
Practical Windows XP/2003 Heap Exploitation

Blackhat USA 2009

Practical Windows XP/2003 Heap Exploitation 2

John McDonald (jrmcdona@us.ibm.com)

Chris Valasek (cvalasek@us.ibm.com)

IBM ISS X-Force Research

Practical Windows XP/2003 Heap Exploitation 3

Table of Contents

Practical Windows XP/2003 Heap Exploitation... 1

Table of Contents.. 3

Introduction... 5

Overview... 6

Prior Work .. 6

Fundamentals .. 8

Architecture... 9

Front-End Manager... 9

Back-End Manager ... 9

Virtual Memory .. 10

Reservation and Commitment... 10

Heap Base ... 11

Memory Management... 12

Heap Segments.. 13

Segment Base.. 13

UCR Tracking... 14

Front End Manager ... 15

Look-Aside List (LAL)... 15

Low Fragmentation Heap (LFH) .. 16

Back End Manager.. 17

Freelists ... 17

Freelist Bitmap.. 17

Heap Cache ... 18

Virtual Alloc List .. 19

Core Algorithms.. 20

Allocation Search.. 20

Unlinking .. 22

Linking.. 23

Coalescing... 24

Security Mechanisms .. 27

Heap Cookie.. 27

Safe Unlinking .. 27

Process Termination.. 28

Tactics ... 30

Lookaside List Link Overwrite... 30

Bitmap Flipping Attack... 32

FreeList[0] Techniques ... 34

Searching... 34

Linking.. 35

Tactics - New Techniques... 37

Heap Cache ... 37

Overview... 37

Heap Cache Invocation ... 37

De-committing Policy... 38

Practical Windows XP/2003 Heap Exploitation 4

De-synchronization ... 39

Basic De-synchronization Attack ... 40

De-synchronization ... 44

Insert Attack.. 46

De-synchronization Size Targeting... 50

Malicious Cache Entry Attack .. 52

Bitmap XOR Attack.. 59

Avoiding Crashes.. 61

Lookaside List Exception Handler.. 63

Strategy ... 66

Application or Heap-Meta?... 66

Multiple Dimensions... 67

Determinism.. 69

Heap Spraying... 69

Heap Feng Shui... 70

Memory Leaks .. 72

General Process... 73

1. State of Nature .. 73

2. Action Correlation .. 73

3. Heap Normalization .. 75

4. Fixing in Contiguous Memory.. 77

5. Fixing in Logical Lists .. 78

6. Corruption ... 78

7. Exploitation... 79

Conclusion .. 80

Bibliography ... 82

Practical Windows XP/2003 Heap Exploitation 5

Introduction

The era of straightforward heap exploitation is now well behind us. Heap exploitation

has steadily increased in difficulty since its genesis in Solar Designer's ground-

breaking Bugtraq post in July of 2000. This trend towards increasingly complicated

exploitation is primarily a result of the widespread implementation of technical heap

counter-measures in modern systems software. The effort required to write reliable

heap exploits has steadily increased due to other factors as well: applications have

become increasingly multi-threaded to take advantage of trends in hardware, and —

in certain code — memory corruption vulnerabilities have become more nuanced and

unique as a result of common, straightforward vulnerability patterns slowly but surely

being audited out of existence.

The end result of all these defensive machinations is that now, more than ever, you

need a fluid, application-aware approach to heap exploitation. The building blocks of

such an approach are an extensive working knowledge of heap internals, an

understanding of the contributing factors in heap determinism, various tactics for

creating predictable patterns in heap memory, and, naturally, a collection of

techniques for exploiting myriad different specific types of memory corruption in

heap memory.

This paper is chiefly concerned with developing this foundational knowledge,

focusing on the practical challenges of heap exploitation on Windows™ XP SP3 and

Server 2003. Our first goal is to bring the reader up to speed on Windows Heap

Manager internals and the current best of breed exploitation techniques. Once this

foundation is established, we introduce new techniques and original research, which,

at the end of the day, can turn seemingly bleak memory corruption situations into

exploitable conditions. We close out the discussion by looking at Windows heap

exploitation from a more general perspective, and discuss leveraging existing tools

and techniques as part of one’s approach.

Practical Windows XP/2003 Heap Exploitation 6

Overview

This paper is divided into three sections. The first section is Fundamentals, which

covers the Windows Heap Manager in detail in order to provide foundational

knowledge required to perform subtle heap exploitation.

The second section is Tactics, which covers multiple specific techniques for

leveraging heap meta-data corruption. We start by covering the currently published

best of breed techniques, and then move on to demonstrate a few new tricks and

tactics.

The paper then moves on to Strategy. Here, we consider heap exploitation from a

more general perspective, and look at tools and processes that prove useful when

attacking complicated real-world software.

This inquiry is limited in scope to Windows XP SP3 and Windows Server 2003. We

make heavy use of existing published tools and research, which we reference

throughout the paper.

Prior Work

There are several excellent resources covering the security of the Windows Heap

Manager. The following list, while not comprehensive, should provide the reader with

sufficient background to follow this discussion.

• An excellent starting point are the three presentations by Matt Conover and

Oded Horovitz. They each cover slightly different ground, but are all very

informative, and provide insight to many undocumented aspects of the heap.

(Conover and Horovitz 2004)

• There is a free chapter from the excellent book “Advanced Windows

Debugging,” which details how to use windbg to explore heap internals

(Hewart and Pravat 2008).

• Alexander Sotirov’s Heap Fung Shei library and paper are very informative,

as they are chiefly concerned with heap determinism. (Sotirov 2007)

• Immunity also has an excellent paper with a similar focus on determinism and

practical exploitation (Waisman 2007) (Waisman 2009). Their python ID heap

code is very informative, as it encapsulates a lot of hard-won knowledge about

the system’s internals. (Immunity 2009)

• Brett Moore’s papers look specifically at exploitation in the face of technical

countermeasures. They represent the current most effective publicly

documented attacks against the XPSP3 Heap Manager. Our specific technical

Practical Windows XP/2003 Heap Exploitation 7

attacks complement and build on Moore’s attacks in both concept and

execution. (Moore 2005) (Moore 2008)

• Finally, Ben Hawkes has done a considerable amount of research on attacking

the Vista Heap Manager. (Hawkes 2008)

Practical Windows XP/2003 Heap Exploitation 8

Fundamentals

Our first goal in this paper is to bring the reader up to speed on Windows Heap

Manager internals. Any serious student of heap exploitation will need to spend time

studying ntdll.dll up close, as in practice, questions will invariably arise about the

heap’s logical corner cases. Hopefully, we can save you some time and effort with

our coverage of the internals, while giving you enough of a foundation by which to

comprehend this paper.

The Windows Heap Manager is a sub-system used throughout Windows to provision

dynamically allocated memory. It resides on top of the virtual memory interfaces

provided by the kernel, which are typically accessed via VirtualAlloc() and

VirtualFree(). Basically, the Heap Manager is responsible for providing a high-

performance software layer such that software can request and release memory using

the familiar malloc()/free()/new/delete idioms. RtlAllocateHeap() / RtlFreeHeap()

and NtAllocateVirtualMemory() / NtFreeVirtualMemory() are the actual functions

that form the interface around the Heap Manager.

Note: There are many pieces of software that implement wrappers on top of the

Windows Heap Manager, and one should always pay careful attention to these.

Specifically, the (msvc++) CRT heaps, pool / cache allocators in browsers, and

custom allocators such as horde are of interest. We don’t have enough time to

examine these in this paper, but one should always study intermediate allocation

wrappers for two reasons:

1. It is likely there is exploitable or malleable meta-data if the allocator isn’t as

hardened as the underlying system libraries.

2. Understanding allocator wrapper semantics are a pre-requisite to understanding the

allocation behavior and patterns of a program.

Practical Windows XP/2003 Heap Exploitation 9

Architecture

Each process typically has multiple heaps, and software can create new heaps as

required. There is a default heap for the process, known as the process heap, and a

pointer to this heap is stored in the PEB (Process Environment Block). All of the

heaps in a process are kept in a linked list hanging off of the PEB.

In Windows XP SP3 and Win2K3, the Heap Manager is divided into two

components, which are architecturally separate. The Front-End Heap Manager is a

high-performance first-line subsystem, and the Back-End Heap Manager is a robust,

general-purpose heap implementation.

Front-End Manager

The front-end manager has the first crack at servicing memory allocation and de-

allocation requests. There are three choices for a front-end heap manager in

XPSP3/2K3: none, LAL (Look-aside Lists), or LFH (Low-Fragmentation Heap).

