NGSCB: Trusted Computing Base and Software Authentication - 16

Windows Platform Design Notes

Design Information for the Microsoft® Windows® Family of Operating Systems

NGSCB: Trusted Computing Base and Software Authentication

Abstract

Trusted distributed computing relies on the ability to construct a security perimeter around an arbitrary trusted computing base (TCB) in which data remains invulnerable to attacks from both users and software.

This paper discusses a new technology, the next-generation secure computing base (NGSCB), which makes it possible to dynamically create a security perimeter around disparate software components by separating the operating system from security components—all without requiring drastic changes to existing personal computers.

Contents

3Introduction


3Traditional Security-Model Assumptions


4Nexus Principles and Design


5How NGSCB Works: Sealed Storage and Attestation


6Hardware Modifications


7NGSCB Code and Paging


8Starting a Nexus and Standard-Side Interaction


10An Example of Attestation: Obtaining a New Identity


10Manifests and Program Identity


11NGSCB Applications


13Manageability and Upgrade


14NGSCB Design Principles


14Conclusions


15Call to Action and Resources





This is a preliminary document and may be changed substantially prior to final commercial release of the software described herein. 

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation. 

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

 2003 Microsoft Corporation. All rights reserved.

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Introduction

The explosion of the Internet, and the malicious programs that came with it, have created the need to dynamically create security perimeters around disparate software elements that may be operating on different computers and different networks.

This paper describes components of the next-generation secure computing base (NGSCB): the nexus and nexus computing agents (NCAs), and NGSCB's related security and usage models. NGSCB is a technology created to dynamically build a security perimeter around a secure computing environment on open computers. It couples hardware isolation and software authentication with a technology that can store private and symmetric keys (secrets) for the secure computing environment. The NGSCB security perimeter is designed to protect the secure computing environment from local or network software attacks.

NGSCB can operate without a requirement that a central authority validate code that can run in NGSCB. The NGSCB computing environment is cryptographically verified, providing the attestation of the client. 

NGSCB requires changes to the operating system and hardware. Some scenarios will also require enabling via network infrastructure. While existing programs will continue to work on a computer running NGSCB, they must be rewritten to take advantage of the new security provided by NGSCB. 

This paper does not describe the changes to the existing hardware in detail because the changes vary from computer to computer; however, the cost of the per-device changes to the hardware should be small. 

Traditional Security-Model Assumptions

Most traditional security models assume that the perimeter of the Trusted Computing Base (TCB) is fixed and that because of a component's position in the system, it can be readily identified as trusted or not trusted. Components on the outside of this perimeter are not trusted while components inside it are trusted. 

In these systems, it is usually the kernel that contains, or is in fact, the TCB. The security perimeter assumes that the kernel is trusted. 

The assumptions made about a fixed security perimeter worked when very few or preferably no changes were ever required to the TCB. The growth of hardware and software businesses, as well as the Internet, has changed the assumptions that can be made about what is inside the TCB perimeter. Also, what has changed is the notion of a static security perimeter.

Current security models must consider the following factors in their design: 

· Open networks like the Internet are not controlled by a central authority such as a single trusted administrator or a single static group of administrators.

· The TCB is difficult to tightly control. In particular, device drivers can become part of the TCB and may have the same access as the security monitor on most operating systems. 

· The TCB is assumed to be trusted and is not mutually authenticated. It is not required to identify itself to the entities requesting access.

· Centralized authentication and access control mechanisms fail to scale because the computations of interest span many loosely connected computers, often across security domains.

· Computations involving sensitive information are often performed on computers that are not in the control of the entity whose sensitive information is at risk. Furthermore, the sensitive information cannot be access controlled, based on the intended scope of computation or ties to an individual computer.

· Sensitive information cannot be access controlled based on the intended scope of computation or ties to an individual computer.

Current security models should consider the following:

· Secure design principles require that the smallest number of trusted components be inside the TCB perimeter, and even those components need to be highly skeptical of each other.

· The perimeter of the secure computing environment can be dynamic and dynamically created. This functionality is provided in NGSCB by NGSCB nexus computing agents (NCAs). 

