
When you're down deep reversing a protocol
or picking apart a binary, getting up to speed
quickly can be challenging in the best of
circumstances. Over the past few years, we've
figured out a tool that we can rely on every
time: the Ruby programming language. We'd
like to highlight our use of Ruby to solve the
security testing problems we're faced with
every day.

We use Ruby because it’s easy, flexible, and
powerful. It works for everything from reverse
engineering firmware bus protocols to fuzzing
file formats to static and dynamic binary
analysis. We've used it to beat up web apps,
and we've stuck with it all the way to attacking
exotic proprietary hardware applications.
Having a great set of tools available to meet
your needs might be the difference between a
successful result for your customer and
updating your resume with the details of your
former employer.

Not familiar with Ruby? None of us were
either on that fateful day when Dino Dai Zovi
declared Python “the language of over the hill
hackers”. But we were surprised at how easy
Ruby was to pick up. So we'll lead off by
illustrating why Ruby is so powerful, making a
case for rapidly prototyping everything from
reversing tools to hacked up network clients
using our not-so-patented “bag-o-tricks”
approach.

Then we dive into our real-world experiences
using Ruby to quickly get up and running on a
wide range of tasks, including:

• Ripping apart static binaries and bending
them to your will

• Getting up close and personal with
proprietary file formats

• Becoming the puppet-master of both native
and Java applications atruntime

• Exposing the most intimate parts of exotic
network services like JRMI and Web services

• Trimming the time you spend decoding
proprietary protocols and cutting directly to
fuzzing them

As if all that wasn’t enough, we'll show you
how to make Ruby mash-ups of the stuff you
already love. Make the tools you already rely
on new again by getting them to work
together, harder and smarter. When you're
asked to get twice as much done in half the
time, smile confidently knowing you have a
secret weapon and the job will get done.

WHY WE LIKE RUBY

You wouldn’t be reading this white paper or
attending our talk unless you already knew
some kind of scripting language. So the
easiest way to help you “get” Ruby is to
compare it to other languages.

The language everyone compares Ruby to is
Python. You can Bing “Ruby vs. Python” and
find 1,000 good shootouts. Most of them are
going to point out the most important fact:
Ruby and Python are remarkably similar
languages, to the point where you can readily
port code between them. If you're a
pentester, here are some of the big
differences you'll care about:

• Ruby has “blocks”, which are a notation for
defining functions on the fly without naming

1

RU
BY FO

R PEN
ETRATIO

N
 TESTERS

ruby for penetrat ion testers

them; you can stuff them into variables and
pass them around. This is huge: it allows
you to define domain-specific languages
and new control structures, and it’s
absolutely killer for writing asynchronous
network code.

• Python is faster than Ruby. Not a little bit
faster. A lot faster.

• But Ruby has first-class regular expressions,
using the /regex/ syntax borrowed from
Perl. This means regexes are insanely easy
to use in Ruby. You don’t have to “import”
them from a library or instantiate classes.

• Python has a huge, sprawling standard
library. Ruby has a smaller, tighter standard
library.

Yes, Ruby has some syntax borrowed from
Perl. Yes, this is a scary idea. But you don’t
care: the regex syntax is good, and the rest of
it you can pretend doesn’t exist. Nobody
writes Ruby code that looks like Perl.

Mike Tracy, god help him, came to Matasano
from Tcl. Tcl and Ruby are surprisingly similar:
you can call Ruby “Japanese Tcl” and defend
that name long enough to upset a Rails
programmer. Go ahead, try it! Ruby
programmers use blocks for a lot of the same
things that Tcl programmers use “uplevel” for,
and the Ruby object model is very similar to
[incr Tcl].

All these dynamic languages are flexible. Ruby
allows us to rapidly prototype tools for
vulnerability exploitation, protocol fuzzing,
reverse engineering and everything in-
between. Many of the tools we develop in
Ruby are easily hooked into one another
which can further speed up tool development
and promotes code reuse.