The LAL front-end is responsible for processing allocation requests for byte amounts

below 1024. It uses a series of singly linked-list data structures to keep track of

various free chunks between sizes 0 – 1024. The LFH front-end handles requests

between sizes 0 – 16k, with everything >= 16k being handled by the back-end.

The front-end managers exist to optimize performance of the heap. LAL and LFH are

implemented using low-contention, lock-free / atomic-swap based operations, which

allow for good performance on highly concurrent systems. LAL operates on specific

block sizes, and doesn’t perform coalescing or block-splitting in order to keep

operations as quick as possible. LFH is considerably more complicated, as it

addresses heap fragmentation on top of concurrency performance. LFH does this with

the goal of improving memory and cache utilization. We discuss the front-ends in

further detail later in the paper.

Back-End Manager

The back-end manager is used when the front-end heap manager isn’t present, or isn’t

able to service a request. This can happen if the front-end doesn’t have an appropriate

chunk to service a given request, or if the system determines via heuristics that the

performance advantages of the front-end are outweighed. The back-end manager is

also responsible for allocations of larger chunks of memory (>1024 bytes when LAL

is engaged, >16k when LFH is engaged). The back-end provides a general purpose,

yet well-performing implementation of a heap. It is primarily concerned with keeping

track of free memory chunks, and it contains optimizations and run-time heuristics for

performance (such as the heap cache). We will discuss the inner workings of the

back-end manager in detail in this paper.

Practical Windows XP/2003 Heap Exploitation 10

Virtual Memory

The Heap Manager is built on top of virtual memory, so we’ll briefly consider the

Windows virtual memory semantics.

Reservation and Commitment

Windows distinguishes between reserved memory and committed memory (Microsoft

™ 2009).

Logically, a process first reserves a range of memory, which causes the kernel to

mark off that range of virtual memory addresses as unavailable. Reserving memory

doesn’t actually map anything to the virtual addresses, so writes, reads, and executes

of reserved memory will still cause an access violation. The kernel does not attempt

to guarantee or pre-arrange backing memory for reserved memory either. Reserving is

essentially just a mechanism for protecting a range of addresses from being allocated

out from under the user.

After reserving a portion of the address space, the process is free to commit and de-

commit memory within it. Committing memory is the act of actually mapping and

backing the virtual memory. Processes can freely commit and de-commit memory

within a chunk of reserved memory without ever un-reserving the memory (called

releasing the memory).

In practice, many callers reserve and commit memory at the same time, and de-

commit and release memory at the same time. Reserving, committing, de-committing,

and releasing of memory are all performed by the NtAllocateVirtualMemory() and

NtFreeVirtualMemory() functions.

Practical Windows XP/2003 Heap Exploitation 11

Heap Base

Every heap that is created contains a vital data structure which we call the heap base.

The heap base contains many critical data structures that are used by the memory

manager to track of free and busy chunks. The following shows the contents of the

default process heap in a process created under Windows XP Service Pack 3:

Listing 1 - _HEAP via windbg

0:001> dt _HEAP 150000
ntdll!_HEAP
 +0x000 Entry : _HEAP_ENTRY
 +0x008 Signature : 0xeeffeeff
 +0x00c Flags : 2
 +0x010 ForceFlags : 0
 +0x014 VirtualMemoryThreshold : 0xfe00
 +0x018 SegmentReserve : 0x100000
 +0x01c SegmentCommit : 0x2000
 +0x020 DeCommitFreeBlockThreshold : 0x200
 +0x024 DeCommitTotalFreeThreshold : 0x2000
 +0x028 TotalFreeSize : 0x68
 +0x02c MaximumAllocationSize : 0x7ffdefff
 +0x030 ProcessHeapsListIndex : 1
 +0x032 HeaderValidateLength : 0x608
 +0x034 HeaderValidateCopy : (null)
 +0x038 NextAvailableTagIndex : 0
 +0x03a MaximumTagIndex : 0
 +0x03c TagEntries : (null)
 +0x040 UCRSegments : (null)
 +0x044 UnusedUnCommittedRanges : 0x00150598 _HEAP_UNCOMMMTTED_RANGE
 +0x048 AlignRound : 0xf
 +0x04c AlignMask : 0xfffffff8
 +0x050 VirtualAllocdBlocks : _LIST_ENTRY [0x150050 - 0x150050]
 +0x058 Segments : [64] 0x00150640 _HEAP_SEGMENT
 +0x158 u : __unnamed
 +0x168 u2 : __unnamed
 +0x16a AllocatorBackTraceIndex : 0
 +0x16c NonDedicatedListLength : 0
 +0x170 LargeBlocksIndex : (null)
 +0x174 PseudoTagEntries : (null)
 +0x178 FreeLists : [128] _LIST_ENTRY [0x150178 - 0x150178]
 +0x578 LockVariable : 0x00150608 _HEAP_LOCK
 +0x57c CommitRoutine : (null)
 +0x580 FrontEndHeap : 0x00150688
 +0x584 FrontHeapLockCount : 0
 +0x586 FrontEndHeapType : 0x1 ''
 +0x587 LastSegmentIndex : 0 ''

Many of the data structures listed above can be leveraged by a clever attacker for the

purposes of acquiring code execution. We’ll cover several of the fields in detail as

part of the Tactics section of the paper.

Note: It’s worth pointing out that the heap base starts with a valid _HEAP_ENTRY

structure. Ben Hawkes was able to leverage this in a clever multi-step attack against

Vista, and this is certainly merits further exploration on XPSP3/2K3. (Hawkes 2008)

Practical Windows XP/2003 Heap Exploitation 12

Memory Management

The Heap Manager organizes its virtual memory using heap segments, and uses UCR

entries and segments to track uncommitted memory.

Figure 1 - Heap Segments and UCRs

Practical Windows XP/2003 Heap Exploitation 13

Heap Segments

The back-end Heap Manager organizes its memory by segments, where each segment

is a block of contiguous virtual memory that is managed by the system. (This is an

internal Heap Manager data structure and not related to x86 segmentation.) When

possible, the system will use committed memory to service requests, but if there isn’t

sufficient memory available, the Heap Manager will attempt to commit reserved

memory within the heap’s existing segments in order to fulfill the request. This could

involve committing reserved memory at the end of the segment or committing

reserved memory in holes in the middle of the segment. These holes would be created

by previous de-committing of memory.

By default, the system reserves a minimum of 0x10000 bytes of memory when

creating a new heap segment, and commits at least 0x1000 bytes of memory at a time.

The system creates new heap segments as necessary and adds them to an array kept at

the base of the heap. The first piece of data in a heap segment is typically the segment

header, though the segment header for the base of the heap’s segment comes after the

heap header. Each time the heap creates a new segment, it doubles its reserve size,

causing it to reserve larger and larger sections of memory.

Segment Base

Each heap contains an array of up to 64 pointers to segments at +0x58 from the base

of the heap. This array of 64 _HEAP_SEGMENT structure pointers contains

information about all of the segments associated with a given heap. Each segment

represents a contiguous block of memory that is managed by the system. An empty

segment structure is denoted by NULL (0x00000000) in the array. Each

_HEAP_SEGMENT structure contains the following information:

Listing 2 - _HEAP_SEGMENT via windbg

0:001> dt _HEAP_SEGMENT 150640
ntdll!_HEAP_SEGMENT
 +0x000 Entry : _HEAP_ENTRY
 +0x008 Signature : 0xffeeffee
 +0x00c Flags : 0
 +0x010 Heap : 0x00150000 _HEAP
 +0x014 LargestUnCommittedRange : 0xfc000
 +0x018 BaseAddress : 0x00150000
 +0x01c NumberOfPages : 0x100
 +0x020 FirstEntry : 0x00150680 _HEAP_ENTRY
 +0x024 LastValidEntry : 0x00250000 _HEAP_ENTRY
 +0x028 NumberOfUnCommittedPages : 0xfc
 +0x02c NumberOfUnCommittedRanges : 1
 +0x030 UnCommittedRanges : 0x00150588 _HEAP_UNCOMMMTTED_RANGE
 +0x034 AllocatorBackTraceIndex : 0
 +0x036 Reserved : 0
 +0x038 LastEntryInSegment : 0x00153cc0 _HEAP_ENTRY

As you can see amongst all the information include the heap associated with this

segment, the FirstEntry in the segment, and the LastValidEntry in the segment.

You can use this information to walk the heap to get all the metadata for each heap

Practical Windows XP/2003 Heap Exploitation 14

chunk, which is exactly what is done by the heap library provided with Immunity

Debugger (Immunity 2009).

