
Automated Reverse Engineering
Halvar Flake – Black Hat Windows 2004

Outline for the talk (I)
Theoretical (Dry!) parts first, more “practical” in the second half

• Using simple IDC scripts to find security holes
• Recapitulation of the problems of “simple” analysis

• An intermediate assembly language
• Design considerations & details concerning automated

translation

• Dataflow analysis on the intermediate language
- Requirements
- Feasibility

• Break (stock up on Coffee)

Outline for the talk (II)
“Practical” stuff in the second half
• Detecting Loops

• Detecting memory writing loops
• Detecting memory copying loops
• Estimating the amount of iterations of a loop

• Binary DIFF
• The importance of DIFF’ing code
• Problems with binary DIFF’ing
• Solution: Structural Differences
• Example Dissection of Microsoft’s Messenger

and Workstation patches
• Porting Symbolic Information between versions

Simple IDC scripts
• Published in 2000/2001
• Added HTML generator, released as “BugScam”

(http://projects.sourceforge.net/bugscam)
• Very very very limited in scope

- No dataflow analysis
- No advanced code understanding
- RATS/ITS4 for binaries L

• In conjunction with a structure reconstructor still
occasionally useful

• Not very good for “in-depth” analysis
• Useful for “bulk-scanning” – 250 GB Harddisks are

cheap, and IDA has a batch analysis mode

Simple IDC scripts (I)
• Will only flag bugs occuring from misuse of standard

library functions
• Need hand-written analysis scripts
• Will generate a tremendous amount of false positives

(90% of all alerts – not quite as good as IDS yet ☺)

è No matter how stupid an analysis tool is, some
programmers will make mistakes which are “stupider”

è Demonstration: MS Media Server …

Problems of “simple” analysis
• Some bugs are very complex
• Simple analysis is CPU dependent
• Simple analysis does not understand “complex” situations

-- but almost anything that involves passing a few variables
around is “complex”

• Even “advanced” simple analysis does not deal with pointers
and using pointers to access memory

è Tools that can be used to find complex bugs are complex
to write

Dataflow Analysis
• Many bugs can be thought of as dataflow analysis problems
• “Can value X reach program point Z ?”

• Dataflow analysis is a well-trodden (and complex) academic
field (check ISBN 3-540-65410-0 if you are interested ☺)

• I am naïve, I just write my own ™ ☺
• I do not want to write new code for every new CPU I want

to support

è Intermediate Assembly Language / MetaCPU is needed

MetaCPU (I)
MetaCPU design decisions:
(Yipie ! I get to invent my own assembly !)

• RISC – like
• SPARC – like argument passing
• No practical restriction on numbers of registers:

- 256 Global registers
- 256 Temporary registers
- 256 Local registers
- 256 Input/Output registers
- 256 Flags registers
- PC, SP, FP

MetaCPU (II)
Why RISC – like ?

• Every instruction has to be handled by the analysis layer
• Fewer instructions == less code to write
• Fewer instructions == less complexity == fewer mistakes

Why SPARC – like argument passing ?

• Simplifies dataflow analysis – registers are “un-aliasable”,
e.g. they cannot be accessed via pointers – stack passing
would be more expensive

• SPARC is very very beautiful ☺

MetaCPU (III)
Why 256 Flags registers ?

• Branch condition analysis will be needed in the future
• Different CPU’s make branching decisions differently
• Flags must be superset of flags on all CPU’s that are supported
• Better too many than too few !

Why stack at all ? Why not convert all [esp+XX] accesses to
further register access ?

• Local variables must be accessible via pointers !

MetaCPU (IV)
MetaCPU design decisions:

• No REP-like instruction
• No indexed/scaled addressing modes
• Further reduced RISC (RRISC ?)
• 3-operand architecture
• Explicit memory access (“LDM”, “STM”)
• No madness such as “direction flags”
• Explicit signedness of comparisons in branches (if possible)

MetaCPU (V)
Why no REP-like instructions ?

• Loops should be explicit in the flowgraph, not “hidden” !

Why no indexed/scaled addressing modes ?
• mov eax, [ebp + ecx * 8 + 0x260] is hard to analyze

Why further reduce RISC ?
• Who needs “INC” or “DEC” if you have “ADD” ?