Ruby has an answer to almost every situation
where we would want to develop custom
code to solve a problem:

• We can redefine portions of the library with
“monkey patches”, for instance to allow all
Numeric types to render as bignums.

• We can call low-level C libraries with Ruby/
DL, FFI, or Win32ole. Or we can wrap the
library directly by extending the Ruby
interpreter.

• We can even add Ruby into existing tools
written in languages like C.

• Ruby allows us to easily create DSL (Domain
Specific Language) frameworks like Ruckus,
where defining complex structures is done
in code, not complex configuration files.

WHO ELSE IS USING RUBY?

Ever hear of Metasploit? Metasploit may be
one of the largest Ruby projects in existence
and arguably in the most popular list of Ruby
frameworks. Metasploit makes advanced
exploitation of vulnerabilities possible through
easy to use interfaces, payloads and tools. All
of this great stuff is also supported on
multiple platforms thanks to Ruby.

Metasm is another powerful Ruby framework
for compiling, disassembling and debugging
native code from Ruby. Metasm is included
with the Metasploit framework as well.

Ronin is another Ruby framework written with
security and data exploration in mind. Ronin
provides convienence methods for an array of
different protocols that penetration testers
might find useful.

2

D
O

C
U

M
EN

T TITLE

SCRIPTED PENETRATION TESTING

Your first question about whether a language
is good for pentesting is, “how does it handle
web work”. Our answer: WWMD.

WWMD is a console for breaking web
applications. It’s like “pentesting Expect”: it’s
something in between a programming
environment and a console.

WWMD isn’t intended to be just another of
the myriad tools used to conduct web
application security assessments. Its goal is to
provide an easily accessible scripting
framework that includes the basic elements of
a web testing tool (transport and parsing) and
combine them with convenience methods that
make manual and automated testing tasks
easier. Working either in IRB or from scripts,
it’s a snap to create powerful tools that take
care of the time consuming and repetitive
stuff and help you with the more subtle and
advanced things you need to get done.

WWMD relies on Ruby and some great
libraries for its base. Even if you're not going
to use WWMD, you should know about:

• Curb, which provides libcurl bindings for
Ruby, which we use for our raw HTTP
transport.

• Nokogiri, for parsing HTML documents.

Curb and Nokogiri are extremely excellent
libraries, each of them reason enough to
spend some time learning Ruby.

To this, WWMD adds methods for everything
from manipulating headers and application
inputs to encodings. It also includes a patch
to Curb to allow sending requests using
arbitrary methods (OPTIONS, TRACE,
RANDOM). All of the behaviors of the base
Page object can be easily modified on a per-

application basis using mixins and monkey
patches that are specific to your engagement.

It also includes a ViewState (de)serializer
that outputs to and reads in from XML. If
you've never fuzzed ViewState before
(working on one of the 4% of web
applications out there that don’t have
EnableViewStateMac = true?) then this is your
huckleberry. Another interesting use for the
ViewState deserializer is to programatically
base64 decode BinarySerialized() (custom
serializations of objects like Telerik controls)
that you'll find in many web applications.
Before WWMD, I had to do all that work by
hand.

A simple login example:

wwmd(main):003:0> page =

Page.new();nil

=> nil

wwmd(main):004:0> page.baseurl =

“http://www.example.com”

=> “http://www.example.com”

wwmd(main):005:0> page.get “http://

www.example.com/example/”

=> [200, 663]

wwmd(main):006:0> page.text

=> “Login:\nPassword:\n”

wwmd(main):007:0> form = page.getform

=> [[“username”, nil], [“password”,

nil]]

wwmd(main):008:0> form[‘username’] =

“jqpublic”

=> “jqpublic”

wwmd(main):011:0> form[‘password’] =

“password”