UCR Tracking

Each heap has a portion of memory set aside to track uncommitted ranges of memory.

These are used by the segments to track all of the holes in their reserved address

ranges. The segments track this with small data structures called UCR (Un-committed

Range) entries. The heap keeps a global list of free UCR entry structures that the heap

segments can request, and it dynamically grows this list to service the needs of the

heap segments. At the base of the heap, UnusedUnCommittedRanges is a linked list

of the empty UCR structures that can be used by the heap segments. UCRSegments

is a linked list of the special UCR segments used to hold the UCR structures.

When a segment uses a UCR, it removes it from the heap’s

UnusedUnCommittedRanges linked list and puts it on a linked list in the segment

header called UnCommittedRanges. The special UCR segments are allocated

dynamically. The system starts off by reserving 0x10000 bytes for each UCR

segment, and commits 0x1000 bytes (one page) at a time as additional UCR tracking

entries are needed. If the UCR segment is filled and all 0x10000 bytes are used, the

heap manager will create another UCR segment and add it to the UCRSegments list.

Note: Assuming that you’re sufficiently mischievous, the above paragraph probably

made you wonder about getting a UCR segment allocated contiguously with a virtual

allocation that you can write past the end of. Check out Ben Hawkes’ presentations

for some more thoughts on this attack (Hawkes 2008).

Practical Windows XP/2003 Heap Exploitation 15

Front End Manager

Look-Aside List (LAL)

The look-aside list array can typically be found in its own heap chunk at +0x688 from

the base of the heap, which is pointed to by FrontEndHeap in the heap base. The

LAL data structure is an array of 128 entries, each of size 0x30 bytes. Each entry in

the array contains various performance-related variables, including the current length,

a maximum length, and, most importantly, a pointer to the singly linked list of heap

chunks that correspond to the bucket index. If there are no free chunks for a given

bucket, the pointer is NULL. Similarly, the end of the singly linked list is denoted by

a forward link pointer of NULL.

When an allocation occurs, a node is popped off of the head of the list. This can be

performed with an atomic compare and swap operation in a concurrency-informed

obstruction-free manner. The same goes for de-allocation; when a chunk is freed, it is

pushed onto the head of the singly linked list, and the pointers are updated.

Note: When a block is placed into the LAL, the flags for the chunk are marked as

BUSY, which prevents the back-end Heap Manager from splitting or coalescing the

block. This may be counter-intuitive, as the block is technically free, but it is under

the purview of the LAL front-end.

If a user’s memory request is for less than (1024-8) bytes, it may be fulfilled by the

LAL front-end. The diagram below shows an LAL front-end that has one entry for a

size of 1016. This size corresponds to bucket number 127, which would service a user

request for 1008 bytes. The LAL has no free chunks for the bucket for size 544 (entry

number 68). Note that the buckets for size 0 and size 1 aren’t used because every

chunk requires at least 8 bytes for the chunk header.

Practical Windows XP/2003 Heap Exploitation 16

Figure 2 – Look-aside List Front End Example

Low Fragmentation Heap (LFH)

The LFH is a complicated heap front-end that addresses heap fragmentation as well

as concurrent performance. This code is undocumented, though it has a more central

role in later versions of Windows. Even with the LFH active, requests involving sizes

> 16384 should automatically go to the heap back-end. The best source for further

information is the Immunity Debugger source code. (Immunity 2009). Matt and Oded

also cover it in further detail in their presentation. (Conover and Horovitz 2004).

Practical Windows XP/2003 Heap Exploitation 17

Back End Manager

Freelists

The Back-end Heap Manager maintains several doubly linked lists to track free

blocks in the heap. These are collectively referred to as the free lists, and they reside

in an array at the base of the heap, starting at offset +0x178. There are separate lists

for each possible block size below 1024 bytes, giving a total of 128 free lists (heap

blocks are sized in multiples of 8.) Each doubly-linked free list has a sentinel head

node located in the array at the base of the heap. Each head node contains two

pointers: a forward link (FLink), and a back link (BLink).

FreeList[0] is special, which we’ll discuss shortly. FreeList[1] is unused, and

FreeList[2] through FreeList[127] are called the dedicated free lists. For these

dedicated lists, all of the free blocks in the list are the same size, which corresponds to

the array index * 8.

All blocks higher than or equal to size 1024, however, are kept in a single free list at

FreeList[0]. (This slot is available for use because there aren’t any free blocks of size

0.) The free blocks in this list are sorted from the smallest block to the largest block.

So, FreeList[0].Flink points to the smallest free block (of size>=1024), and

FreeList[0].Blink points to the largest free block (of size>=1024.)

Figure 3 - Free Lists

Freelist Bitmap

The free lists also have a corresponding bitmap, called the FreeListsInUseBitmap,

which is used for quickly scanning through the FreeList array. Each bit in the bitmap

corresponds to one free list, and the bit is set if there are any free blocks in the

corresponding list. The bitmap is located at +0x158 from the base of the heap, and it

provides an optimized path for the system to service an incoming allocation request

Practical Windows XP/2003 Heap Exploitation 18

from the dedicated free lists. There are 128 bits in the bitmap (4 DWORDS),

corresponding to the 128 free lists that handle allocations of size <1016.

For a given allocation request for a size < 1016, the front-end is first given a chance

to service it. Assuming the LAL or LFH doesn’t exist or doesn’t service the request,

the system then looks directly at the FreeList[n] linked list for the given size. Note

that in this case, the bitmap is not consulted. If the FreeList[n] entry corresponding to

the size requested by the user is empty, then the system proceeds to use the bitmap.

From this point, it searches through the bitmap to find a set bit, which will cause it to

find the next largest free block in the free lists. If the system runs out of bitmap, it

then tries to pull a block from FreeList[0].

For example, if a user requests 32 bytes from the heap and there isn’t a chunk in

LAL[5], and FreeList[5] is empty, the bitmap is used to locate a chunk in the

dedicated free lists that is greater than 40 bytes (starting the bitmap search at

FreeList[6]).

Heap Cache

As we’ve discussed, all free blocks with a size greater than or equal to 1024 are

stored in FreeList[0]. This is a doubly linked list, sorted by size from smallest to

largest, with no additional enhancements for speed. Consequently, if FreeList[0]

grows to hold a large number of blocks, the heap manager will need to traverse

multiple list nodes every time it searches the list.

The heap cache is a performance enhancement that attempts to minimize the cost of

frequent traversals of FreeList[0]. It does this by creating an external index for the

blocks in FreeList[0]. It’s important to note that the Heap Manager doesn’t actually

move any free blocks into the cache. The free blocks are still all kept in FreeList[0],

but the cache contains several pointers into the nodes within FreeList[0],which are

used as short-cuts to speed up traversal.

The cache is a simple array of buckets, where each bucket is intptr_t bytes in size,

and contains either a NULL pointer or a pointer to a block in FreeList[0]. By default,

the array contains 896 buckets, which accounts for each possible block size between

1024 and 8192. This is a configurable size, which we’ll refer to here as the maximum

cache index.

Each bucket contains a single pointer to the first block in FreeList[0] with the size

represented by that bucket. If there is no entry in FreeList[0] with that exact size, the

bucket contains NULL. The last bucket in the heap cache is unique: instead of

representing the specific size 8192, it represents all sizes greater than or equal to the

maximum cache index. So, it will point to the first block in FreeList[0] that is larger

than the maximum size. (e.g. >=8192 bytes)

Most buckets are empty, so there is an additional bitmap that is used for fast

searching of the array. This bitmap works just like the bitmap used to accelerate the

free list.

Practical Windows XP/2003 Heap Exploitation 19

Figure 4 – Heap Cache and FreeList[0]

Virtual Alloc List

Each heap has a Virtual Allocation threshold VirtualMemoryThreshold. By default,

this is 0xfe00, corresponding to memory chunks of size 508k or higher. Busy

virtually allocated blocks are kept in a doubly-linked list at the base of the heap.

When the blocks are returned back to the system, they are directly released to the

kernel by the back-end Heap Manager. (VirtualAllocdBlocks at +0x50 and +0x54.)

Practical Windows XP/2003 Heap Exploitation 20

Core Algorithms

Allocation Search

The free lists are searched for two reasons: to find a free block to service an allocation

request, and to find the correct place to link in a free block. We cover linking related

searches below.

If an allocation request is below 0x80 blocks (1024 bytes), and the front-end doesn’t

handle the request then, the free lists are searched. If the allocation search finds a free

block to service a request, the block is unlinked from the free lists and then processed.

