
 

 

Metasploit: Reconstructing the Scene of the Crime 
Metasploit: Reconstructing the Scene of the Crime, is a concept designed to demonstrate how memory 

analysis and acquisition can be combined with existing knowledge of tools to reveal data not previously 

easily accessed. The existing knowledge in this case is that of how exploit payloads, specifically 

Meterpreter, look in memory post-exploitation and after acquisition. 

This paper discusses how to combine Memoryze ™1, a freely available memory analysis and acquisition 

tool, and Metasploit forensic framework, an open source forensic framework designed to process 

acquired data from Memoryze, to reconstruct a Meterpreter session.  

There are three things the reader needs to understand to make the concept of reconstructing a 

Meterpreter session a reality:  i) access to physical memory ii) process acquisition iii) Metasploit 

payloads and Meterpreter 

 

Accessing Physical Memory: 
As a memory analysis tool Memoryze needs access to physical memory for two purposes:  memory 

acquisition and memory analysis.   

1. Memory acquisition is when Memoryze creates a complete image of the current state of 

physical memory or the current state of a specific process.  

2. Memory Analysis is when Memoryze accesses physical memory with the intention of performing 

analysis, such as enumerating all processes and their handle tables. 

To make accessing physical memory easy, Windows exposes a section object named 

\Device\PhysicalMemory. This section object can be opened and once opened an application will have a 

handle to physical memory.  If an application reads from this handle, it is reading from physical memory. 

It is important to note that an application could access this section object in ring 3 from Windows 2000 

thru Windows 2003 SP0. Windows 2003 SP1 and later changed the permissions on this section object 

and now require the application to be running at ring 02. 

Understanding Windows Process Address Space 
Once Memoryze has access to physical memory it has access to every processes’ virtual address 

space. The address space can grow and shrink as memory is needed for things such as threads, dynamic 
storage, stacks, loaded binaries, etc. The Windows Memory Manager (MM) manages all of this 
information. The information is managed in a binary tree. A member variable within the Executive 
Process (EPROCESS) structure named VadRoot (Virtual Address Descriptor Root) is a pointer to the root 
of this binary tree. Every process has an EPROCESS structure that contains information the process 
manager needs to use to manage processes. The binary tree entries are actually structures named 

                                                            
1 http://www.mandiant.com/software/memoryze.htm 
2  http://technet.microsoft.com/en-us/library/cc787565.aspx 
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Memory Manager Virtual Address Descriptors (MMVAD). These structures contain the information 
relevant to the MM such as the virtual start and the virtual size of the region of memory being 
described.  To show the MMVAD structure and its members, type dt which in windbg is display type 
and then _MMVAD . It will then display the structure and all its members along with offsets and sizes of 
the variables, as demonstrated below (make sure symbols are loaded before you do this).  

 
lkd> dt _MMVAD 

   +0x000 StartingVpn      : Uint4B 

   +0x004 EndingVpn        : Uint4B 

   +0x008 Parent           : Ptr32 _MMVAD 

   +0x00c LeftChild        : Ptr32 _MMVAD 

   +0x010 RightChild       : Ptr32 _MMVAD 

   +0x014 u                : __unnamed 

   +0x018 ControlArea      : Ptr32 _CONTROL_AREA 

   +0x01c FirstPrototypePte : Ptr32 _MMPTE 

   +0x020 LastContiguousPte : Ptr32 _MMPTE 

  +0x024 u2               : __unnamed 
 

Figure 1:_ MMVAD Structure 

 
  

 
As the reader can see, in Figure 1, this structure contains different variables. Memoryze is concerned 
with the following structures:  

 StartingVpn  -  the virtual start address  

 EndingVpn  - the virtual size of the memory section  

 LeftChild, RightChild  - pointers to the children nodes in the tree 

 Parent - a pointer to the parent node  

If the MMVAD is describing a virtual address section that was created via a call to LoadLibrary or 
by the Windows process loader, that memory section will have a name. The name will be the actual 
name of the file stored in the virtual section described by the given MMVAD. To get the name or check if 
it exists, Memoryze references the ControlArea member variable which is a pointer to CONTROL_AREA 
structure.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 

 