=> “password”

wwmd(main):012:0> page.submit form

=> [200, 2117]

wwmd(main):013:0>

page.bodydata.match(/you are logged

in.*/)[0].striphtml

=> “you are logged in as jqpublic

[logout]”

wwmd(main):014:0>

3

D
O

C
U

M
EN

T TITLE

http://www.example.com/example/
http://www.example.com
http://www.example.com
http://www.example.com
http://www.example.com
http://www.example.com/example/
http://www.example.com/example/
http://www.example.com/example/

Ever see a web form that takes an argument
like:

args=key|value;key|value;key|value

Instead of just fuzzing the form variable, you
can simply create a copy of the FormArray
class that uses | and ; as delimiters and fuzz
everything:

wwmd(main):006:0> form = FormArray.new

=> [] wwmd(main):007:0> cust =

FormArray.new => []

wwmd(main):008:0> cust.delimiter = “;”

=> “;”

wwmd(main):009:0> cust.equals = “|”

=> “|”

wwmd(main):010:0>

cust.fromarray([[“key1”,“val1”],

[“key2”,“val2”],[“key3”,“val3”]])

=> [[“key1”, “val1”], [“key2”,

“val2”], [“key3”, “val3”]]

wwmd(main):011:0> cust.topost

=> “key1|val1;key2|val2;key3|val3”

wwmd(main):012:0> form[‘args’] =

cust.topost

=> “key1|val1;key2|val2;key3|val3”

wwmd(main):013:0> form[‘test’] =

“value”

=> “test”

wwmd(main):014:0> form.topost

=> “args=key1|val1;key2|val2;key3|

val3&test=value”

WWMD is available on github (http://
github.com/miketracy/wwmd/tree/master)
and remember, swiss army knives don’t kill
people but 15 different sharp things can’t
hurt.

REVERSING

Reverse engineering has taken a front seat in
vulnerability research and penetration testing
over the last few years. Often a penetration
tester may be tasked with reversing
proprietary network protocols or closed
source binaries in a relatively short amount of
time.

Ruby enables this kind of rapid tool
development whether the goal is breaking
open a custom network protocols header
structure and de-obfuscating its payload or
finding that backdoor in a compiled
executable. We have developed tools to do
both these kinds of things.

NETWORK PROTOCOLS

Being able to transparently intercept and
modify network traffic is a great advantage to
a penetration tester tasked with finding bugs
in a proprietary network protocol. Not all
operating systems have well defined support
for this type of behavior. We have developed
a few OS-indepedent inline proxy tools to
help ease the process of attacking protocols
in this way.

These tools are available in our ‘Ruby
BlackBag (rbkb)’ distribution and are named
‘blit’, ‘telson’, ‘plugsrv’ and ‘feed’. They work
together to allow for inline network traffic
modification and inspection.

• blit: a simple OOB (Out Of Band) IPC (Inter
Process Communication)
mechanism for sending messages to blit
enabled tools.

• telson: is responsible for setting up network
connections and
listening for commands from blit enabled
clients

•

4

D
O

C
U

M
EN

T TITLE

http://github.com/miketracy/wwmd/tree/master
http://github.com/miketracy/wwmd/tree/master
http://github.com/miketracy/wwmd/tree/master
http://github.com/miketracy/wwmd/tree/master

• plugsrv: is a reverse TCP/UDP proxy
between one or more connections

• feed: a blit capable tool that feeds files to
blit enabled servers

Packet captures can be modified and replayed
with ease by using a combination of blit and
telson. Simply save your saved session,
modify the desired bytes, setup a connection
with telson and send the packets to blit
manually or use feed to send all of the
modified packets one at a time to telson.
Using these tools seems a bit manual at first,
but Ruby allows for their usage to be scripted
easily and they often come in use for fuzzing
network sessions inline or reversing tricky
protocols.

BINARIES

Ruby is also effective in the area of static
binary analysis.