This processing can involve splitting the block, coalescing the remainder block with

its neighbors (this can involve unlinking of consumed neighbor blocks), and linking

the remainder block to the free list.

The basic goal for the search algorithm is this: given a particular block size, find the

first appropriate free block in the free lists with that size. If there aren’t any with that

exact size, then find the next largest available block. Let’s look at some pseudo-code:

Listing 3 - Searching Pseudo-code Part 1

if (size<0x80)
{
 // we have an entry in the lookaside list
 if (chunk = RtlpAllocateFromHeapLookaside(heap, size))
 return chunk;
}

Listing 4 - Searching Pseudo-code Part 2

if (size<0x80)
{
 // we have an entry in the free list
 if (FreeLists[size].flink != &FreeLists[size])
 return FreeLists[size].blink;

 // ok, use bitmap to find next largest entry
 if (offset=scan_FreeListsInUseBitmap(size))
 {
 return FreeLists[offset].blink;
 }

 // we didn’t find an entry in the bitmap so fall through
 // to FreeLists[0]
}

If the size is below 1024 (0x80 * 8), the system goes directly to the free list at the

base of the heap corresponding to the block size. If that free list has any elements, the

searching algorithm will return a pointer to the last element on that doubly linked list.

If the free list for the requested size is empty, then the system needs to find the next

largest block available. It then scans the free list bitmap, looking for a bit set

corresponding to a larger block-size free list. (We abstracted the bitmap scanning

code into a function for clarity.) If it finds a set bit in the bitmap, then the search

returns the BLink of the corresponding free list.

Practical Windows XP/2003 Heap Exploitation 21

Listing 5 - Searching Pseudo-code Part 3

if (Heap->LargeBlocksIndex) // Heap Cache active?
{
 foundentry = RtlpFindEntry(Heap, size);

 // Not found in Heap Cache
 if (&FreeLists[0] == foundentry)
 return NULL; // extend the heap

 // returned entry not large enough
 if (SIZE(foundentry) < size)
 return NULL; // extend the heap

 // if we’re allocing a >=N (4k+) block,
 // and the smallest block we find is >=N*4 16k+.
 // flush one of the large blocks, and allocate a new
 // one for the request

 if (LargeBlocksIndex->Sequence &&
 size > Heap->DeCommitFreeBlockThreshold &&
 SIZE(foundentry) > (4*size))
 {
 RtlpFlushLargestCacheBlock(vHeap);
 return NULL; // extend the heap
 }

 // return entry found in Heap Cache
 return foundentry;
}

If the requested block size is >= 1024, or the system doesn’t find an appropriate block

using the bitmap, then it proceeds to search through the free blocks stored in

FreeList[0]. As you recall, all free blocks higher than or equal to size 1024 are kept

in this doubly linked list, sorted by size from smallest to largest. The above code

queries the heap cache if it’s present. It has a special case for a large block allocation

request being fulfilled by a much larger free block. This will keep large collections of

>16k free blocks from forming if there aren’t free blocks of 4k or higher.

Listing 6 - Searching Pseudo-code Part 4

// Ok, search FreeList[0] – Heap Cache is not active

Biggest = (struct _HEAP *)Heap->FreeLists[0].Blink;

// empty FreeList[0]
if (Biggest == &FreeLists[0])
 return NULL; // extend the heap

// Our request is bigger than biggest block available
if (SIZE(Biggest)<size)
 return NULL; // extend the heap

walker = &FreeLists[0];

while (1)
{
 walker = walker->Flink;

 if (walker == &FreeLists[0])
 return NULL; // extend the heap

 if (SIZE(walker) >= size)
 return walker;
}

Practical Windows XP/2003 Heap Exploitation 22

If the heap cache isn’t active, we need to search FreeList[0] manually. After

checking to make sure FreeList[0] has at least one free block of sufficient size, the

system starts with the first block in FreeList[0]. The system fetches this block from

FreeList[0].FLink, and then walks through the linked list until an appropriately sized

block is found. If the system walks all the way through the list and ends up back at

the FreeList[0] head node, it knows that there are no suitable free blocks that meet

the search query.

Unlinking

Unlinking is removing a particular free block from the free lists. This operation was

the classic mechanism by which attackers exploited heap corruption vulnerabilities,

so it now includes additional security checks. This is called safe unlinking.

Unlinking is used in allocations to pull an appropriate block off a free list in order to

service a request. This is typically preceded by a search. Unlinking is also used when

the heap manager obtains a pointer to a block through a different mechanism. This

typically occurs during coalescing operations, as neighboring blocks that are subject

to consolidation may need to be removed from the free lists. Coalescing can happen

as part of both allocation and free operations. Finally, unlinking is used in allocation

if the heap is extended, in order to remove the newly created free block.

Here is the basic pseudo-code for unlinking, assuming that the block that one wants to

unlink is in the pointer block:

Listing 7 - Unlinking Pseudo-code

// remove block from Heap Cache (if activated)
RtlpUpdateIndexRemoveBlock(heap, block);

prevblock = block->blink;
nextblock = block->flink;

// safe unlink check
if ((prevblock->flink != nextblock->blink) ||
 (prevblock->flink != block))
{
 // non-fatal by default
 ReportHeapCorruption(…);
}
else
{
 // perform unlink
 prevblock->flink = nextblock;
 nextblock->blink = prevblock;
}

// if we unlinked from a dedicated free list and emptied it,
// clear the bitmap
if (reqsize<0x80 && nextblock==prevblock)
{
 size = SIZE(block);
 vBitMask = 1 << (size & 7);

 // note that this is an xor
 FreeListsInUseBitmap[size >> 3] ^= vBitMask;
}

Practical Windows XP/2003 Heap Exploitation 23

This is basically standard code to unlink a node from a doubly linked list, with a few

additions. First, there is a call to the heap cache that is used both for performance

based metrics and to instruct the cache to purge an entry if necessary. Then, the safe

unlink check is performed. Note that if this fails, the unlinking operation isn’t

performed, but it generally will fail without causing an exception, and the code will

proceed.

After the block is unlinked, the system attempts to update the bitmap for the free list

if necessary. Note that this performs an XOR (exclusive or) to toggle the bit, which

can be another useful property for an attacker. Specifically, if the unlinking fails, but

we have a prevblock that is equal to nextblock, it will toggle the corresponding bit in

the bitmap. (This property was also noted in Brett Moore’s Heaps about Heaps

presentation and credited to Nicolas Waisman.)

Linking

Linking is taking a free block that is not on any list and placing it into the appropriate

place in the free lists. In certain situations, the linking operation will first need to

search the free lists to find this appropriate place. Linking is used in allocations when

a block is split up and its remainder is added back to the free lists. It is also used in

free operations to add a free block to the free lists. Let’s look at some pseudo-code for

the linking operation:

Listing 8 - Linking Pseudo-code

int size = SIZE(newblock);

// we want to find a pointer to the block that will be after our block

if (size < (0x80))
{
 afterblock = FreeList[size].flink;

 //toggle bitmap if freelist is empty
 if (afterblock->flink == afterblock)
 set_freelist_bitmap(size);
}
else
{
 if (Heap->LargeBlocksIndex) // Heap Cache active?
 afterblock = RtlpFindEntry(Heap, size);
 else
 afterblock = Freelist[0].flink;

 while(1)
 {
 if (afterblock==&FreeList[0])
 return; // we ran out of free blocks

 if (SIZE(afterblock) >= size)
 break;

 afterblock=afterblock->flink;
 }
}

// now find a pointer to the block that will be before us
beforeblock=afterblock->blink;

Practical Windows XP/2003 Heap Exploitation 24

// we point to the before and after links
newblock->flink = afterblock;
newblock->blink = beforeblock;

// now they point to us
beforeblock->flink = newblock;
afterblock->blink = newblock;

// update the Heap Cache
RtlpUpdateIndexInsertBlock(Heap, newblock);

This code does a simple search for the correct place to insert the block. If the size is

<1024, it will insert the block onto the head of the appropriate free list. It will toggle

the bitmap bit if the free list is empty.

If the size is >=1024, it will find the correct place in FreeList[0] to insert the block

by walking through the doubly linked list. If the heap cache is present, it will use it to

find the best place in the list to start the search. (Note this allows us more flexibility

when we desynchronize the heap cache.)

Coalescing

Coalescing is performed before the back-end heap manager adds a chunk to the free

lists. This checks the chunk’s neighbors in contiguous memory to see if there are any

immediately bordering free blocks that can be merged with the chunk being linked.

This helps prevent heap fragmentation and reduces the amount of inline meta-data.