· One way to enforce limited access to the secure computing environment is through code authentication—only known, good code can run within the security perimeter. 

Nexus Principles and Design

The nexus is a small security kernel that manages NCAs, similar to the way an operating system manages other user-mode processes. The software configuration of the nexus and NCAs is depicted in the following illustration:

[image: image1.png]
As the illustration suggests, the nexus has an interface to the standard operating system to request services such as getting files, opening communication channels to identified standard processes, or performing I/O operations that are not trusted, such as hard-disk access.

The nexus is part of the TCB for all the NCAs running on a computer. It must be small so that every NCA owner could, in principle, examine and trust the implementation of the nexus. It is also important that users and NCA developers can start any nexus and that anyone can, in principle, write a nexus.

To keep the nexus small, it must meet the following design criteria:

· Contain code that can be duplicated among NCAs.

· Multiplex its time among NCAs.

· Use the hardware Sealed Storage and Attestation functions to store keys on behalf of NCAs, and attest to the combined nexus-NCA software stack more flexibly than would be possible with the hardware primitives. This allows the hardware primitives to be simple and inexpensive, while allowing the NCA primitives to be much more flexible and extensible without sacrificing security.

· Provide (at each NCA’s request) standard management tasks, such as key migration between nexus versions and NCA versions.

The execution of the nexus and its NCAs is time sliced with normal software processes on a computer. The nexus provides very basic services for NCAs, such as memory mapping, thread management, and an interprocess communication (IPC) mechanism. The IPC provides communication channels among and between NCAs and other programs that are not trusted and that are operating on the same computer or on different computers. 

The nexus has the ability to cryptographically authenticate an NCA and to store one or more secrets (private keys and symmetric keys) that it only provides to the cryptographically-identified NCA running on a specific hardware platform. Each NCA is isolated from other processes, including kernel-mode code, which does not reside in the nexus. 

Because a nexus provides common services, the cryptographic identity of the NCA is actually a combination of the cryptographic identity of the nexus and the NCA. Each nexus and each NCA is self-rooted, and does not depend on central authorities to sign, approve, or assign identities to them.

The common security functions of the NCA should be subjected to intense scrutiny and testing.

To enable developers to easily use the nexus, it should:

· Provide a convenient programming environment

· Abstract the details of the hardware changes (that might vary from computer to computer) from the NCA developer

How NGSCB Works: Sealed Storage and Attestation

The basic idea of NGSCB is to enable software developers to build applications, called nexus computing agents (NCAs), that communicate directly with the nexus. NCAs have the following environmental properties:

· Curtained Execution—Each NCA is isolated from software that it does not trust, including the general-purpose operating system. (The mechanism providing this property is called Curtained Execution.)

· Sealed Storage—Each NCA has access to one or more secrets that it constructs. The secrets are not available or observable by any software. (The mechanism providing this property is called Sealed Storage.)

· Secure I/O—Each NCA has access to a user's I/O operations (trusted keyboard input and trusted video output) that cannot be snooped or modified by any software. (The mechanism providing this property is called Secure I/O.)

· Attestation—Each NCA has access to a software-authentication mechanism that allows it to prove its identity to other NCAs, locally or remotely. (The mechanism providing this property is called Attestation.)

The Curtained Execution, Sealed Storage, and Secure I/O functions allow the construction of a TCB with persisted, private storage. The Attestation function allows independent NCAs to extend the TCB by authenticating other NCAs prior to relying on them or their code. 

These properties do not currently exist, but will be provided by the improvements made to existing hardware, which should be in the NGSCB time frame. The NCA properties must be safe from malicious users and code (which could be part of an operating system).

Each NCA should operate without forcing the computer to restart, shut down running programs, or cause compatibility problems for existing programs. This allows NCAs to run without restricting the other software that is currently running, or can potentially run, on a computer. 

The integrity of the NCA guarantees the following:

· The cryptographic identity of the software stack within or affecting the NCA is protected.

· It is running on a hardware platform that provides some hardware guarantees, such as isolation and secure I/O operations. 

· It is isolated and protected from outside influences that can threaten its intended computation.