Often when reverse engineering a closed
source binary the penetration tester will be
presented with embedded compressed
images or obfuscated data segments. We can
combine the usefulness of Ruckus with our
many monkey patches to help de-obfuscate
and extract these portions of applications.
deezee is a tool included in Matasano’s
original black bag C implementation. It works
by traversing a binary blob for compressed
zlib images. Ruby has support for the Zlibc
library by default so porting this tool to Ruby
is trivial. This tool is often successful in
extracting embedded file system blobs from
firmware images or compressed data
segments within an executable.

There are times when custom obfuscation is
used to hide data segments of a binary on
disk. Often this comes in the form of a simple
xor or base64 encoding. This is when we use
Ruby monkey patches to extract this data. A

quick and easy String class monkey patch to
xor bytes against a ‘key’ may look like this:

1 def xor(k)

2 s=self

3 out=StringIO.new ; i=0;

4 s.each_byte do |x|

5 out.write((x ^ (k[i] ||

k[i=0])).chr)

6 i+=1

7 end

8 out.string

9 end

Extracting strings is often the first step to take
when analyzing a foreign binary blob. We
wrote a better ‘strings’ utility in Ruby called
rstrings. rstrings has support for optional start
and end offsets and different encoding types
ascii and unicode and the ability to print at
what offset in the blob the string was found.

$ rstrings -t ascii -l 10 /bin/ls

00001024:0000102f:a:"__PAGEZERO"

000012d8:000012e3:a:"__pointers"

0000131c:00001329:a:"__jump_table"

00001368:00001373:a:"__LINKEDIT"

Grabbing the strings from a binary can only
take you so far, at some point its file format
structure and code segments must be
examined in detail. For this we use Ruckus
and in the case of x86 executable, Frasm.
Frasm is a Ruby extension to the Distorm64
disassembly library. Disassembling x86 code
in Ruby has never been easier:

require 'frasm'

d = Frasm::DistormDecoder.new

d.decode("ABCDEFGHIJKLMNOPQRSTUVWXYZ")

.each do |l|

 puts "#{l.mnem} #{l.size}

#{l.offset} #{l.raw}"

end

INC ECX 1 0 41

5

D
O

C
U

M
EN

T TITLE

INC EDX 1 1 42

INC EBX 1 2 43

INC ESP 1 3 44

INC EBP 1 4 45

INC ESI 1 5 46

INC EDI 1 6 47

DEC EAX 1 7 48
...

RUNTIME ANALYSIS

For debugging native code we have
developed a debugger named Ragweed.
Ragweed uses Ruby/DL to wrap the native
debug API on Win32, OS X and Linux.
Ragweed is basically a scriptable debugger
which allows us to automate every task from
hit tracing to extracting data during
execution.

FUZZING

Fuzzing is how you find bugs in binary attack
surfaces. You take a message, jumble it up,
and throw it at the target. Again and again.
Eventually the target crashes. You find out
why. The answer is a security advisory.

Every major language has a fuzzing
framework. Probably the best-known is Peach,
which is Python’s fuzzer du jour. We have a
Ruby fuzzing framework. It’s called Ruckus.
Ruckus will take the Pepsi Challenge against
Peach any time.

The first thing you want from a fuzzer is the
ability to define messages. So, you've got
your DHCP header:

0..7 8..15 16..23 24..31

opcode type addr_len hopcount

transaction id

num_seconds flags

client IP

your IP

server IP

gateway IP

client hardware address

(cont’d) hostname

(cont’d)

...

(cont’d) bootfile

And here it is in Ruckus:

class DHCPHeader < Ruckus::Structure

 byte :opcode, :value => 1

 byte :hwtype, :value => 6

 byte :hw_address_len, :value => 6

 byte :hopcount

 n32 :trans_id

 n16 :num_secs

 n16 :flags

 ipv4 :client_ip,

 :value => "0.0.0.0"

 ipv4 :your_ip

 ipv4 :server_ip,

 :value => "0.0.0.0"

 ipv4 :gateway_ip

 num :client_hw, :width => 48

 string :server_hostname,

 :size => 64,

 :value => ""

 string :boot_file,

 :size => 128,

 :value => "generic"

end

Some things to notice here:

• Ruckus messages types are Ruby classes,
but we give you a DSL-style interface for
defining the fields.