When a chunk is passed to HeapFree(), if the front-end doesn’t broker the request,

the chunk is eventually passed to RtlpCoalesceFreeBlocks(). Let’s look at pseudo-

code for this function:

Listing 9 - Coalescing Pseudo-code

// lpMem is the chunk passed to HeapFree()
currentChunk = lpMem;

// turn heap blocks into bytes
prev_size = currentChunk->prev_size * 8;

chunkToCoalesce = currentChunk - prev_size;

// lpMemSize is a pointer to the size
// of the chunk to be freed in blocks
totalSize = chunkToCoalesce->Size + *lpMemSize;

if(chunkToCoalesce != currentChunk &&
 chunkToCoalesce->Flags != Flags.Busy &&
 totalSize > 0xFE00)
{
 tempBlink = chunkToCoalesce->Blink;
 tempFlink = chunkToCoalesce->Flink;

 // remove the chunk from the FreeList
 if (tempBlink->Flink == tempFlink->Blink &&
 tempBlink->Flink == &(chunkToCoalesce))
 {
 RtlpUpdateIndexRemoveBlock(heap, chunkToCoalesce);
 chunkToCoalesce->Blink->Flink = tempFlink;
 chunkToCoalesce->Flink->Blink = tempBlink;
 }
 else
 {

Practical Windows XP/2003 Heap Exploitation 25

 RtlpHeapReportCorruption(chunkToCoalesce);
 }

 if(tempFlink == tempBlink)
 {
 // XOR the FreeListBitMap accordingly
 if (chunkToCoalesce->Size < 0x80)
 {
 heap+0x158+(chunkToCoalesce->Size>>3)) ^=
 (1<<(chunkToCoalesce->Size&7)));
 }
 }

 tempFlags = chunkToCoalesce->Flags;
 tempFlags &= CHUNK_LAST;
 chunkToCoalesce->Flags = tempFlags;
 if(tempFlags != 0x0)
 {
 if(chunkToCoalesce->SegmentIndex > 0x40)
 {
 RtlpHeapReportCorruption(chunkToCoalesce);
 }
 else
 {
 heap->Segements[chunkToCoalesce->SegmentIndex]->
 LastEntryInSegment = chunkToCoalesce;
 }
 }

 *lpMemSize += chunkToCoalesce->Size;
 heap->TotalFreeSize -= chunkToCoalesce->Size;

 chunkToCoalesce->Size = *lpMemSize;
 if(chunkToCoalesce->Flags != Flags.LastEntry)
 {
 // make the chunk after current's prev_size equal to
 // those two that were just coalsced
 (SHORT)chunkToCoalesce+(lpMemSize * 8)+ 2 =
 (SHORT)*lpMemSize;
 }

 currentChunk = chunkToCoalesce;
}

chunkToCoalesce = currChunk+(*lpMemSize*8);
totalSize = chunkToCoalesce->Size + *lpMemSize;

if (currChunk->Flags != Flags.LastEntry &&
 chunkToCoalesce->Flags != Flags.Busy)
{
 if (totalSize > 0xFE00)
 return currChunk;

 tempFlags = chunkToCoalesce->Flags;
 tempFlags &= CHUNK_LAST;
 chunkToCoalesce->Flags = tempFlags;

 if (tempFlags != 0x0)
 {
 if (chunkToCoalesce->SegmentIndex > 0x40)
 {
 RtlpHeapReportCorruption(chunkToCoalesce);
 }
 else
 {
 heap->Segements[chunkToCoalesce->SegmentIndex]->
 LastEntryInSegment = chunkToCoalesce;
 }
 }

 tempBlink = chunkToCoalesce->Blink;

Practical Windows XP/2003 Heap Exploitation 26

 tempFlink = chunkToCoalesce->Flink;

 //remove the chunk from the FreeList and Unlink it
 if (tempBlink->Flink == tempFlink->Blink &&
 tempBlink->Flink == &(chunkToCoalesce))
 {
 RtlpUpdateIndexRemoveBlock(heap, chunkToCoalesce);
 chunkToCoalesce->Blink->Flink = tempFlink;
 chunkToCoalesce->Flink->Blink = tempBlink;
 }
 else
 {
 RtlpHeapReportCorruption(chunkToCoalesce);
 }

 if (tempFlink == tempBlink)
 {
 if(chunkToCoalesce->Size < 0x80)
 {
 // XOR the FreeListBitMap accordingly
 heap+0x158+(chunkToCoalesce->Size>>3)) ^=
 (1<<(chunkToCoalesce->Size&7)));
 }
 }

 *lpMemSize += chunkToCoalesce->Size;
 heap->TotalFreeSize -= chunkToCoalesce->Size;

 currChunk->Size = (SHORT)*lpMemSize;
 if(currChunk->Flags != Flags.LastEntry)
 {
 currChunk+(lpMemSize * 8) + 2 = (SHORT)*lpMemSize;
 }
}

return currChunk;

As you can see, the code attempts to merge the chunk with both the preceding chunk

in contiguous memory, and the subsequent chunk in contiguous memory. It unlinks

any blocks subsumed by the coalescing from the free lists and Heap Cache. It will

update the FreeListBitMap if FLink and BLink are equal, making it the last node on

the list.

Note: This coalescing process can prove to be a significant hurdle when performing

real-world attacks against heap meta-data. One general way to handle this is to seed

the heap with data that specifies chunk flags indicating that neighboring blocks in

contiguous memory are unavailable for coalescing process.

Practical Windows XP/2003 Heap Exploitation 27

Security Mechanisms

Heap Cookie

The heap cookie is a security mechanism introduced in Windows XP Service Pack 2.

It consists of a single byte value embedded in the chunk header. This value is checked

when a busy block is freed via RtlHeapFree(). It is not checked when free blocks are

allocated. The cookie uses information that would prove difficult to guess, and the

intent is for the attacker to necessarily have to alter the cookie in order to corrupt the

flags, segment index, or application data. The heap cookie is only 1-byte, hence

giving an attacker a 1 in 256 chance of guessing the correct cookie value. The

diagram below shows the chunk header with the heap cookie on Windows XP Service

Pack 3:

Figure 5 - Heap Cookie in Chunk Header

The address of the heap chunk determines the value of the heap cookie. The

algorithm to check for cookie corruption is as follows:

Listing 10 – Cookie Check

if ((&chunk / 8) ^ chunk->cookie ^ heap->cookie)
{
 RtlpHeapReportCorruption(chunk)
}

If the heap cookie has been altered, RtlpHeapReportCorruption is called. If

HeapEnableTerminateOnCorruption is set in newer Windows versions, the

process will terminate.

Note: Practically, heap termination on corruption only works in newer versions of

Windows, such as Window 2008 and Vista. We discuss this further below.

Safe Unlinking

Safe unlinking is another security mechanism introduced in Windows XP Service

Pack 2. The code ensures that a block being unlinked actually belongs to the linked

list before taking further action. Let’s look at some pseudo-code:

Listing 11 – Safe Unlinking

prevblock = block->blink;
nextblock = block->flink;

Practical Windows XP/2003 Heap Exploitation 28

// safe unlink check
if ((prevblock->flink != nextblock->blink) ||
 (prevblock->flink != block))
{
 // non-fatal by default
 ReportHeapCorruption(block);
}
else
{
 // perform unlink
 prevblock->flink = nextblock;
 nextblock->blink = prevblock;
}

Safe unlinking checks require you to provide a pointer to a doubly-linked list node

that you wish to have removed from the list. It first checks that prevblock->FLink

points to the same address as nextblock->BLink. Then, it makes sure that both of

those pointers point to the address of the block being removed from the doubly linked

list. This works out to be difficult to subvert in practice, though Matt and Oded came

up with a clever attack which, unfortunately, has some limiting pre-conditions.

(Conover and Horovitz 2004)

If the security check fails, RtlpHeapReportCorruption() is called. In later versions

of Windows (post-win2k3), if HeapEnableTerminateOnCorruption is set, the

process will be terminated. Otherwise, for XP and Server 2003, execution occurs

without the chunk being unlinked.

Process Termination

As mentioned above, if the heap algorithm detects that the heap meta-data has been

corrupted, it will call RtlpHeapReportCorruption(). In Vista and 2008 Server, if

HeapSetInformation() has been called for the heap and

HeapEnableTerminateOnCorruption has been set, then the process will terminate.

It should be noted that setting HeapEnableTerminateOnCorruption on Windows

XP or Windows 2003 will not actually do anything. It is only currently supported on

Windows 2008 Server and Windows Vista. Please see http://msdn.microsoft.com/en-

us/library/aa366705(VS.85).aspx for more information on HeapSetInformation().