· The verification data, such as a public key, came from it. 

Hardware Modifications

To begin creating a nexus for the NGSCB, you must modify the CPU, the memory controller (or chipset), the keyboard, the video graphics card, and the graphics adaptors. In addition, you must add a new part, known as the trusted platform module (TPM).

To get a better understanding of the effect of the hardware changes, see the section titled, "Starting a Nexus and Standard-Side Interaction."

The new part, the TPM, is permanently attached to the motherboard and cannot be removed. However, the TPM is shipped with its functionality disabled, thereby making NGSCB an opt-in system.

The TPM provides the following hardware primitives to a nexus that has been isolated and authenticated, and it exports the primitives to any NCA that passes the security policy for access. It also provides these services to itself.

	Primitive
	Description

	TPM-Seal(Nexus-Source-Hash, Target-Hash, x)
	Encrypts the blob x, along with the cryptographic hash (supplied by the hardware) of the nexus requesting the operation, and the cryptographic hash of the nexus which is allowed to decrypt it. The operation uses AES-CBC, and concatenates entropy so that two sealed blobs encrypting the same underlying value with the same key do not produce the same output.

	TPM-UnSeal(Nexus-Source-Hash, x)
	Decrypts the blob x, and returns it to the nexus if the Target-Hash within the blob matches the hash of the currently running nexus.

	TPM-PKSeal(Nexus-Source-Hash, x)
	Uses the TPM private key to encrypt a Public Key Cryptography Standards (PKCS) padded blob, consisting of x concatenated with the hash of the currently running nexus (provided by the hardware). This operation uses a 2048-bit Rivest-Shamir-Adleman (RSA) key.

	TPM-Get-Monotonic-Counter(i)
	Gets the value of the monotonic counter i.

	TPM-Increment-Monotonic-Counter(i)
	Increments the monotonic counter i.

	TPM-Get-Entropy()
	Returns an octet sequence.

	TPM-Get-Certificate()
	Returns the TPM certificate if this nexus is authorized to get it.


The functions of the TPM are available only to a nexus that has been identified (ultimately by its hash) as acceptable to run. 

At a minimum, each TPM can store for each nexus (identified by its hash) an Advanced Encryption Standard (AES) key, which is generated randomly when a nexus is started for the first time. The key never leaves the TPM, but an isolated nexus with the correct cryptographic hash can use the corresponding AES key in the TPM-Seal and TPM-Unseal operations. 

Each TPM includes a private key that never leaves the TPM and is used for the PKUnseal operation. In the future, it is expected that some TPMs will come with the ability to initialize the private key, which is initialized in a secure transaction that names the public key of the entity that initialized the key. In addition, the TPM comes with a public key certificate signed by the motherboard or TPM manufacturer that is only released to nexuses named by the user as authorized recipients. The public key certificate is the only information that can identify the platform, so each nexus that receives the computer's certificate (which contains the computer public key) is expected to use it in a manner that is rigorously consistent with a privacy policy set by the user or administrator. 

The manufacturer’s certificate (authenticated by its signature) means, informally, “I burned the private key into the motherboard under my published procedure (which ideally also includes losing any trace of the private key). The TPM and the motherboard were manufactured in a manner consistent with my published policy, ensuring the proper security operation of these parts."

Users can independently choose to: 

· Disable all TPM functionality (effectively disabling NGSCB). 

· Identify which nexuses can run.

· Specify nexuses that can access the public key certificate for the TPM.

· Name nexuses that have access to PKSeal and PKUnSeal (thereby enabling the Attestation function in NGSCB). 

· Name nexuses that are authorized to change the foregoing selections. The hash of nexuses that are authorized to start are set by using a secure user interface (UI), presented by the computer early in the startup sequence. This capability is no longer present after the computer completes the startup, so it cannot be used by malicious code to change settings. This is how the first nexus with the ability to present a UI for the user to modify an approved-nexus list is specified. 

Users cannot make these selections through standard software because it can be subject to a software attack. 

