
Netscreen of the Dead
Developing a Trojaned Firmware for Juniper Netscreen

Appliances

Cast

Graeme Neilson

Security Consultant
Aura Software Security

graeme@aurasoftwaresecurity.co.nz

Trailer
• What if a core network security device was compromised?

– an attacker has exploited a vulnerability
– malicious appliance supplier
– malicious third party support
– malicious employee

• This is a POST EXPLOIT, SERIAL CONSOLE or MITM attack.

• Goal is hidden root control of the appliance.
– Discuss reversing and modifying the firmware code
– Demo a zombied Netscreen

Opening Scene

Netscreens are manufactured by Juniper Inc
• All in one Firewall, VPN, Router security appliance.
• SME to Datacentre scale (NS5XP – NS5000).
• Common Criteria and FIPS certified.
• Run a closed source, real time OS called ScreenOS.
• ScreenOS is supplied as a binary firmware 'blob'.

NS5XT Model:
• PowerPC 405 GP RISC processor 64MB Flash
• Serial console, Telnet, SSH, HTTP/HTTPS admin interfaces

Attack
Attacking firmware - two vectors of attack:

• Live evisceration: debugging with remote GDB debugger over
serial line

• Feeding on the remains: dead listing / static binary analysis
using disassembler and hex editor

PowerPC architecture
• fixed instruction size of 4 bytes
• flat memory model
• 32 GP registers, no explicit stack, link register
• IBM PPC405 Embedded Processor Core User Manual

 Live Evisceration
• Embedded Linux Development Kit has GDB compiled for

PowerPC 405 processor

• No source so create custom .gdbinit for PPC registers and
'stack' to provide 'SoftICE' like context on breaks.

• Network connection to the Netscreen and run:
 set gdb enable

• Connect remote gdb via serial console

• Worked:
– Memory dumps
– Query memory

addresses

• Didn't work:
– Breakpoints
– Single stepping

Feeding on the
Remains

/--------------------------\
HEADER

STUB

UNKNOWN

COMPRESSED BINARY
UPDATE BLOB [BUB]
\--------------------------/

● Compared many different versions of ScreenOS firmware.
● Revealed a 4 section structure

● Header:
 sig sysinfo

00000000: EE16BA81 00110A12 00000020 02860000
00000010: 004E6016 15100050 29808000 C72C15F7

 size checksum

size = compressed image size – 79 bytes
sysinfo = 00, platform, cpu, version

● Stub contains strings relating to LZMA compression
algorithm.

● Compressed Binary Update Blob (Bub) also has a header.

Bub
• The header of the Bub appears to be a customised LZMA

header.
• Comparative analysis again of different Bub headers.
• The standard LZMA header has 3 fields:

options, dictionary_size, uncompressed_size

• 'Bub' header has 3 fields:
signature bytes, options, dictionary_size

00012BF0: 00000000 00000000 00000000 00000000
 00012C00: 01440598 5D002000 00007705 92C63DFC
00012C10: 07046E0E 343AA6F1 899098E8 8EDAFDA8

Bub Can Change

. Uncompress Bub
● Cut out the Bub from firmware file.
● Insert an uncompressed_size field of value -1 == unknown size
● Modify the dictionary_size from 0x00200000 to 0x00008000
● Then we can decompress the Bub using freely available LZMA utilities

Compress Bub
● Compress the binary with standard LZMA utilities.
● Modify the dictionary_size field from 0x00002000 to 0x00200000.
● Delete the uncompressed_size field of 8 bytes.
● Insert new Bub into firmware file replacing original compressed blob.

● Cut out the compressed Bub section of the image.
● Uncompress the Bub.
● Modify the resulting binary to add or change code and /

or data.
● Re-compress the modified binary into a new Bub.
● Prepend the original firmware header to the modified Bub.

● Upload the modified firmware over serial = SUCCESS.
● Upload the modified firmware over network = FAILED.

Night of the Living
Netscreen

Autopsy
• Uncompressed Bub is ~20Mb ScreenOS binary with a header.
• Want to load into IDA but need a loading address so that

references within the program point to the correct locations.
• From header: program_entry = address – offset

 signature offset address
00000000: EE16BA81 00010110 00000020 00060000
00000010: 01440578 00000000 00000000 F8A2FA6F

• Confirm with live debugging
• Correctly loaded binary but unknown sections...

Autopsy ii
/--------------------------\
HEADER
SCREENOS CODE

SCREENOS DATA

BOOT LOADER CODE

BOOT LOADER DATA

0xFFs

other stuff!
\--------------------------/

● Use IDA scripts to find function prologs
(0x9421F*) and mark as code.

● Mark strings in data section for cross
references.

● Use error strings to identify functions and
rename.

● Search for str_cmp, file_read, file_write,
login etc.

● Build up a picture of the binary structure
and functions.

● Need to cut out boot loader and
disassemble separately with loading
address 0x0.

• ScreenOS Trojaned Firmware required functionality:

– Install/Upgrade: Load trojan firmware via serial, tftp and web

– Maintain Access: Include a back door login mechanism

– Payload: Execute arbitrary code injected into the image

• All modification hand crafted asm and hex editing the binary

Netscreen of the
Dead

First Bite
Install / Upgrade
• Checksum and size in header are checked when images

loaded over the network via TFTP or Web

00000000: EE16BA81 00110A12 00000020 02860000
00000010: 004E6016 15100050 29808000 C72C15F7 checksum

• Checksum is calculated, could reverse the algorithm... but on

loading any bad checksum value is printed to the console.