If the system fails a safe unlink of a block from the free lists due to the chunk being

corrupted, the behavior depends a lot on what the chunk has been corrupted with. If

the FLink or BLink pointers are invalid, it will cause an access violation when they

are de-referenced, which will be terminal unless the calling function has some

generous exception handling. If the FLink and BLink pointers are overwritten with

readable addresses, then the block will fail the safe-unlink check.

Failing the safe-unlink check or the cookie check generally doesn’t impede an attack,

as a failure doesn’t cause an unhandled exception to be raised or otherwise cause the

process to terminate. As mentioned previously, the HeapSetInformation()

HeapEnableTerminationOnCorruption option isn’t supported in Windows

versions prior to Server 2008 and Vista. For 2003 and XP, if the image gflag

FLG_ENABLE_SYSTEM_CRIT_BREAKS is set, the Heap Manager will call

Practical Windows XP/2003 Heap Exploitation 29

DbgBreakPoint() and raise an exception if the safe-unlink check fails. This is an

uncommon setting, as its security properties aren’t clearly documented.

Practical Windows XP/2003 Heap Exploitation 30

Tactics

Lookaside List Link Overwrite

As we covered previously, the LAL front-end maintains 128 singly-linked lists of free

chunks. There is a list for every valid request size below 1024 bytes (including the 8-

byte chunk header). The LAL front-end is the first stop when allocating or freeing a

chunk of data, and it adjusts its behavior according to run-time heuristics. Below is an

example diagram of a LAL[4] that contains two free chunks (marked as BUSY to

prevent the back-end from operating on them). LAL[4] corresponds to a block size of

4 (32 bytes), which will be used by the system to resolve 24 byte allocation requests

(due to the 8-byte header).

Figure 6- LAL Before Corruption

If you were to overflow into the chunk starting at 0x153620, overwriting the FLink

pointer, you can co-opt the singly linked list for your own ends. (Conover and

Horovitz 2004) If the attacker can sufficiently control a series of allocations and

memory writes, they can change the flow of execution and ultimately gain arbitrary

code execution. The diagram below shows the same list after an overflow into the

block at 0x153620 occurs:

Figure 7 – LAL After Corruption

You can see that the address has changed to that of the LockVariable for the heap

based at 0x150000. If you make an allocation for 24 bytes, you will receive the chunk

at 0x153600, making the list look like:

Practical Windows XP/2003 Heap Exploitation 31

Figure 8 – LAL After Allocation

If a second allocation request can be made for 24 bytes, the memory manager will

return 0x150578. As mentioned previously, this is the location of the LockVariable

for the heap at 0x150000. If user controlled data can be written 4 bytes past this

location it will overwrite the CommitRoutine, which can result in a call to a user

supplied function pointer when the heap commits more memory. This is just one

mechanism for abusing LAL chunk corruption, but there are naturally many options

open to the attacker given the primitive of writing N arbitrary bytes to an arbitrary

location X.

Practical Windows XP/2003 Heap Exploitation 32

Bitmap Flipping Attack

Brett Moore's excellent presentation Heaps about Heaps (Moore 2007) covers bitmap

flipping attacks in detail. To trace the evolution of this attack, we start In 2007, where

a riddle was posted to the DailyDave mailing list by Nicolas Waisman:

Listing 12 – Nico’s Riddle

Lets have a fun riddle to cheer up the spirit (Mate at 11pm, its all

night insomnia.)

The riddle: Let said you are trying to exploit a remote service on an

old Windows 2000 (whatever SP you want) and the primitive is the

following:

inc [edi] // you control edi

What would be the best option for edi?

This vulnerability is perfect for a very simple Bitmap Flipping Attack due to

incrementing a value at a user controlled address. If the free list bitmap could be

tricked into believing it has free chunks in a certain FreeList bucket that doesn’t have

any then one could overwrite data in the heap base. As discussed previously a

FreeList bucket contains two pointers, a FLink and a BLink. If the bucket is empty,

the pointers point back to the sentinel nodes located in the heap base. Let’s look at an

example FreeList for a heap starting at 0x150000:

Figure 9 – Flipping Free List Example

You can see that the bucket for FreeList[2] is empty, hence both pointers are

pointing to 0x150188. If the bitmap could be tricked into thinking that FreeList[2]

contains free chunks, then it would return what it believe to be a free chunk starting at

Practical Windows XP/2003 Heap Exploitation 33

0x150188. If user supplied data could then be written past this address, metadata on

the heap base could be overwritten, resulting in code execution.

Practical Windows XP/2003 Heap Exploitation 34

FreeList[0] Techniques

FreeList[0] is a doubly-linked list that contains all the free chunks that are greater

than or equal to 1024 bytes in size. The blocks are ordered from smallest to largest in

size. The forward links and back links are used when traversing the list, removing a

node from the list, or adding a node to the list. Overwriting FLink and BLink values

can alter the way these algorithms work. We’ll briefly go over FreeList[0] searching,

linking, and unlinking. For more detailed information, please read ‘Exploiting

FreeList[0] on XPSP2’ by Brett Moore. (Moore 2005)

Searching

When searching FreeList[0] for sufficiently sized chunks, the algorithm will first

ensure that the last node in FreeList[0] is large enough to hold the request. If it is, it

will start searching from the beginning of the list, otherwise more memory is

committed to service the request. The search algorithm will then proceed to traverse

the list until is finds a chunk large enough for the requested size, unlink that node, and

return it to the user. If one can overwrite the FLink of an entry on FreeList[0] to a

location that meets the requirements of the request, that address will be returned

(Note. There are inner workings of the allocation algorithm intentionally left out for

brevity). Lets look at an example FreeList[0]:

Figure 10 – FreeList[0] Searching

FreeList[0] contains two entries, one of size 0x80 and another with a size of 0xF80.

If an allocation request arrives for 1032 (size includes the 8 byte heap chunk header)

the search algorithm would see that the last block is large enough and start traversing

at the beginning of the list. The first node in the list would not be large enough to

service the request, so its FLink would be followed, leading to the chunk located at

0x1536A0. Since this block has a size of 0xF80, it would be split returning 1024

bytes (1032 – 8 byte chunk header) and put the remainder back on the free list.

Leaving FreeList[0] looking like:

Practical Windows XP/2003 Heap Exploitation 35

Figure 11 – FreeList[0] Searching II

If the FLink at 0x153620 were overwritten with a size smaller than the next

allocation request and a FLink that appeared to be a valid heap chunk who’s size is

larger than that of the request then the request would attempt to split that block if

necessary, unlink it (and fail but continue execution), and return.

Note: Think heap base.

Linking

Entries need to be inserted and deleted from the doubly-linked free list according to

their usage. The memory manager takes care of this by changing their forward link

and back link. This does not actually move the memory around, instead changing the

chunk’s pointers.

Without going into all the details, when a chunk of memory needs to be inserted into

the FreeList[0] the memory manager will find a free chunk that is larger than the one

to be freed and insert before it. The diagram below show ‘Chunk C’ that needs to be

inserted between ‘Chunk A’ and ‘Chunk B’:

Figure 12 – FreeList[0] Linking

Practical Windows XP/2003 Heap Exploitation 36

‘Chunk C’ is larger than ‘Chunk A’ and smaller than ‘Chunk B’, hence ‘Chunk C’

will be inserted in between the two. The way this is done is represented in the

following pseudo-code:

Listing 13 – Linking Logic

ChunkC->FLINK = ChunkB
ChunkC->BLINK = ChunkB->BLINK

ChunkB->BLINK->FLINK = ChunkC
ChunkB->BLINK = ChunkC

This code links ‘Chunk C’ in and updates the FLink for ‘Chunk A’ and the BLink

for ‘Chunk B’. If an overflow occurred into ‘Chunk B’ and kept the size larger than

‘Chunk C’ and the BLink was changed to an address of the attacker’s choosing then

the address of the BLink would be overwritten with the address of ‘Chunk C’.

Note: Again, think heap base.

Practical Windows XP/2003 Heap Exploitation 37

Tactics - New Techniques

Heap Cache

Overview

Public mentions of the heap cache are rare, as it’s an undocumented internal data

structure that is enabled dynamically at run-time. From an attacker’s perspective, it is

essentially an advisory subsystem that can often be avoided or disabled.

