TIMESTAMP	EPS_TIMESTAMP
	EPS_FINGERPRINT

Fingerprint	Web form
ABC0010	ABC9999
Secrit123	
0	0
Test reference	Invoice 986616
100.00	100.00
20120916221931	20140121222324
	5f330cea9480efd63669b1b1464db133 9c964bdf

SHARED SECRET

- Shared secret is usually:
- Vendor supplied
- Never changes
- Sometimes converted to upper/lower-case

SHARED SECRET

Characters	Length
a-z0-9	8
a-zA-Z0-9	8
a-zA-Z0-9!@#\$%^&*()[]=+;:'",./?	8
a-zA-Z0-9!@#\$%^&*()[]=+;:'",./?	10
0-9a-f	32

TO THE CLOUD

WHY USE CLOUD

- Easy alternative to having dedicated cracking hardware
- Low to no setup cost
- Readily available images for deployment
- Scales as required

CRACKING WITH JTR

- Jumbo distribution
- Define dynamic format
- Distributed cracking with MPI
- Increase performance with CUDA or OpenCL

JTR DYNAMIC FORMAT

[List.Generic:dynamic_1011]

Expression=md5(\$s.\$p.\$s2) (Payment gateway signature)

Flag=MGF_SALTED

Flag=MGF_SALTED2

Func=DynamicFunc__clean_input

Func=DynamicFunc__append_salt

Func=DynamicFunc__append_keys

Func=DynamicFunc__append_2nd_salt

Func=DynamicFunc__crypt_md5

Test=\$dynamic_1011\$c4a5babae57a7d58610ce33ca79622c9\$ABC9999|\$\$2|Invoice

986616|100.00:xyz123

Validate:

./john --test --format=dynamic_1011

HTML FORM TO DYNAMIC HASH

```
my $html =eval { local $/; open my $fh, "$ARGV[0]"; return <$fh>; close($fh); };
$html =~ m/(<h3>Credit Card Payment.*?<\/form>)/ms;
my $pwqform = $1;
my $form = HTML::Form->parse($pgwform, 'file:///');
my $merchantID = $form->find_input('MERCHANT_ID')->value;
my $amount = $form->find_input('AMOUNT')->value;
my $hash = $form->find_input('MD5HASH')->value;
my $account = $form->find input('ACCOUNT')->value:
my $currency = $form->find_input('CURRENCY')->value;
my $notifyurl = $form->find_input('SHOP_DOMAIN')->value;
my $shopname = $form->find input('SHOP NAME')->value;
my $orderID = $form->find input('ORDER ID')->value;
my $floatAmt = $form->find_input('FLOAT_AMOUNT')->value:
my $timestamp = $form->find_input('TIMESTAMP')->value;
my $id_card = $form->find_input('ID_CARD')->value;
my $lang = $form->find input('LANG')->value:
print "\$dynamic_1011\$".$hash."\$merchantID|\$\$2$orderID|$amount|$currency\n";
```


DISTRIBUTED CRACKING WITH MPI

Update makefile:

CC = mpicc -DHAVE_MPI -DJOHN_MPI_BARRIER -DJOHN_MPI_ABORT MPIOBJ = john-mpi.o

Setup MPI over ssh using key based authentication

Create a MPI host file

192.168.1.2 slots=2

192.168.1.3

CRACKING WITH GPU

- GPU greatly outperforms CPU for hash calculation
- Scales with devices
- CUDA or OpenCL
- Available through some cloud providers

CRACKING WITH GPU

CUDA	OpenCL
Nvidia	Khronos group
Compiler builds kernel	Builds kernel at runtime
C language extensions	API only
Buffer offsets allowed	Buffer offsets not allowed
Pointer traversal allowed	Must use pointer arithmetic

LOTS OF OPEN SOURCE OPTIONS

- Jtr
 http://www.openwall.com/john/
- Cryptohaze Multiforcer
 http://www.cryptohaze.com/multiforcer.php
- Wisecracker
 http://selectiveintellect.com/wisecracker.html
- Whitepixel
 http://whitepixel.zorinaq.com/
- Defuse gpu cracker
 https://defuse.ca/gpucrack.htm
- OCLcrack
 https://github.com/sghctoma/oclcrack

DEMO

refundCard merchantUUID apiKey transactionAmount transactionCurrency transactionID refundAmount hash

queryCard

merchantUUID

apiKey

transactionID

hash

CONCLUSION

- Don't rely on the browser to drive traffic between the merchant website and the payment gateway
- Crypto is hard
- Use more than one unknown variable in request validation
- Use a long secret
- Use token based redirection
- Protect all parameters used in the request
- Use an established keyed-hash message authentication code (HMAC)
- Weak request validation does not equal an exploitable vulnerability

THERE WILL ALWAYS BE IMPLEMENTATION BUGS

VULNERABLE VENDOR CODE

```
<?php
/** Constants */
$customer data dir = "/var/tmp";
$customer ref = $ POST["customer ref"];
if($customer ref == null) {
  header("HTTP/1.0 404 Not Found");
} else {
  unlink("$customer data dir/$customer ref.txt")
```


BAD SSL PRACTISES

```
// Execute the HTTPS post via CURL
$ch = curl_init($this->gateway_url);
curl_setopt($ch, CURLOPT_HEADER, 0);
curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);
curl_setopt($ch, CURLOPT_POSTFIELDS, rtrim($this->field_string,

// Do not worry about checking for SSL certs
curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, FALSE);
curl_setopt($ch, CURLOPT_SSL_VERIFYHOST, 2);

$this->response_string = urldecode(curl_exec($ch));
```


PHP'S TYPE JUGGLING

```
//Check to see if hashes match or not
if ($md5hash != $_POST['md5']) {
    $return = "BAD HASH";
}
elseif ($result == "00") {
```


???QUESTIONS???

REPO

Slides and demo code can be found at:

https://github.com/wireghoul/presentations/BHAsia2014

Contact details

BAE Systems Applied Intelligence

Suite 1, 50 Geils Court

Deakin ACT 2600

Australia

Tel: +61 1300 027 001

Fax: +61 2 6260 8828

Email: <u>australia@baesystemsdetica.com</u>

Web: www.baesystemsdetica.com.au