• We've got field types for everything you're
going to see in a normal message. Byte-

6

D
O

C
U

M
EN

T TITLE

sized fields. 32 bit network byte order fields.
IP addresses. Strings.

• We do arbitrary numeric types. Got a 27 bit
integer field? Done! Got a flag word? Define
the flags bit by bit!

• Want a new field type? Every Ruckus
message type is automatically a field type
(lowercase the class name). It's turtles all the
way down.

• Of course fields can take default values.

But wait! There’s more!

Every field in a Ruckus message can relate to
another field. For instance:

class Foo < Ruckus::Structure

 byte :len

 str :string

 relate_size :string,

 :to => :len

 relate_value :len,

 :to => :string,

 :through => :size

end

This is something that comes up in network
protocols all the time: length delimited
strings. The field “len” records the 8 bit
length of the field “string”. Ruckus takes care
of this for you.

Ruckus works in both directions: in and out.
If you define a working message type for
sending messages, that same message type
can parse raw byte strings back into
messages. Why is this cool? Because it allows
us to do template-based fuzzing; for instance,
we can write a proxy for a network protocol,
capture messages, and then replay them with
subtle (or not-subtle) variations.

Here’s where things with Ruckus start to go
crazy-go-nuts. Ruckus is actually modeled in
part after the HTML DOM.

Like we said earlier, “turtles all the way
down”? Every field is itself a class. An integer
is a Ruckus::Number. A string is a Ruckus::Str.
If you want to wrap a DHCP header in a TCP
message, you can do that with one field
declaration.

Every field of every message is identified in
two important ways:

• its class; Ruby is introspective: you can take
any variable and gets its type with a single
call.

• its optional “tag”, which is the moral
equivalent of an HTML DOM “id”.

All the fields of a message, nested arbitrarily
deep, form a tree. Just like in the HTML
DOM. And you can ask that tree for, say, all
the nodes that are of class “string”. Or the
node with the id “smbheaderbase”. Or all
strings in message components descended
from the node marked “smbheaderbase”.
See where we're going with this? Cascading
fuzz sheets!

Take an arbitrary message modeled with
Ruckus, and you can mutate it using CSS style
selectors. You can pick out all the strings
under just a portion of the message, modify
them in some evil way, and render the
message back out, with all the associated
length fields and doohickeys valid.

To actually mutate the fields, we use some
Dino Dai Zovi code that leverages another
Ruby feature: generators. A generator takes a
loop and turns it into a vending machine that
dispenses the loop results one at a time.

7

D
O

C
U

M
EN

T TITLE

For instance, here’s a loop that never ends,
which generates random 10-character strings:

Loop { str = ""; 10.times { str <<

"A"[0] + rand(26) } }

This loop isn’t very useful, because if you
invoke it, your program freezes. But using
Ruby Generators, we can make it useful:

g = Generator.new {|g|

 Loop {

 str = "";

 10.times {

 str << "A"[0] + rand(26)

 }

 g.yield(str)

 }

}

This is the same loop, but now each time we
generate a string, we yield it to the Generator
object. We can get each successive string
using “g.next”, any time we want a random
string.

Ruckus uses DFuzz, which is Dino’s Generator-
driven fuzzer library. DFuzz::String will
generate a long sequence of progressively
longer, weirder strings. DFuzz::Int will
generate integers.

ACTIVEX
ActiveX is an active area of vulnerability
research and testing. A handful of general
purpose ActiveX security testing tools already
exist, each with their own strengths. The
available ActiveX testing tools fall, generally,
into two categories:

Browser-based Testing. Examples Include:
axman – by H.D. Moore
Dranzer – cert

Direct COM-based Interface Testing.
Examples Include:

comraider – iDefense
Dranzer – cert

While the available tools have impressive track
records for finding vulnerabilities in ActiveX
controls, they can be of limited use for testing
controls which have unique peculiarities such
as specific initialization requirements or non-
standard interfaces. In these cases, being able
to quickly prototype and build custom COM
or browser-based ActiveX tools to
specification can be of immeasurable value.