The heap cache is really only covered in one public resource: Horovitz and Conover’s

Syscan talk on the exploitation of the Windows heap (Horovitz and Conover 2004

Syscan). They cover it well, and the talk and accompanying code proved very useful

in our efforts to understand the system. Our examination of the heap cache has very

much built on their work, though we’ve observed a handful of key differences in the

implementation that are probably the result of technology drift.

It’s also worth noting that many of our specific technical attacks build on Brett

Moore’s and Nicolas Waisman’s research and are very similar in nature, and we also

detail attacks similar to Ben Hawkes’ work against Vista.

Heap Cache Invocation

The heap cache isn’t activated until the Heap Manager observes significant utilization

of the FreeList[0] data structure at run-time. The actual initialization and

synchronization with FreeList[0] is performed by the function

RtlpInitializeListIndex().

There are two performance metrics used by the Heap Manager, either of which will

cause the heap cache to be instantiated:

1. 32 blocks must exist in FreeList[0] simultaneously

 -or-

2. A total of 256 blocks must have been de-committed

Simultaneous Free Blocks

The first heuristic looks for signs of a fragmented FreeList[0]. Every time the Heap

Manager adds a free block to the Freelist[0] doubly-linked list, it calls the function

RtlpUpdateIndexInsertBlock(). Similarly, when it removes a free block from this

linked list, it calls the function RtlpUpdateIndexRemoveBlock().

Before the heap cache is invoked, these two functions simply maintain a counter that

the Heap Manager uses to track the relative demand being placed on FreeList[0].

After the system observes a situation where there are 32 simultaneous entries in

FreeList[0], it then activates the heap cache by calling RtlpInitializeListIndex().

Practical Windows XP/2003 Heap Exploitation 38

Cumulative De-committing

The second heuristic is present in the RtlpDeCommitFreeBlock() function, which

implements much of the logic that drives the de-committing process. Here, if the

system de-commits a total of 256 blocks from the beginning of the process lifetime, it

will activate the heap cache.

When the heap cache is activated by either heuristic, it triggers changes in the

system’s de-commitment policy. The essence of these changes is to perform much

less de-commitment and instead save large free blocks in the free list.

De-committing Policy

For the purposes of understanding the basic logic, this brief and slightly inaccurate

summary should suffice:

When the heap cache is turned off, the Heap Manager will generally de-commit free

blocks above 1 page in size, assuming there is at least 64k of free blocks sitting in the

free lists. (The block being freed counts towards the 64k, so a block of size 64k +/- 8k

would necessarily be de-committed upon free.)

When the heap cache is turned on, the Heap Manager will generally avoid de-

committing memory and instead save the blocks to the free list.

De-committing works by taking a large block and splitting it into three pieces: a piece

leading up to the next page boundary, a set of whole pages encompassed cleanly by

the block, and a piece containing any data past the last clean page boundary. The

partial page pieces are coalesced and typically placed on the free lists (unless they

coalesce to a large size), and the wholly encompassed set of contiguous pages is de-

committed back to the kernel.

Simultaneous Entries

If an attacker has some control over the allocation and de-allocation within the target

program, they can likely find a pattern of requests or activity that will lead to this

heuristic being triggered. For example, in a relatively clean heap, the following

pattern will cause the heap cache to be created after roughly 32 times through the

loop:

Listing 14 – Simultaneous Entries

for (i=0;i<32;i++)
{
 b1=HeapAlloc(pHeap, 0, 2048+i*8);
 b2=HeapAlloc(pHeap, 0, 2048+i*8);
 HeapFree(pHeap,0,b1);
}

This works by creating free blocks that are surrounded by busy blocks. Each time

through the loop, the allocation size is increased so that the existing holes in the heap

Practical Windows XP/2003 Heap Exploitation 39

won’t be filled. In an active heap, a pattern like this should eventually engage the

simultaneous block heuristic, if given sufficient iterations.

De-committing

For some applications, this may be easier for an attacker to utilize. In order to trigger

this heuristic, the attacker needs to cause over 256 blocks to be de-committed over the

lifetime of a process.

In order for a block to be de-committed, there needs to be at least 64k of free data in

the heap (the block being freed will count towards this total). Also, the block has to

be bigger than a page.

The simplest way to cause this to happen is to cause an allocation and free of a buffer

of size 64k or higher 256 times. Here’s a simple example:

Listing 15 – De-committing Threshold

for (i=0;i<256;i++)
{
 b1=HeapAlloc(pHeap, 0, 65536);
 HeapFree(pHeap,0,b1);
}

Smaller buffers can be used as well if the heap total free size is already close to the

64k mark or can be grown there artificially. Coalescing behavior can be used if

necessary to get sufficiently large blocks to be freed and de-committed.

De-synchronization

As we’ve established, the heap cache is a supplemental index into the existing

FreeList[0] doubly-linked list data structure. One of the interesting findings is that

the index data structure itself can be desynchronized from the other heap data

structures. This can lead to multiple subtle attacks that can be initiated via various

types of corruption of heap meta-data.

The basic idea of these attacks is to get the heap cache to point at semantically invalid

memory for a particular bucket.

You can desynchronize the heap cache by altering the current size of any free chunk

present in the heap cache. Depending on your ability to position yourself adjacent to a

free buffer in memory (present in the cache index), this can be performed with a

limited one-byte overflow in which you didn’t have much control over the content.

The chief property exploited by these attacks is that when the heap cache code goes to

remove an entry from the cache, it looks up that entry using the size as an index. So,

if you change the size of a block, the heap cache can’t find the corresponding array

entry and fails open without removing it. This leaves a stale pointer that typically

points to memory that is handed back to the application.

Practical Windows XP/2003 Heap Exploitation 40

This stale pointer is treated like a legitimate entry in FreeList[0] for a particular size,

which can allow multiple attacks. We’ll cover a few different techniques for

leveraging this situation and compare them with existing attacks.

Basic De-synchronization Attack

The simplest form of this attack works by corrupting the size of a large block that has

already been freed and is resident in one of the 896 heap cache buckets. Let’s look at

a diagram of a potential set of free blocks:

Figure 13 – Basic De-synchronization Attack Step 1

In the above diagram, we have a FreeList[0] with 3 blocks on it, of sizes 0x91

(0x488 bytes), 0x211 (0x1088 bytes), and 0x268 (0x1340 bytes). The heap cache is

instantiated, and we see that it has entries in the three buckets corresponding to our

blocks.

Let’s assume that we can do a one-byte overflow of a NUL into the current size field

of the free block at 0x154BB0. This will change the block size from 0x211 to 0x200,

shrinking the block from 0x1088 bytes to 0x1000 bytes. This will look like the

following:

Practical Windows XP/2003 Heap Exploitation 41

Figure 14 – Basic De-synchronization Attack Step 2

Now, we’ve changed the size of the free chunk at 0x154BB0, which has

desynchronized our FreeList[0] with the index maintained by the heap cache.

Currently, the bucket for block size 0x211 is pointing to a free block that is actually

of block size 0x200.

Note: Throughout the rest of the heap cache discussion, we will refer to sizes in terms

of “block size,” which we define as 1/8
th

 of the size in bytes. This corresponds to the

size values that are actually stored in memory in the current/previous size fields, and

used as indexes in the look-aside, cache, and free lists.

For the simplest form of the attack, let’s assume that the next memory operation the

application does is an allocation for block size 0x200 (0x1FF taking the 8 byte header

into account.) First, the Heap Manager does a search for a size of 0x200.

The system will go to the heap cache, see that the bitmap field for 0x200 indicates

that it is empty, and then it will scan the heap cache’s bitmap. It will find our entry at

0x211, and return the pointer to the chunk at 0x154BB0.

Now, the allocation routine receives its answer from the search, and verifies it is large

enough to service the allocation. It is, so the Heap Manager proceeds to perform an

unlink. The unlink will call RtlpUpdateIndexRemoveBlock(), passing it our block,

which will pull out the size 0x200 from our block, and check the heap cache to see if

the bucket for 0x200 points to our block. It does not since it’s empty, and the function

will return without doing anything.

Practical Windows XP/2003 Heap Exploitation 42

The unlinking will work since the block is correctly linked into FreeList[0], but the

heap cache will not be updated. Since, for simplicity, we chose an allocation size of

0x200 (4096 bytes), the block will be the perfect size and there won’t be any block

splitting or re-linking. So, no errors will be fired, and the system will return

0x154BB8 back to the application, leaving the system in the following state:

Figure 15 – Basic De-synchronization Attack Step 3

You can see that the FreeList[0] now contains only two blocks: 0x1536A0 and

0x156CC0. The heap cache, however, contains a stale entry to 0x154BB0, which is

now a block that is marked as busy by the system. Since it is a busy block, the

application will start writing its data where the FLink and BLink entries are.