NGSCB Code and Paging

The nexus side depends on the standard operating-system side (the Microsoft® Windows® operating system as it exists now) for I/O operations that are not trusted and for acting as a scheduling service. Nexuses in the future might have their own schedulers, but this might introduce timing issues for the millions of real-time programs that have to run unaffected by NGSCB.
This reliance on the standard operating-system side for uncritical security functions is quite important in keeping the code in the nexus minimal. Because the nexus is the only unconditionally trusted component in a TCB, it requires the utmost scrutiny and testing. This includes formal modeling of nexus portions. 

Because of the importance of nexus source code, it will be made available for inspection, and so will the procedures designed to assure that the hash of the nexus can be verified against the source code producing it. 

All communications between the standard operating-system side and the nexus side occur in a bidirectional API between the nexus and the operating system. The APU, among other things, allows the standard side to give physical pages to the nexus side (the nexus side seizes the physical memory) and allows the nexus side to free formerly-seized pages. This is a comparatively expensive operation, so pages are seized in groups. 
It is important that this is well coordinated, since the standard operating-system side cannot access physical pages protected by the nexus. While the nexus side is running, all interrupts go to it, so the nexus must support making the interrupt appear that it came from the standard operating-system side when the nexus side returns the interrupt. Again, for compatibility, this interface is designed with a very small surface area. Changes to the Microsoft® Windows® kernel, for example, require less than 200 lines of code.

Neither code nor data on the nexus side are paged out in the first version of NGSCB. Paging may be allowed in the future, provided the pages are encrypted and the message authentication is coded in the media access control (MAC) layer prior to storage on the hard disk.

The descriptions so far have implicitly described a single-processor implementation. This paper does not describe multiprocessor support; however, NGSCB and the required hardware modifications fully support multiprocessor configurations. 

Starting a Nexus and Standard-Side Interaction

Here is a simplified version of the basic start process for a nexus: 

1. The code and data of a nexus are loaded into memory at physical addresses between PAStart and PAEnd (the curtained memory) by the main operating system in response to a request by an authorized user.

2. A new computer-hardware instruction disables all memory access to the curtained memory and to all direct memory access (DMA) devices, denies other bus masters access to the curtained memory, clears all internal cached processor states that might present a security hazard to a nexus, and raises the processor priority. The hardware architectures discussed in this paper do not tie the MODE to the IFETCH address. Instead, there is a real CPU mode that must be changed to get into privileged mode. However, the security implications are the same. The hardware sends the nexus image to the TPM, which makes a cryptographic hash of it (HashNexus), and stores the hash in a register that cannot be modified, which is the Process Control Register (PCR). The PCR is the value used in the TPM operations for the Nexus-Source-Hash. Control is transferred to the nexus, which sets up interrupt tables and a memory-management regimen, in much the same way that current operating systems do. The nexus exits to the main operating system.

3. The nexus regains control when an interrupt to nexus instruction is issued by the standard-side operating system. Such an interrupt indicates that the standard-side operating system has a service request (for example, to start a new NCA) or has scheduled a nexus time slice. The trap may also indicate when any process, DMA device, or bus master tries to access nexus memory. (The nexus will arrange with the hardware to have any such requests denied.)

4. During the execution of any nexus code or its NCAs, interrupts are delivered to service routines within the nexus.

Note that several important details are omitted, such as what happens to the curtained memory under failure conditions (it’s cleared), and how this works in a multiprocessor system. The curtained memory is not visible to DMA devices. Also, registers, caches, and memory retain the isolation requirements on context switches, hibernations, and other hardware events. How this all happens is hardware dependent and is not discussed in this paper.

The detailed description of how memory isolation is effectively achieved and the low-level interaction of the CPU, memory controller, and TPM are not discussed in this paper.

The nexus uses the TPM-Seal and TPM-Unseal primitives to securely retrieve or store secrets (on the hard disk), which it in turn uses to encrypt and decrypt secrets for its NCAs. The nexus uses the TPM-PKSeal(Nexus-Source-Hash, x) primitive to sign requests from NCAs authorized to make such requests. The nexus does this by exporting an Attest(y) function, which returns the TPM-PKSeal(Nexus-Source-Hash, NCA-Manifest-Hash|y) primitive. The NCA-Manifest-Hash identity is the cryptographic identity of the running NCA. 