Ruby lends itself well to the task of ActiveX
research and vulnerability testing and brings
benefits of rapid prototyping and testing. The
windows version of Ruby ships with ‘win32ole’
as part of its standard library. The ‘win32ole’
library is designed to expose COM objects to
Ruby in a manner not unlike VBScript. The
library is implemented a native extension
written in C/C++ and exposed to the ruby
runtime.

The ‘win32ole’ library makes dynamic
enumeration, testing, and fuzzing of ActiveX
(or even other COM interfaces) a snap.

COM ENUMERATION

The code below demonstrates quickly
identifying all the installed and registered OLE
type libraries on the system including their
name, GUID, description, and registered file
location:

8

D
O

C
U

M
EN

T TITLE

1 require ‘win32ole’

2 WIN32OLETYPELIB.typelibs.each do |

lib|

3 begin

4 puts “Name: #{lib.libraryname}”,

5 “GUID: #{lib.guid}”,

6 “Path: #{lib.path}”,

7 “Desc: #{lib.name}\n\n”

8

9 rescue WIN32OLERuntimeError

10 # skip mis-registered TLB’s

11 next

12 end

13 end

Below is an example of a standalone Ruby
program which will produce a list of visible
methods for any COM interface installed on
the system, accompanied by invocation type,
return value, and typed arguments. This can
be used to quickly identify the exposed
methods for an ActiveX control:

1 require ‘win32ole’

2 obj = WIN32OLE.new(ARGV.shift)

rescue(exit(1))

3 obj.olemethods.select {|m|

m.visible? }. each do |m|

4 puts “#{m.invokekind}:

#{m.returntypedetail.join(‘ ’)}

#{m.name}(” +

5 m.params.map {|p| “#{p.ole_type}

#{p.name}”}.join(‘, ’) + “)”

6 end

ACTIVEX FUZZING

Using the same interfaces for enumeration, we
can easily begin producing test cases based
on the method interfaces. The example below
is an extremely trivial test case which simply
generates several html files, one for each
argument per each method. The test-case
checks for unexpected errors when a 10k
string is supplied for each argument
individually with null for all other arguments.

7 obj.olemethods.each do |m|

8 psz = m.sizeparams

9 pary = Array.new(psz, “null”)

10 0.upto(psz-1) do |idx|

11 args = pary.dup

12

13 tc = “testcase10kstr-

argument#{m.name}#{idx}”

14 args[idx] = ‘“’ + "A”*10000 + ‘“’ #

… really lame testcase

15

16 File.open(”#{tc}.html" % idx, “w”)

do |f|

17 f.write <<EOF

18

19

20

21

22 EOF

23 end

24 end

25 end

We built a tool named ‘AxRub’ which takes in
a CLSID as its argument and sets up a generic
fake HTTP server in order to fuzz an ActiveX
control in the browser automatically. AxRub is
hooked into the DFuzz generator to fuzz the
controls methods with a variety of strings and
numeric values.

INTEGRATING RUBY

Most dynamic languages lend themselves to
easy integration with existing platforms and
toolsets, Ruby is no exception. Ruby can be
extended using native C library, existing tools
written in C or even bridged to other
languages like Java.

WRAPPING LIBRARIES

Wrapping native libraries using Ruby is
supported in two different ways. A native
Ruby extension can be written in C which links
with the library it is intended to expose to
Ruby. This is a straight forward method that

9

D
O

C
U

M
EN

T TITLE

doesn’t require any additional third party code
to achieve, only what is absolutely necessary,
only a C compiler, Ruby libraries, and the
native library you intend to wrap.