 

lkd> dt _CONTROL_AREA 

   +0x000 Segment          : Ptr32 _SEGMENT 

   +0x004 DereferenceList  : _LIST_ENTRY 

   +0x00c NumberOfSectionReferences : Uint4B 

   +0x010 NumberOfPfnReferences : Uint4B 

   +0x014 NumberOfMappedViews : Uint4B 

   +0x018 NumberOfSubsections : Uint2B 

   +0x01a FlushInProgressCount : Uint2B 

   +0x01c NumberOfUserReferences : Uint4B 

   +0x020 u                : __unnamed 

   +0x024 FilePointer      : Ptr32 _FILE_OBJECT 

   +0x028 WaitingForDeletion : Ptr32 _EVENT_COUNTER 

   +0x02c ModifiedWriteCount : Uint2B 

   +0x02e NumberOfSystemCacheViews : Uint2B 

Figure 2: CONTROL_AREA Structure 

Within the CONTROL_AREA structure is another pointer called FilePointer that  points to a FILE_OBJECT 
structure. The FILE_OBJECT structure, if valid (there are extensive checks done but outside the scope of 
this paper), will contain a UNICODE_STRING buffer in the member FileName that contains a pointer to 
the actual file path. 

lkd> dt _FILE_OBJECT 

   +0x000 Type             : Int2B 

   +0x002 Size             : Int2B 

   +0x004 DeviceObject     : Ptr32 _DEVICE_OBJECT 

   +0x008 Vpb              : Ptr32 _VPB 

   +0x00c FsContext        : Ptr32 Void 

   +0x010 FsContext2       : Ptr32 Void 

[…] 

   +0x030 FileName         : _UNICODE_STRING 

[…] 

   +0x06c CompletionContext : Ptr32 _IO_COMPLETION_CONTEXT 

 

It is very important to note that any MMVAD that does not have a name but whose contents contain an 

MZ/PE header can safely be considered injected or malicious.  

By enumerating this binary tree of MMVAD entries, Memoryze can access the processes’ 

heap(s), stack(s), executables, and DLLs.  This gives a very complete and uninhibited view of the process 

address space without “tampering” or “touching” the process and utilizes no API calls. To help illustrate 

how the Windows memory manager uses the VAD tree, take a look at Figure 3, which is a screen of the 

memory map view from OllyDbg. The VAD tree is very similar to this view. Each virtual address in the 

address column would be its own entry in the VAD tree.  



 

 

Figure 3: OllyDbg Memory Map View 
 

 

Process Acquisition 
 

Now that the reader has an understanding of how a processes’ virtual address space is laid out, 

understanding process acquisition is very straightforward. Recall that it all starts by identifying processes 

in memory. This is done by finding the EPROCESS structure and determining if the given EPROCESS 

structure matches the process the user has requested to acquire. Once a match is found, the VadRoot 

pointer is referenced and the binary tree is walked. Each MMVAD entry encountered is written to disk in 

a DD style format with no alterations. DD stands for disk duplicator, and was originally used to duplicate 

drives. The format is very simple: a buffer is read and then written to disk, if the buffer can’t be read (in 

the case of a page being paged to disk and not the paging file) then a buffer of zeros, equal to the size of 

the attempted read would be written to disk to ensure the out-file is equal in size to the in-file. In this 

case the out-file would be an acquired VAD and the in-file would be the virtual section in memory.  If the 

VAD has a name in its CONTROL_AREA structure, it will be given that name. Otherwise it is named after 

its virtual start and size.  Memoryze is able to acquire a specific process’ address space because it has a 

built-in ability to translate virtual addresses to physical addresses. Every virtual address encountered 

when performing the acquisition is translated to its physical memory address. The physical memory is 

then read into a buffer and written to disk. If the physical memory is marked as paged out, then 

Memoryze will parse the paging file(s) to determine if the page was paged to the paging file(s). If it is in 

the paging file(s) it will be read and then written to disk. The ability to utilize the paging file(s) during 

process acquisition gives a better and more complete picture of the processes’ address space. Process 

acquisition through physical memory has a number of benefits, users can: 

 Bypass any anti-debug routines a process is using to protect itself. By not attaching to a 

process to read the processes’ virtual memory, the protected process has no idea it is  

being “acquired.” 

 Bypass debug register (DR) rootkits. DR rootkits work by setting traps on certain virtual 

addresses they don’t want read, such as the virtual address of a hook. If you can’t read 

the virtual address to check for the hook you don’t know it’s hooked. Memoryze only 

utilizes physical memory, therefore completely bypassing any DR.  

 Captures a processes communication strings potentially pre- and post-encryption. 

 C overcome most packing because the process is acquiring in an unpacked state.  



 

 

 Acquire DLLs injected in memory that never touch disk. 

Metasploit 
Metasploit is an exploit framework originally developed by HD Moore in 20033. Since conception it has 

grown exponentially in user base and developers. Metasploit provides penetration testers and 

researchers an advanced framework for binary exploitation, payloads and post-exploitation payloads4. 

Metasploit consists of developer and community contributed exploits for an array of operating 

systems, commercial and open source software. An exploit can be delivered in many forms, though the 

end goal remains clear: control program execution flow.  