Note that the meaning of the Attest(y) function is the isolated NCA with the NCA-Manifest-Hash identity running under the isolated nexus with the Nexus-Source-Hash identity asked to sign y. Y is often the public-key portion of a public-private key pair that the NCA generated, and the NCA uses this specially-formatted, signed blob to convince another NCA (locally or remotely) to trust the public key that represents the NCA in subsequent signed statements or for negotiating a session key.

The nexus does not perform an I/O operation except in the following cases:

· The nexus has secure keyboard capability, so that keystrokes intended for an NCA cannot be seen or modified by the standard side.

· The nexus has a secure channel to the video display. This ensures that the NCA output cannot be snooped or modified. NGSCB dialog boxes cannot be obscured, and they have visual cues that allow users to be certain that the window is not being displayed by the standard side.

NCAs are started by the nexus, by a service request issued either by an NCA or by an authorized standard-side process. 

Note that the nexus has a secure UI that allows the user to specify which NCAs can run.

The nexus will halt and exit upon receiving an authorized request to stop from the standard side. All nexuses halt, whether through this process or because of a system exception, clearing all nexus and NCA memory.

An Example of Attestation: Obtaining a New Identity

This section describes how an identity trust relationship might be established between two NCAs operating on different computers without prior contact. Note that this example is illustrative. A real protocol might involve additional rounds or conditions to avoid replay attacks.
The two communicating NCAs (NCA 1 and NCA 2) open an encrypted channel in the usual secure manner. NCA 1 generates a new public-private key pair and constructs a blob, consisting of the newly generated public key and perhaps additional user authentication keys; it then asks the nexus to attest to the constructed blob. 

An encrypted version of the attestation message, along with the operating-system certificate, is transmitted to NCA 2. NCA 2 decrypts the information, verifies that NCA 1 generated the public key (because only NCA 1 could have produced the signed message naming the key), signs a certificate naming the new public key (and perhaps an additional policy) of NCA 1, and returns the signed certificate to NCA 1. Additional layers of protocols can be added to provide stronger user authentication or stronger group membership authentication, if necessary. The entire process is repeated with the roles reversed. Each NCA uses the Nexus-Seal identity to protect the new private keys.

When the NCAs want to set up an authenticated encrypted channel, they exchange the new certificates, open an encrypted channel by using the public keys certified by each NCA, and proceed. Neither NCA needs to ever use the Attestation function again. 

Because the NCAs are trusted and isolated, they can be constructed so that none of the exchanged information is leaked, and the new public keys are effectively anonymous. The private key never leaves the NCA, and another trusted provider is not required to hold private keys.

NCAs can use this mechanism to share keys and produce group keys, and then use these keys to safely share information without further use of the Attestation function. (In fact, NCAs can repeat this entire process and attest with the new keys.)

Microsoft Corporation is investigating the possibility of including a Zero-Knowledge protocol that would allow two NCAs to achieve nearly perfect anonymity in identity (key) creation. Of course, not all programs want public keys to be anonymous. For example, banking institutions want wire confidentiality but strong user-identity authentication.

Manifests and Program Identity

In this paper, the identity of a program is a cryptographic hash of its code and data. Ultimately, binary strings are identified by their cryptographic hash; however, this is a brittle concept for programs that have version numbers and might consist of a collection of binary images, including imported libraries. Any change to the version number means that a different hash is generated for the program, which means that the program is not identified as the same program by the NCA. 

Instead of the hash of the program, the NCA is represented by an extensible markup language (XML) document called a manifest. The manifest identifies the program hash either by naming it directly in the manifest or by naming a public key. This public key means, informally, “Any cryptographic hash signed by the corresponding private key has the same software identity.” In addition, the manifest defines the code modules that can be loaded for each NCA, associates human-readable names with the program, notes version numbers, and expresses program-debugging policy. 

This last concept may seem a bit foreign in a system that isolates programs, but it is important that NCAs can be debugged, like any other program. If the debug tag states that the NCA can be debugged, the nexus provides support that enables attaching a debugger to the NCA—if this is consistent with the nexus user’s policy. What can be loaded is expressed in the manifest as an inclusion-exclusion list. 