Another, and increasingly more popular, way
to wrap native libraries is the use of Ruby
extensions such as DL and FFI . These
extensions allow you to wrap a native library
with nothing more then Ruby code. Ruby/DL
acts as a basic extension of the dynamic linker,
as such you must provide it with the location
of your linker and it takes care of the rest. The
advantage here is that no native code must be
written and compiled. Our portable native
code debugger, Ragweed, is written using
Ruby/DL. It wraps the linker on Win32, OSX
and Linux.

FRASM

One native library we wrapped recently is
distorm64 , an x86 32 and 64 bit disassembly
library written in C. Distorm already contains
Python bindings and we wanted the ability to
use it from Ruby. We wrapped the underlying
distorm C library in 104 lines of C and now
Ruby scripts can be written to disassemble
x86 instructions.

1 require 'frasm'

2

3 d = Frasm::DistormDecoder.new

4

5

d.decode("ABCDEFGHIJKLMNOPQRSTUVWXYZ")

.each do |l|

6 puts "#{l.mnem} #{l.size}

#{l.offset} #{l.raw}"

7 end

 INC ECX 1 0 41
 INC EDX 1 1 42

 INC EBX 1 2 43

 INC ESP 1 3 44

 INC EBP 1 4 45

 INC ESI 1 5 46

 INC EDI 1 6 47

 DEC EAX 1 7 48

 ...
The ‘decode’ method takes in a string of
characters and passes them the distorm
library for disassembly. An array of objects is
returned which hold four class variables
‘mnem’, ‘size’, ‘offset’ and ‘raw’.

EMBEDDING THE RUBY INTERPRETER

While wrapping native libraries seems like the
most ideal situation for extending existing
tools, it is not always an option. Another
option for integrating Ruby into an existing
tool is embedding the Ruby interpreter itself.
The original Ruby interpreter is written in C
and provides a convenient API for calling
Ruby code from C. In certain cases we had
older tools written in C that worked perfectly
yet lacked the dynamic programmability that
Ruby provides. Rewriting these tools in Ruby
is an enormous task that goes against our
philosophy of not reinventing the wheel. The
basic steps for embedding an interpreter and
sharing a string with a ruby script are below:
example.c

1 #include <stdio.h>

2 #include <ruby.h>

3

4 int main(int argc, char *argv[])

5 {

6 ruby_init(); /*

Initialize Ruby */

7

8 VALUE str; /*

Declare the string in C */

9

10 str = rb_str_new2("Some

String"); /* Assign the string a

value */

11

12

rb_load_file("simple.rb"); /*

Load the Ruby script we want to run */

10

D
O

C
U

M
EN

T TITLE

13

14 rb_define_variable("glbl",

&str); /* Expose our string to our

script */

15

16 ruby_exec(); /*

Run the interpreter */

17

18

rb_eval_string("modify_str"); /*

Call the method 'modify_str' in our

script */

19

20 printf("%s\n",

STR2CSTR(str)); /* Print the

string our Ruby script modified */

21

22 ruby_finalize(); /*

We are now done with Ruby */

23

24 return 0;

25 }

example.rb

1 def modify_str

2 puts $glbl

3 $glbl = "Hello from Ruby!"

4 end

We can compile our example.c program using
gcc, provided we have the right Ruby
development libraries in place:

$ gcc -I/usr/lib/ruby/1.8/i486-linux/

-lruby1.8 -o example example.c

Running our program:

$./example

Hello from Ruby!

Our Ruby script, example.rb, was called and
the ‘modify_str’ method modified the global
string ‘$glbl’. Our C program, example.c,
printed out the modified string using the
STR2CSTR macro provided by ruby.h

Although somewhat cruder then wrapping a
native library, embedding the Ruby interpreter
is a viable way to add scripting capabilities to
existing code bases where you don’t wish to
rewrite the project from scratch in Ruby.