There are many different attack vectors in which to take advantage of bugs, whether, it be in 

form of local buffer overflows, heap corruption, integer overflows, format string vulnerabilities, etc. 

These can take place in the form of local or remote attacks, depending on the vulnerable software and 

its function. Each exploit in Metasploit’s repository comes with a plethora of payload options. Payloads 

are the actual machine code to be executed on the victim machine. A payload can be as simple as adding 

a user to the system or as advanced as injecting a VNC server into the victim processes. Metasploit’s 

value to the community is its continuation of advanced payloads. Metasploit provides a user a simple 

interface to execute powerful exploits with even more advanced payloads, all with little to no user 

knowledge of how the machine is being compromised. The ease of use, documentation and resources 

for a user means that it is likely some attackers will utilize Metasploit to compromise a network. One of 

the most popular payloads used by attackers is Meterpreter.  

The Meterpreter (short for Meta Interpreter) payload will give an attacker a presence in 

memory only, and reduces the attackers need to touch disk to zero. Metasploit will upload a DLL 

(Meterpreter) to the remote host; the uploaded DLL will be stored in the compromised processes’ heap. 

Traditionally an uploaded DLL would be written to disk. This is because LoadLibrary, which loads 

modules, will only load modules from disk or from a network share.  To get around this, Metasploit 

hooks the underlying API calls that LoadLibrary makes. These API calls are: 

 NtMapViewOfSection 

 NtQueryAttributesFile 

 NtOpenFile  

 NtCreateSection  

 NtOpenSection 

 

These hooks allow Meterpreter to be loaded from memory and not from disk. Meterpreter once loaded 

offers the attacker a plethora of options. The community has also added custom scripts to expand 

Meterpreter’s capability. 5j 
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5 http://hick.org/code/skape/papers/remote-library-injection.pdf 
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Meterpreter 
Once Meterpreter’s staged shellcode has been executed and Meterpreter has been loaded, 

communication begins. Meterpreter’s communication and extensibility are what makes it so valuable to 

an advanced attacker. For the purposes of this paper think about the attacker as the client, and the 

victim as the server. Meterpreter’s protocol is well documented6 by HD Moore and Skape. This paper 

touches on the finer points of the protocol that will eventually be leveraged to reconstruct 

communication. Meterpreter uses a protocol called Type Length Value (TLV). Type and length are 4 

bytes and the value is N bytes. One caveat of Meterpreter usage of the traditional TLV protocol is it flips 

the TL making a length type value protocol, however as in the Meterpreter documentation the authors 

will continue to refer to the protocol as TLV.  

The client will send a request to the server specifying a type.  This tells the server how to 

process the request, the length and the value, all of which help the server perform some request. A 

response is formed using the same principles of TLV: the response has a type a length and finally a value. 

The value can be another TLV.  The nesting of TLVs allows for dynamic responses and representation of 

complex data structures.  

The easiest way to understand how a client would make a request to a server is in an example. Let us 

say the client wants to get the process id of the currently exploited process. The client would form a 

request with a type of PACKET_TYPE_REQUEST, the value would be of stdapi_sys_process_getpid. 

This string represents a method exposed by the server. By specifying this method once the server 

processes the request, the server will call this method and respond with the results. This is somewhat 

similar to how RPC works, where a client would specify an opcode (function number) to call on the 

server and get the results marshaled backed. 

Once the server receives a request, it looks up the method in its table. The function table has entries 

that look like this: 

 { "stdapi_sys_process_getpid", 

   { request_sys_process_getpid,                        { 0 }, 0 }, 

   { EMPTY_DISPATCH_HANDLER                                      }, 

 }, 

The information in this array represents the method name and a pointer to the function that should be 

called if such a method is requested. In this case the client wants request_sys_process_getpid to 

be called. The server will execute this function and respond with the results. The resulting response is 

where the interest of a forensic investigator would lie. Let’s take a look at the response of a 

stdapi_sys_process_getpid request.  The result is a complex TLV that looks like: 
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TLV Header 

Length  sizeof(TLV Header) 

Type PACKET_TLV_TYPE_PLAIN_RESPONSE 

Value Length: Sizeof(Value) 
Type: TLV_TYPE_METHOD 0x00010001 
Value: stdapi_sys_process_getpid 
 
Length: 41 
Type: TLV_TYPE_REQUEST_ID 0x00010002 
Value: 3164813846702899128916537536399 
 
Length 12 
Type:TLV_TYPE_PID 0x000208FC 
Value: 0x03EC 
 
Length: 12 
Type: TLV_TYPE_RESULT 
Value: 0x00000000 

Table 1: TLV Packet from getpid request 

As the reader can see, the response value is actually three nested TLVs. This is a basic response; most 
responses are more complicated and get really nasty with grouped results within nested TLVs.  
Leveraging Meterpreter’s protocol and its easy to understand structure, it is possible to reconstruct 
what an attacker did by parsing out the structures left over in memory. 
 