The inclusion and exclusion lists are based on cryptographically-strong naming, such as digest values for code modules, public keys used to verify signatures over code modules, public keys associated with certifications of code modules’ signing keys, and so forth. The references in the lists identify a code module, or collection of modules, in a way that is verifiable by the nexus at run time and cannot be spoofed. The list means that any code module signed by any of the public keys in the inclusion list, except if named in the exclusion list, can be loaded in the program. The manifest is signed with a public key whose corresponding private key can be used later to name upgrade policy to migrate secrets belonging to this NCA.

The identity of an NCA is ultimately a cryptographic hash of its manifest structure. This means that the Nexus-Seal and Nexus-UnSeal identities name their targets as hashes of manifests and, in fact, running an NCA really means running the manifest.

Two important comments about manifests are these:

· Although manifests are signed, there is no authority that the ability to issue manifests must be obtained from.

· The difference between an NCA that can be debugged and one that cannot is essentially a flag in the manifest.

It is interesting and important to note that, as a consequence of these two items, any user can debug any NCA by merely providing a new manifest for it. The NCA that can be debugged behaves in the same manner as an NCA that cannot be debugged, except that the NCA that can be debugged has access to different secrets. Incidentally, the nexus can also be enabled for debugging. 

NGSCB Applications 

NGSCB can be used in a variety of programs, with each class of application having its own security requirements, attack model, and security model.

The first class of applications provides system-management services, which include the following items:

· Secure start—The ability to start a known software stack on the standard side and monitor its integrity. NGSCB can enable this and also enable administrators in large enterprises (or users acting on their own behalf to detect intrusion) to use NGSCB to monitor compliant software stacks.

· Administration—NGSCB can help provide a secure way for users to manage upgrades and updates. NGSCB can enforce installation and upgrade policy locally and remotely in a way that cannot be subverted. In other words, an upgrade or patch that does not conform to user policy cannot be installed.

· Monitoring system health—Includes checking for malicious programs. If a checker is specified as a nexus-side program, it can coordinate activity with a central enterprise or service site to ensure currency and compliance with malicious-program rules. Because the checker will not run under NGSCB if it is different from the one specified by the user, the checker receives some immunity from infection.

· Network access—NGSCB can be used to enforce network access and firewall compliance.

· Key container, key management, and password management—An NCA can provide cryptographic services, key management, and password management in a way that guards against misuse or snooping by unauthorized software. It can also verify the identity of the program requesting cryptographic services by reducing the possibility of misuse of the encryption functions.

For this attack model, the NCA is either defending against mistakes by the user (that inadvertently violate the user’s own policy) or the subversion of the user’s intention by malicious or buggy code.

The second class of applications requires strong authentication of users and the assurance that errant or malicious software is not snooping or subverting policy agreed to by both participants in a transaction. 

Typical applications in this class are:

· Banking—Both the bank and the customer have a strong interest in ensuring that they are talking directly to each other, that their transaction is strictly confidential and auditable, and that the software implementing the transaction is reliable and is specifically carrying out the policy and intentions of both the customer and the bank. NCAs on both sides of the communication channel can ensure that these conditions are met, even if the transaction is conducted on a public terminal on a heavily-infected computer.

· Instant Messaging (IM)—In private IM interactions (for example, attorney-client privileged conversations, doctor-patient conversations, and even private conversations among friends and family members), NCAs can ensure that conversations are not intercepted and are consumed only by the intended recipient.

· General secure transaction management—Other applications, such as secure ordering, insurance inquiries and reporting, and benefits management, have the same benefits as banking does.

The attack model for this class of applications involves malicious code, eavesdroppers, and malicious third parties. For transactions, the ability to securely log auditable transactions is a benefit.