Why explicit memory access (“LDM”, “STM”) ?
• Easy distinction of memory-modifying instructions

from non-memory-modifying instructions
(Benefits will become more clear in second half of talk)

MetaCPU (IV)
Why explicit branch signedness ?

• “br_sl” (Branch signed lower) is nicer to read than
“jng” (Jump not greater)

MetaCPU Translation
Quote from the Hagakure (German translation)
“ Big problems should be approached freely,

small problems should be approached with great care “

Many small engineering problems had to be solved …

• Converting stack argument passing (and saving registers
on the stack) to passing arguments in registers was tricky

• Dealing with weird (and changing) compiler optimization
schemes took more time than intened

è Before: “ This is going to take about 1 month ! ”
è Result: Many months

MetaCPU Translation
Stack-passing to argument passing:
• Number of arguments to EVERY call has to be known !
• Optimizing compilers will generate code like this:

mov eax, [ebp + local_var_A]
push eax
lea ecx, [ebp + local_string_B]
push ecx
call _strlen
push eax
push offset “String number %d is %d bytes long !”
call _printf

MetaCPU Translation
Stack-passing to argument passing:
• Number of arguments to EVERY call has to be known !
• Optimizing compilers will generate code like this:

mov eax, [ebp + local_var_A]
push eax
lea ecx, [ebp + local_string_B]
push ecx
call _strlen
push eax
push offset “String number %d is %d bytes long !”
call _printf

o00

o00
o01

o02

MetaCPU Translation
Stack-passing to argument passing:
• Number of arguments to EVERY call has to be known !
• How to deal with variable argument functions ?

[… printf(), vsnprintf() …]

• “Cheating”: User-supplied annotations in the form of
<CALL_ARGS> XX </CALL_ARGS>

(Demonstration of mistranslation without proper annotations)

Compiler optimization
Other challenges: Modern compilers do strange optimizations:

à Replacing push with mov:
Old: push eax

push ecx
call function
add esp, 8

New: sub esp, 8
mov [esp+0], ecx
mov [esp+4], eax
call function

à Translation from “mov [esp + offset]” to the appropriate
output register is needed as well …

Compiler optimization
Other challenges: Modern compilers do strange optimizations:
Merging of exit blocks is getting fashionable again…

Compiler optimization
Examples for compiler madness:
à Merging exit blocks of functions

• Watcom C++ did this in the old days
• Everybody thought it was gone for good
• Attempt at using less memory (and thus improve

cache performance on P3’s)
• Only identical parts of functions can be merged
• Functions have to be identical from point of merger on !

à Only epilogues (e.g. the last 1-2 blocks) are normally
merged

à Facilities for seperating merged functions are needed

Translation notes
• Translation cannot be proven to be correct
• In order to prove correctness of translation, a one-to-one

mapping (“bijective”) between CPU states & instructions
would need to exists

• As MCPU is supposed to represent multiple architectures,
It would have to become a superset of all CPU’s

à MCPU would then be accumulation of all bad ideas and
all complexity of all CPU’s è Useless

(My lame excuse for not getting the translation to be provably correct)

à We have to “trust” the translation to be correct

Automated verification
• An emulator for the MetaCPU code would be useful
• Could be used to automatically test the correctness of

the translation

• Does anyone in the audience know how I could clone
myself a few times to get more work done ?

• Translation adds redundancy
• Peekhole optimizer would be useful to make the code

more readable

… so much to do, and the days keep getting shorter …

Translation Example

Translation Example (II)

Translation Example (III)

REP à Loop

• The abstract CPU does not have a REP instruction prefix
• Translation of REP’s through an artificial loop & control

flow restructuring
• Expands code length significantly
• Clarifies true extent of “loopyness” a function has

è Benefits will become clear in the second half
è Can be used to automatically detect inlined strcpy’s
è Can be used to automatically detect inlined memcpy’s

Loop Example

Original
Function
Flowgraph

Re-structured
Inlined memcpy()’s

or strcpy()’s

Data Flow analysis
As mentioned before:
• Many code analysis problems can be boiled down to

Dataflow analysis problems
• Asking questions such as

- What values can register X have at program point Y ?
- What values are being calculated that have register

X as input variable ?

• Complex problem (still working on a solution ☺)
• General cases have been shown to be unsolvable – but

specific cases in particular practical programs ?