QUERUB

An older existing project named QueFuzz
uses the libnetfilterqueue libraries on Linux to
create an inline network packet fuzzer. Writing
scalable fuzzing code in C is a lot more
difficult then writing it in Ruby. Despite its
limitations QueFuzz works as intended, there
was no reason to throw it out and start over.
Instead we removed the C fuzzing code in
favor of embedding the Ruby interpreter and
passing the packet to be fuzzed to a Ruby
script. This allows us to use all the built in
methods Ruby provides when reversing or
fuzzing the packets contents. While a Ruby
wrapper around the libnetfilterqueue libraries
would be ideal, this is an involved software
development process that requires all aspects
of the libraries functionality be taken into
consideration. QueRub serves a specific
purpose, to fuzz network packets inline using
the dynamic nature of Ruby while utilizing an
existing code base.

LEAFRUB

Leaf is another existing tool that was lacking a
scripting component but was not eligible to
be wrapped as an existing library. Leaf is an
extendable ELF analysis and disassembly
platform that has support for plugins written
in C. A plugin called LeafRub was written to
embed the Ruby interpreter and expose Leaf’s
internal API and data to Ruby scripts that
mirror the design of a native C plugin.
LeafRub works by creating constants for each
x86 instruction type, plugin function
arguments, and helpful functions in the Leaf
API. As each plugin hook is called in C, its
Ruby counter part is called. Just like QueRub,
this allows Ruby based Leaf plugins to utilize

11

D
O

C
U

M
EN

T TITLE

all Ruby has to offer when disassembling ELF
objects.

The following LeafRub Ruby script prints out
each instruction and looks up each opcode
against a list of known cross references and
the ELF symbol table.

class Leaf

 def initialize

 puts "\n(LeafRub.rb

initialized)"

 end

 def leaf_code_output

 print sprintf("%s %x [%16s]

(%s) (%x %x %x)\n",

$state.segment_name, $state.offset,

 $instr.hex_string,

$instr.inst_string,

$instr.op_one_value,

 $instr.op_two_value,

$instr.op_three_value,

$instr.op_one_value)

 self.match_xref($state.offset,

$state.offset).each do |x| puts

"\t#{x}" end

self.match_xref($instr.op_one_value,

$state.offset).each do |x| puts

"\t#{x}" end

self.match_xref($instr.op_two_value,

$state.offset).each do |x| puts

"\t#{x}" end

self.match_xref($instr.op_three_value,

$state.offset).each do |x| puts

"\t#{x}" end

self.match_symbols($instr.op_one_value

).each do |x| puts "\t#{x}" end

self.match_symbols($instr.op_two_value

).each do |x| puts "\t#{x}" end

self.match_symbols($instr.op_three_val

ue).each do |x| puts "\t#{x}" end

 end

end

leaf = Leaf.new

The output of this script is shown

below:

$leaf -f /bin/ls

[LEAF - Leaf ELF Analysis Framework]

[Loading LEAF Plugins ...]

-> LeafRub [Version: 0.1]

(LeafRub.rb initialized)

.rel.plt 8049508 [55]

(push %ebp) (0 0 0)

 (.rel.plt 0x8049508) @ [0x805aec4

call 0x8049508]

 0x8049508 = _init@GLIBC

.init 8049509 [89e5] (mov

%esp, %ebp) (0 0 0)

.init 804950b [53] (push

%ebx) (0 0 0)

.init 804950c [83ec04] (sub

$0x4, %esp) (0 4 0)

.init 804950f [e800000000] (call

0x8049514) (8049514 0 0)

 (.init 0x8049514) @ [0x804950f

call 0x8049514]

.init 8049514 [5b] (pop

%ebx) (0 0 0)

 (.init 0x8049514) @ [0x804950f

call 0x8049514]
...

OTHER LANGUAGES

We use JRuby extensively to bridge the gap
between Java and Ruby. This is particularly
useful to a pentester who runs into a lot of
enterprise Java applications such as JRMI.
In particular we have created Buby, a Jruby
wrap of the Burp Java API.

12

D
O

C
U

M
EN

T TITLE