A third class of applications involves the shared use of computing resources by mutually-suspicious users. A server-side example is a mail hosting service that might require strong isolation among mail databases for different clients. A client-side example is the use of an authentication token (a smart card with a green light) to allow users to share a client computer and provide strong isolation that protects users from an untrustworthy administrator of the computer. Users can plug in their authentication devices that both ensure that the user is talking to trusted software and authenticate the user so that the user can securely access his or her content, programs (games, and so on), and information on the computer while roaming and be sure it will not be stolen or misused by another user or administrator.

A fourth class of applications involves authenticated actions across the network. One example is ensuring fair competition in multiplayer games without burdensome (and potentially unscalable) centralized server interaction. Multiparty negotiations have similar requirements. Web services and interdomain authorization and authentication services can use the same policy enforcement to efficiently and dynamically implement classic access control across trusted domains.

The fifth and final class of applications, and easily the most controversial and misunderstood one, is the policy projection between computers, known as digital rights management (DRM), in which content or access rights are negotiated between parties, and the licensor wants to gain some assurance that the licensee abides by the rules even when the content is used on a computer outside the control of the licensor. 

The most familiar application is the licensing of mass-market books, songs, and movies to a user or user-computer group. The same technical means can also be used by consumers to license the limited use of personal information to service providers under strictly controlled terms set by the consumer. Yet another variant of this class is the protection of either personal or corporate mail, documents, databases, presentations, and audio or video clips. Here the licensor may be a corporation or an individual who wants to control the use of private information while allowing safe access under circumstances that might have been unsafe without NGSCB. For example, a corporation might allow employees to read corporate documents on their (personal) portable or home computers—if they have NGSCB-enabled software that renders HTML. (This might occur despite the fact that the corporation does not control the installation of software on those computers.) 

NGSCB has no function that will censor or disable unrelated content or programs and carefully avoids mandating this possibility, by giving the user absolute control over what NCAs or rights-management systems run. The security model of NGSCB (and the rights-management systems generally) is based on the decision to enable access prospectively rather than disable access retrospectively. 

Manageability and Upgrade

There are several familiar activities involving an upgrade that affect the manageability of the NGSCB infrastructure. The key design goal is to make common manageability tasks simple and safe. 

The security primitives (like TPM-Seal and TPM-UnSeal) tightly control the scope of the upgrade. This is important in allowing the widest possible range of use. However, by wisely choosing the default upgrade policy, the upgrade experience can be kept simple and manageable without sacrificing security. 

Here are the common upgrade scenarios, with information about how they are implemented:

· User upgrades the nexus. How are NCA secrets upgraded? 

A new nexus is accompanied by a certificate, which authorizes an existing nexus to seal its secrets to the new nexus. Each generation of a nexus can generate a new AES key to save new secrets (the gatekeeper key). This key could protect the existing gatekeeper key. The result is a key hierarchy that allows secrets to migrate to a new version of the nexus as a block (with authorization) while declining, by default, to migrate keys backward from the newer version to the existing version.

· User upgrades a program. How are NCA secrets upgraded? 

The new version of an NCA uses the same manifest as the existing one, so the new version of the NCA gets the same secrets available to the existing NCA. If the NCA author chooses to issue a new manifest, it can, as the nexus does, issue a security credential signed by the same key that signed the original manifest, instructing the existing NCA to seal its secrets to the new version of the NCA.

· User buys a new computer. How are secrets migrated from one computer to another?

The Nexus-Seal identity takes an additional argument that indicates to the nexus whether secrets can be unconditionally migrated. When the user purchases a new computer, the user logs into the old computer’s nexus-side administration user interface, perform user authentication (for example, by typing a password), and instructs the nexus on the old computer to encrypt its secrets to a public key appearing in a certificate signed by the new nexus. The new nexus then decrypts the secrets and reseals them under the new nexus-platform AES key. Secrets that cannot be migrated unconditionally can be migrated using a protocol either between the NCA on the old computer and the NCA on the new computer, or among the NCA on the old computer, a trusted server, and the NCA on the new computer.

NGSCB Design Principles

NGSCB was designed with the following principles in mind.

· Programs that currently run on the Microsoft® Windows® operating system should run on NGSCB systems.

· The hardware platform will run any nexus and the user will be in charge of which nexuses can run. The enabling hardware must be specifically enabled by the user to be available to software.