Data Flow Requirements
For security analysis, our data flow needs to …
• Be interprocedural – many security bugs have their effect

in a different function than their cause !
• Be able to deal with aliasing of memory locations, passing

arguments by passing a pointer to a structure etc.
• Be context-sensitive (e.g. needs to know where it was called

from)
• Be (if possible) provably complete (so that we can say

we’re certain there is no heap-corruption problem)

è By common consensus, this is impossible ☺ (in the general
case

è But we do not care about the “general case”, we have very
specific practical cases

Data Flow analysis
Very dry subject, many open questions:

• ObjRec includes a (simple) dataflow engine
• Sobek includes a (simple) dataflow engine

• Simple engines track “which register gets stored in which
register” or “which register gets stored in which local variable”

• Some useful information can be gained, but for serious
analysis more complex constructs have to be handled

Data Flow analysis
Passing arguments by pointers/references:

int maxlen = 20;
char buf[20];
char stuff = buf;

If(fill_buf(stuff, &maxlen) == 0)
{

stuff = malloc(maxlen);
fill_buf(stuff, &maxlen);

}

Looks simple to handle … but …

Data Flow analysis
Passing arguments by pointers/references:

struct a { int a; int b };
char buf[20];
char stuff = buf;
a.b = 20;
If(fill_buf(stuff, &a) == 0)
{

stuff = malloc(a.b);
fill_buf(stuff, &a);

}

Data Flow analysis
• We have to work on the disassembly, so no type info

available
• We cannot easily distinguish between

struct a { int a; int b; } and
int a; int b;
For us, both will look identical !

Indirection in becomes a problem:

How do we represent multiple layers of indirection ?
local_varàmemberAàmemberAAàmemberAAA

Representing indirection
• Every non-global variable in a program can be

represented in the format of

Base Register + offset1 + offset2 … etc

• Every “+” denotes a memory dereference
• Arbitrary levels of indirection can be represented

this way
• Structures can be represented this way
• Pointers to pointers to pointers to pointers to pointers

can be easily represented, too

Representing indirection (II)
Examples:

• structure member (g00 holds pointer to structure)
g00 + offset_member

• local variable:
fp + offset_var

• structure member (local variable holds pointer to structure)
fp + offset_var + offset_member

• structure member “A” in some structure which is pointed
to by a pointer in structure ”B” whose pointer is stored in
a local variable

• fp + offset_var + offset_B + offset_A

Indirection Example
strucA = malloc(sizeof(STRUCTA));
strucB = malloc(sizeof(STRUCTB));

strucA->member10 = var_to_track;
strucB->member20 = strucA;

Assuming strucB is stored as a stack variable at FP + 30, the
representation of var_to_track is now:

FP + 30 + 20 + 10

Aliasing
Another issue is aliasing – if we track a memory location, what
other parts of the program have a pointer to it and can thus access
it ?

• Another complex problem
• Can sometimes be solved solved by taking into account

restrictions imposed by the C language

• Anyone still awake ? ☺

Dataflow Summary
• Really hard problem
• Many different approaches
• No code done that I am satisfied with yet
• Once complete dataflow is accessible, many security

problems become easy to detect

è Building provably complete dataflow is my favourite
 problem nowadays
è A professor from NUS is responsible for this: He told

me to “not settle for heuristics” but try to do the “real
thing”

è I don’t know if I’ll ever get it done ☺
è Even imperfect dataflow reveals interesting information

(Demonstration)

Dataflow Summary (II)
• Hopefully next year I will be able to show a fully working

program ☺
• If I never manage to get it running, I will at least have

learnt a lot along the way
• The second half of the talk will be about a few practical

things that I “found” on the “side of the road” during my
“quest” for dataflow analysis

• Coffee, anyone ?

è BREAK

Second Half
“Practical” stuff in the second half
• Detecting Loops

• Detecting memory writing loops
• Detecting memory copying loops
• Estimating the amount of iterations of a loop

• Binary DIFF
• The importance of DIFF’ing code
• Problems with binary DIFF’ing
• Solution: Structural Differences
• Example Dissection of Microsoft’s Messenger

and Workstation patches
• Porting Symbolic Information between versions

Loop detection

• Some vendors (MS) have started to have their code audited
for bugs

• The focus seems to have been on eliminating strcpy() and
other known dangerous library calls

• How could the DCOM have slipped by ?