 

Metasploit Forensic Framework 
Metasploit Forensic Framework (MSFF) is a tool set written to aid in the post-exploitation analysis of a 

process.  Before MSFF can be run, the analyst must acquire the process they suspect has been 

compromised. This is done using Memoryze and the batch scripts that accompany it. Acquisition is as 

easy as: 

ProcessDD.bat –pid [process id]  



 

 

Once the process has been acquired, MSFF can be run against the files written to disk. Remember each 

file represents a memory section that was loaded in the processes’ address space. 

How MSFF Works 
MSFF works because memory that has been freed is not actually gone or erased. When memory is freed, 

it is marked as reusable but what was contained on those pages is not erased or zeroed out. This means 

that an analyst can go back and examine memory and find the freed pages.  

Meterpreter packet dispatching internals indicate that it is correctly freeing its payload. Meterpreter will 

send the response TLV by calling packet_transmit_response, which calls packet_transmit. This 

function is what actually sends the response TLV back to the client. Once the response is sent, 

Meterpreter calls destroy_packet.  This function frees the “payload”. In our example it would free 

the whole response. However, freeing the memory does not mean it is gone and unreachable.  

MSFF works by scanning each acquired memory section looking for known “method” strings that 

Meterpreter would have sent as a response while an attacker was in communication. Some common 

methods are: 

- priv_passwd_get_sam_hashes – method use to tell Meterpreter to dump sam hashes 

- stdapi_sys_process_getpid – method used to retrieve the currently exploited processes 

- core_channel_write – method used to write data back to the Metasploit console, also 

utilized when an attacker does “execute –i”  

There are plenty more supported by MSFF and some unsupported. MSFF works scanning each VAD for 

these known strings, if it finds the string it starts to parse out the TLV structure. Since the TLV structure 

contains types that indicate how to parse its data, MSFF leverages this information to pull out the 

responses. Also because Meterpreter responds with the method that called the response, MSFF can 

indicate what the attacker requested that resulted in the response. All this information is pulled from 

memory and can be used to reconstruct what occurred. 

 

Figure 4: Acquired VAD from exploited processes 

 

The final walk-through will reference Figure 4 above. Figure 4 is part of a VAD that was acquired after 

Meterpreter exploited a process. Recall that MSFF scans for stdapi_sys_process_get_pid, which is 

the method called. In this case the method is found. Continuing to parse this specific memory region 

results in retrieving the values seen in Table 1: TLV Packet from getpid request.  



 

 

Caveats and Gotchas 
A significant caveat and gotcha is that memory is volatile.  In a heavily active system, memory will 

eventually be reused.  Meterpreter does free its packets, but the windows memory manager functions 

in such a way that a free memory page is not immediately reused. This means that freed memory can be 

lying around a system for quite some time. There are many variables that factor into how long the 

memory stays in the system, but it has been observed hours after freeing.  

There are some issues when acquiring memory from certain exploited process situations. Metasploit 

provides three different types of exit routines: SEH, process, and thread. If the attacker were to use the 

exit functions of SEH or process, with a browser exploit that was vulnerable to heap corruption, the 

entire process memory would be removed when the attacker disconnected the Meterpreter socket 

connection. This would prevent process memory acquisition of the browser because it has been closed. 

In testing the MS09-002 IE 7 uninitialized memory corruption vulnerability, if the attacker used an 

EXITFUNC variable set to the thread, the Internet Explorer process would not terminate after a 

Meterpreter socket close, it would just exit the thread used during the exploit. However, this would 

render the functionality of Internet Explorer unusable to any end user on the exploited host.  Not all 

exploits kill the currently exploited process. As seen in MS08-067, the memory acquisition of the 

exploited svchost.exe process had Meterpreter data present hours after the Meterpreter client 

disconnected from the server. 

Conclusion 
The techniques and research discussed here are just a starting point for memory forensics. Specifically 

how memory forensics can better start utilizing the discovery of artifact memory.  The fact that the 

windows memory manager functions in such a way that freed memory pages are not immediately 

reclaimed is useful to a forensic analyst. This behavior also resembles traditional file system forensics. 

When a file is deleted it is unlinked from its table but not initially overwritten, allowing the analyst to 

recover deleted files days after deletion. This is a first step in demonstrating that memory forensics has 

a true place in a forensic analysts’ toolkit. Further research needs to be done to better know the limits of 

freed memory.  

 

 