· The nexus will run any NCA.

· The user determines which NCAs can run.

· The user specifies which NCAs can use functions that identify the platform.

· No certification process is required to technologically enable a nexus or an NCA. 

· The nexus does not block, censor, or delete any file or stream. NCAs have the file-access rights dictated by their standard-side counterparts and can run at reduced privileges. The creation, modification, and deletion of files or other storage objects are made at the request of NCAs, which users choose to run, and runs only under security policies set by the user.

· The nexus source code will be made available for review.

· Because NGSCB security is credential based, it will require certificate authorities for some programs. This paper does not address Public Key Infrastructure (PKI) issues except to note that in the NGSCB model, the PKI is rooted in a public key in an NCA and is hence not dependent on a central-authority trust model. Anyone can write programs that do not require registration or approval from a central certificate authority. An NGSCB PKI naturally supports a decentralized trust-management infrastructure.

Conclusions

NGSCB provides a protected run environment for programs, which isolates them from other programs. Each program is protected from software attack, even from the operating system. Unlike conventional authentication models, NGSCB is rooted in software authentication and provides software isolation, secure storage, attestation, and secure I/O operations.

These features enable the construction of a scalable authentication and authorization security model based on security credentials that allow a broad spectrum of programs to run.

Call to Action and Resources

Call to Action:

· For system manufacturers: NGSCB represents an evolutionary shift in the direction of the computer. Microsoft Corporation is committed to working with system manufacturers to help them understand the NGSCB capabilities and to enhance their market offerings with its features. System manufacturers who are interested in supporting NGSCB should refer to the other technical materials on the WinHEC CD for a greater understanding of the platform. Contact Microsoft Corporation for a business-development relationship and for additional technical materials as they become available.

· For firmware engineers: Review the additional technical materials on the WinHEC CD to better understand how NGSCB is designed to function. Specifically, review the initialization, privacy, configuration, and policy models for NGSCB. Firmware engineers who want to construct supporting components for NGSCB-capable systems and create a seamless experience for end users should contact Microsoft Corporation for a business-development relationship and for additional technical materials as they become available.

· For device manufacturers: Device manufacturers who are producing security or input/display devices should review NGSCB capabilities. Device manufacturers who are interested in supporting NGSCB should refer to the other technical materials on the WinHEC CD for a greater understanding of the platform. Contact Microsoft Corporation for a business-development relationship and for additional technical materials as they become available. Additionally, device manufacturers should review the technical details of the hardware design as described in the "Hardware Platform for the Next-Generation Secure Computing Base (NGSCB)" white paper to better understand how devices should interact with the rest of an NGSCB-capable system.

· For driver developers: It is anticipated that the changes introduced by NGSCB to the existing driver model will be minimal; however, driver developers should review the technical details of the design as described in the "Hardware Platform for the Next-Generation Secure Computing Base (NGSCB)" white paper and determine if their device classes are well suited to be used by NGSCB. Driver developers who are interested in supporting NGSCB should refer to the other published technical materials on the WinHEC CD for a greater understanding of the platform. Contact Microsoft Corporation for a business-development relationship and for additional technical materials as they become available.

For questions about the next-generation secure computing base (NGSCB) technology, send e-mail to ngscb_qa@microsoft.com

Resources

Designed for Microsoft Windows XP Application Specification

http://www.microsoft.com/winlogo/software/windowsxp-sw.mspx

Microsoft Hardware and Driver Developer Information

http://www.microsoft.com/hwdev/

Microsoft Platform Software Development Kit (SDK)

http://msdn.microsoft.com/downloads/

Microsoft Windows Driver Development Kit (DDK)

http://www.microsoft.com/ddk/

Microsoft Windows Logo Program System and Device Requirements, Version 2.1a

http://www.microsoft.com/winlogo/hardware/default.mspx
Windows XP Application Compatibility Toolkit

http://msdn.microsoft.com/compatibility/

Microsoft Windows XP Hardware Compatibility Test Kit, Version 11.2

http://www.microsoft.com/hwtest/







































© 2003 Microsoft Corporation. All rights reserved.