à Memory – copying loops (decoding etc) seem to have been
neglected

• “Loops ? That is so 1998 !” ☺
• Loops are not all that obvious to spot in binaries

à A mechanism to spot loops in binaries is useful

Loop detection (II)
Can you spot the loops ?

Dominator Trees

• A node A in a directed graph dominates a node B if all paths
from the entry to node B pass through node A

B is dominated by Entry and
also by A

Dominator Trees (II)

• A node A in a directed graph dominates a node B if all paths
from the entry to node B pass through node A

B is dominated by Entry but
not by A

Loop detection (III)

• Dominator Trees can be used to detect loops in graphs
• If a node A links to a node B, and if B dominates A, the

link closes a loop in the graph

à All paths to A lead through B
à A links down to B, and all paths to A must’ve run through

node B è we have found a loop

We can easily build dominator trees from the functions in
the binary and thus quickly find loops

Loop detection (IV)
Can you spot the loops ?

Loop detection (V)
Loop entry = green
Loop exit = red

Killing false positives

• Not all loops are of interest for us
• Loops that do not write to any memory are not interesting
• Loops that just write well-defined variables are not interesting

(Loops that write to the same location on every iteration)
• Loops that write a statically defined number of bytes are not

terribly interesting

à We want to eliminate all loops that do not write memory
à We want to eliminate all loops that write to the same location

on every iteration
à We want to eliminate all loops that write a statically defined

number of bytes

Memory-Writing

• The examined code has been translated to the MCPU code
presented in the last talks (Blackhat Europe)

• All memory access is explicit, e.g. there is an explicit
instruction for storing memory

• All implicit loops (repz movsd etc.) have been converted to
true loops in the graph à inlined strcpy’s and memcpy’s are
detected as well

à All loops that do not store stuff into memory can be eliminated
by scanning for a “stm” instruction

Memory-Writing (II)

No “stm” instruction

è Not interesting

Variable-Writing

• A write access occurs in our loop
• If on every loop iteration, the location written to is the same,

it is not a memory-copying loop
• If the loop writes to a location like “register + offset” with

a hardcoded offset, it accesses a local variable or structure
member

à All loops that do not write to multiple (and changing) locations
can be detected by doing data flow analysis on the memory
accesses and seeing if they can change in different loop
iterations

Variable-Writing (II)
Considering a (very) simple example loop:

One memory store to the location pointed to by g06 occurs

Variable-Writing (III)
A dataflow graph for this register is generated:

We can read from the graph that the pointer which is written to is
incremented on every loop iteration è dynamic !

Variable-Writing (IV)

This loop is not interesting à loop_dfl_demo.vcg

Defined Iterations

• A simple memcpy() with a static number of bytes to copy
is not likely to be problematic

• If it was, the program would be nonfunctional anyways if
it ever reached the relevant location

à By eliminating all loops that iterate a predefined/static
number of times, we can eliminate all loops that copy
a static number of bytes

Defined Iterations (II)

Iterates g01 times

g01 := t02
t02 := 0x0A

è Static
number of
iterations

Summary
• We can automatically detect “interesting” loops, loops that

write a dynamically calculated amount of memory
• We can scan multi-megabyte binaries and end up with a

(few, perhabs slightly more) dozen or so loops to manually
 inspect

à Copies memory
à iterates an undefined

number of times
à Number of iterations

comes from a global
variable

è Interesting loop

Questions ?

Function Signatures (I)
What are function signatures ?

• Functions in disassemblies originally have no names, just
addresses

• Function signatures allow automatically retrieving names
for known functions

• Function signatures are mainly used to recognize statically
linked libc functions

• Massive aid in disassembling – who would want to spend
his time finding _malloc() or strcpy() manually ?

Function Signatures (II)
What else are function signatures good for ?