• If we modify the firmware to print out the correct checksum
value we would have a 'checksum calculator' firmware which
we load modified firmware against.

• With correct checksum can now load modified firmware via tftp
and web interface.

008B60E4 lwz %r4, 0x1C(%r31) # %r4 contains header checksum

008B60E8 cmpw %r3, %r4 # %r3 contains calculated checksum

008B60EC beq loc_8B6110 # branch away if checksums matched

#008B60EC mr %r4,%r3 # print out calculated checksum

008B60F0 lis %r3, aCksumXSizeD@h # " cksum :%x size :%d\n"

008B60F4 addi %r3, %r3, aCksumXSizeD@l

008B60F8 lwz %r5, 0x10(%r31)

008B60FC bl Print_to_Console # %r4 is printed to console

008B6100 lis %r3, aIncorrectFirmw@h # "Incorrect firmware data,

008B6104 addi %r3, %r3, aIncorrectFirmw@l

008B6108 bl Print_to_Console

First Bite ii

One Bit{e}
Maintain Access

• Console, Telnet, Web and SSH all compare password hashes
and use the same function.

• SSH falls back to password if client does not supply a key unless
password authentication has been disabled.

• One bit patch provides login with any password if a valid
username is supplied.

003F7F04 mr %r4, %r27
003F7F08 mr %r5, %r30
003F7F0C bl COMPARE_HASHES # does a string compare

003F7F10 cmpwi %r3, 0 # equal if match
#0x397F30 cmpwi %r3, 1 # equal if they don't match

003F7F14 bne loc_3F7F24 # login fails if not equal (branch)

003F7F18 li %r0, 2
003F7F1C stw %r0, 0(%r29)
003F7F20 b loc_3F7F28

One Bit{e} ii

Infection

Injecting code into the binary
• ScreenOS code section contains a block of nulls
• Proof of concept code injected into nulls

Proof of Concept Code :: motd
• Patch a branch in ScreenOS to call our code
• Call ScreenOS functions from our code
• Create new code and functionality
• Branch back to callee

Infection ii
stwu %sp, -0x20(%sp)
mflr %r0
lis %r3, string_msb_address
addi %r3, %r3, string_lsb_address
bl Print_To_Console
mtlr %r0
addi %sp, 0x20
bl callee_function

Zombie Loader
• All Juniper ScreenOS images signed.

• Administrator can load a Juniper certificate to validate
firmware

• Certificate NOT installed by default.

• Administrator can delete this certificate.

• Check is done in the BOOT LOADER which we can modify to
authenticate all images or only non-Juniper images

• Delete certificate -> install bogus firmware -> re-install
certificate

0000D68C bl sub_98B8
0000D690 cmpwi %r3, 0 # %r3 has result of image validation

0000D694 beq loc_D6B0 # branch if passed
#0000D694 b loc_D6B0 # always branch, all images authenticated
#0000D694 bne loc_D6B0 # ...or only bogus images authenticated

0000D698 lis %r3, aBogusImageNotA@h # Bogus image not authenticated"
0000D69C addi %r3, %r3, aBogusImageNotA@l
0000D6A0 crclr 4*cr1+eq
0000D6A4 bl sub_C8D0
0000D6A8 li %r31, -1
0000D6AC b loc_D6E0
0000D6B0 lis %r3, aImageAuthentic@h # Image authenticated!

Zombie Loader ii

Demo: ScreamOS

28 Hacks Later

• Hidden shadow configuration file
– allowing all traffic from one IP through Netscreen
– network traffic tap

• Persistent infection via boot loader on ScreenOS upgrade.
Patch boot loader and login mechanism.

• Javascript code injection in web console...

Victim
04-07-08: Sent white-paper and firmware to Juniper recommending:

• Install firmware authentication certificate at factory
• Prevent certificate deletion
• Encrypt firmware rather than using LZMA compression

Juniper:
13-09-08: “This is expected”
28-10-08: “I saw you are presenting at RUXCON on Nov 30th. Cool.”
24-11-08: Publish JTAC Bulletin PSN-2008-11-111

“ScreenOS Firmware Image Authenticity Notification”
Risk Level : Medium

Victim ii

“All Juniper ScreenOS Firewall Platforms are susceptible to

circumstances in which a maliciously modified ScreenOS image
can be installed.”

Juniper recommend:
– Install the imagekey.cer certificate

– Utilize the “Manager-IP” feature to control which hosts (via their
IP addresses) can manage your firewall.

– Change the TCP port by which the device listens for
administration traffic (HTTPS, SSH).

Remove the Brain
• Install known firmware before deployment

(Who is your Juniper vendor?)

• Admin via SSH key authentication only
(disable Telnet, HTTP and HTTPS)

• Out of band management network

• Limit number of administrators.

• Strong passwords.

Roll the Credits

Andy and Mark @
Aura Software Security

George Romero

Simon Pegg

Script by ScreenOS Dev

BOB: “Code should never reach here by design”

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