• Porting information in disassemblies to a new version
(e.g. porting info from an existing Disassembly of FW-1
to an updated version)

• Scanning binaries for known-to-be vulnerable libs (zlib ☺)
• Finding functions under GPL in closed-source, commercial

applications
• Porting debug info which vendors accidentally left in an old

executable to new versions of the program
• Finding differences between two different releases of the

same file (Microsoft Security Patches ☺)

Function Signatures (III)
Usual approach to signatures:

Pattern matching with wildcards

• IDA’s FLIRT system

- IDB_2_PAT
- IDB_2_SIG

• Fenris signature system (M. Zalewski)

Problems

• Normal pattern matching is problematic

à A few lines of code that change can lead to different
register allocation and thus to many changed locations

à A few lines of code that change can lead to basic blocks
having different sizes and ending up in completely
different places (MS internal optimization)

• A small change can produce two binaries which hardly
resemble each other

MS Internal Optimization

• Less-trodden path is moved to other pages
• Improves Paging and Cache utilisation

Less-trodden parts of functions

Heavily used parts of functions

Solution ?
• Structural fingerprinting ?

à Function flowgraphs will stay the same,
regardless of register allocation or basic block
reordering

• Graph Isomorphisms (math-speak for finding out if
two graphs are the same) are computationally expensive
to compute

à A simpler solution (using matching heuristics) can
yield usable results

à Comparing number of code blocks, number of links and
number of subfunction calls

Example (I)

5 Nodes

Example (II)

6 Links

Example (III)

6 subcalls

Signature: 5::6::6

Fixedpoints
• All signatures from binary A are generated
• All signatures from binary B are generated
• Clear and unique mappings (fixedpoints) are detected

5::6::5

5::6::5

14::20::5
5::6::5

5::6::5

14::20::5

75::94::30

75::94::30

Fixedpoints (II)
• If multiple functions have the same signature, no useful

match can be found
• A calltree for both executables is generated and used for

additional matching

5::6::5

5::6::5

14::20::5

75::94::30

5::6::5

5::6::5

14::20::5

75::94::30

Fixedpoints (III)
• Instead of matching all signatures in A to all in B, all

children of a particular fixedpoint in A are matched to
the children of the corresponding function in B

5::6::5

14::20::5

75::94::30

5::6::5

14::20::5

75::94::30

Fixedpoints (IV)
• If multiple functions have the same signature, no useful

match can be found
• A calltree for both executables is generated and used for

additional matching

5::6::5

75::94::30

5::6::5

75::94::30

Pro / Con
Advantages:

• Tolerant to basic block reordering
• Tolerant to differences in register assignments
• Will find all structural changes (e.g. an added if())
• Reasonably “sharp” for larger functions

Disadvantages:
• Will not find changes in constant values
• Will not find changes in buffer sizes
• No useful signature for very small functions can be

generated (1/0/0 will be the signature for every
simple function)

• Simple functions can not be properly fingerprinted
(but then again, do not change much either)

Porting old debug info
• Microsoft gives out debug information, but not for hotfixes
• Checkpoint and other vendors occasionally forget to strip

their binaries

è Porting function names from older binaries is really useful

Demonstration:

Original File:
MSGSVC.DLL Win2k SP0 with Debug Info

New File:
MSGSVC.DLL Win2k after the overflow patched

Open Source Patches
Open Source Patches:

• Visible to everyone à Publicising the patched version
makes the bug (or bugclass) public

• Many people regularly read CVS updates like others
read the newspaper à Security-critical changes cannot
“sneak in”

• Many eyes make bugfixes thorough à Changes that
fix the “symptom” but not the cause are rare

à Keeping bug information quiet after publication of
an open source patch is next to impossible

Closed Source Patches
Closed Source Patches:

• Vendors try to keep details of bugs silent
“No need to tell the hackers what is going on”

• Vendors underestimate impact of bugs:
“Malformed input leads to disclosure of
hexadecimal values from memory”
[Euphemism for format string bug]
“This problem can lead to a DoS-style-attack”
[Euphemism for remotely exploitable bug in
Ring-0 code]

• Vendors try to “piggyback” security patches onto
less interesting patches

Binary Diff Methodology
We can use these signatures to detect which changes a vendor
undertook with a security patch:

• Generate all signatures for all functions in both files
• Find “Fixed Points”, e.g. functions whose signature

exists only once in both files (roughly _ of all funcs)
• Use the “fixed points” and a calltree to assign the

other _ of all signatures
• Functions that cannot be mapped are candidates that

might have changed

(Demonstration à unpatched to patched diffs)

Questions ?

Thank you ! ☺