For the simplest form of this attack, we’ll just assume that from here, the application

does multiple allocations for size 0x200 (4096 bytes). Each time this happens, the

system will go to the heap cache. The heap cache will find the stale entry at 0x211,

and the system will see that the block at 0x154BB0 is big enough to service the

request. (It never checks the flags to ensure that the block is actually free.)

Now, the system will attempt to do a safe unlink of the stale block from FreeList[0].

This could cause an access violation depending on what the application fills in for the

FLink and BLink fields. If FLink and BLink are overwritten with invalid addresses,

the Heap Manager will cause an exception when it attempts to dereference them. If

the FLink and BLink pointers are untouched, or are overwritten with readable

addresses, then the stale block will fail the safe-unlink check.

Failing the safe-unlink check generally doesn’t impede an attack, as a failure doesn’t

cause an unhandled exception to be raised or otherwise cause the process to

Practical Windows XP/2003 Heap Exploitation 43

terminate. (The HeapSetInformation() HeapEnableTerminationOnCorruption

option isn’t supported in Windows versions prior to Server 2008 and Vista. For 2003

and XP, if the image gflag FLG_ENABLE_SYSTEM_CRIT_BREAKS is set, the

Heap Manager will call DbgBreakPoint() and raise an exception if the safe-unlink

check fails. This is an uncommon setting, as its security properties aren’t clearly

documented.)

The end result of the attack technique is that multiple independent allocations will

return the same address to the application:

Listing 16 – Desynchronization Attack Results

HeapAlloc(heap, 0, 0xFF8) returns 0x154BB8
HeapAlloc(heap, 0, 0xFF8) returns 0x154BB8
HeapAlloc(heap, 0, 0xFF8) returns 0x154BB8
HeapAlloc(heap, 0, 0xFF8) returns 0x154BB8

Summary

If the attacker can change the current size field of a block that is pointed to by the

heap cache, that block won’t be properly removed from the heap cache, and a stale

pointer will remain.

This attack looked at the simplest form of this situation. The result of the attack is that

every time the application attempts to allocate a particular size, it receives the same

pointer to a block of memory already in use. The exploitability of this would depend

specifically on what the application did with this memory. In general, you’d look for

a situation where a pointer to an object or function was at the same logical location as

a field that was based on attacker-supplied data. Then, you’d try to create a sequence

of events where the pointer would be initialized, the user-malleable data would be

stored, and then the now corrupt pointer would be used.

Prerequisites

• The attacker must be able to write into the current size field of a block that is

free and present in the heap cache.

• The attacker must be able to anticipate a future allocation size that the

application will request.

• The attacker must avoid allocations that cause splitting or re-linking of the

corrupt block (or anticipate and plan for them).

• HeapAlloc() incorrectly returning the same address for independent requests

must create an exploitable condition in the application.

Existing Attacks

The primary prerequisite for our first de-synchronization attack is the ability to

corrupt the current size field of a large, free block pointed to by the heap cache. This

Practical Windows XP/2003 Heap Exploitation 44

corruption can be caused with a one or two byte limited-control overflow, which

makes it somewhat unique among the known attack techniques. To see how this

might be useful, let’s briefly review the current set of attacks:

Size Field Corruption

Assuming that we can only overwrite 1-4 bytes, there are a few existing attacks that

may be useful. Specifically, if an attacker can overwrite a free chunk that is the only

entry on a specific dedicated free list, they can cause the Free List bitmap to be

improperly updated. This would only work for blocks smaller than or equal to 1024

bytes, and, presupposing a 1-4 byte overflow situation, the overwritten block would

need to be the only entry in its dedicated free list. This attack is referred to as the

Bitmap Flipping Attack / Bitmap XOR Attack. Moore’s Heaps about Heaps

documents this attack and credits it to Nicolas Waisman. (Moore 2008)

Controlled 16+ Byte Overflows

If you relax our pre-condition to include situations where the attacker can overwrite

and control 16 or more bytes of chunk meta-data, then there are other alternative

attack vectors that have been previously published.

Nicolas Waisman’s bitmap flipping attack can be applied to blocks that are on

populated dedicated freelists, but this requires overwriting the FLink and BLink

fields with two identical pointer values that are safe to dereference. This attack,

outlined in Moore’s Heaps about Heaps, is applicable to free blocks of size <=1024

bytes.

Brett Moore has identified multiple attacks against the free list maintenance

algorithms, which can also be applied in this situation. Moore’s attacks should work

for large block exploitation as well, making them viable alternatives to heap cache de-

synchronization. Specifically, the FreeList[0] Insert, FreeList[0] Searching, and

FreeList[0] Re-linking attacks should be applicable, though each have different

technical prerequisites and trade-offs. These attacks generally require writing specific

valid pointers to the FLink and BLink fields and some degree of prediction or

preparation of memory that these pointers will reference. (Moore 2008)

De-synchronization

We saw that when a cache bucket is desynchronized from FreeList[0], data supplied

by the application can end up being interpreted as the FLink and BLink pointers of a

FreeList[0] node. This is because the stale pointer handed to the application still

points to memory that the heap cache considers to be a free block. Consequently, the

first 8 bytes written into the newly allocated memory can be incorrectly interpreted as

FLink and BLink pointers by the Heap Manager.

If the attacker can control what the application writes to these first 8 bytes, they can

intentionally provide malicious FLink and BLink pointers. In Heaps About Heaps,

Brett Moore documents several attacks against the Heap Manager that are predicated

Practical Windows XP/2003 Heap Exploitation 45

on corrupting FLink and BLink pointers. His attacks posit a buffer overflow being

the primary cause of the corrupt pointers, but, with some subtle adjustments, we can

re-apply them in this context as well.

Traversal and the Cache

Before we look at specific attacks, it’s important to understand how the presence of

the heap cache subtly changes the FreeList[0] traversal algorithms. Instead of starting

at the head of FreeList[0] and traversing the linked list using the forward links, the

Heap Manager first consults the heap cache. It will get a result from the heap cache,

but depending on the context, it will either use the result directly, discard it, or use it

as the starting point for future searching.

To be more specific, the allocation and linking algorithms both use the

RtlpFindEntry() function to query the heap cache, but they use the pointer returned

from the function differently. RtlpFindEntry() accelerates searches of FreeList[0]

using the heap cache. RtlpFindEntry() is passed a size parameter, and it returns a

pointer to the first free block it finds in FreeList[0] that is the same size or larger.

Allocation

The allocation algorithm is looking for a block on the free list that it can unlink from

the list, parcel up as necessary, and return back to the application. The code will

consult the heap cache with RtlpFindEntry() for the requested size. If the bucket for

that size has an entry, RtlpFindEntry() will simply return it without explicitly

checking its internal size in the chunk header. RtlpFindEntry() generally won’t

dereference any pointer in a bucket and check its size until it gets to the point where it

has to look at the catch-all block (typically >= 8192 bytes.) It will then search

through the FreeList[0] manually, starting at the block pointed to in the catch-all

bucket.

The allocation code in RtlAllocateHeap() that calls RtlpFindEntry() looks at the

block it gets back, and, if it notices that the block is too small, it changes its strategy

entirely. Instead of trying to traverse the list to find a bigger block, it will just give up

on the free list approach entirely, and extend the heap to service the request. This is

an uncommon situation that is typically only brought about by our intentional de-

synchronization, but it doesn’t cause any debug messages or errors.

Linking

The linking algorithm is more amenable towards attacker manipulation. In general,

what the linking code wants to do is find a block that is the same size or bigger, and

use that block’s BLink pointer to insert itself into the doubly linked list. The linking

code will call RtlpFindEntry() in order to find a block that is the same size or greater

as the one it is linking. If the linking code calls RtlpFindEntry() and notices that the

returned block is too small, it will keep traversing the list looking for a larger block

instead of giving up or signaling an error.

Practical Windows XP/2003 Heap Exploitation 46

Insert Attack

So, if we’ve indirectly corrupted the FLink of a large block in FreeList[0] and it is

consulted during an allocation search, there is no real harm done if we’ve

intentionally made the size smaller than the bucket’s intended contents. The

allocation code will simply extend the heap and not disturb the free list or heap cache

(beyond some temporary additions of blocks representing the newly committed

memory.)

During linking searches, however, our malicious pointers will be further searched. So,

if the application does an allocation and gets back one of our desynchronized stale

pointers, and we can get it to write FLink and BLink values that we can control or

predict, then we’re in a relatively advantageous situation. The following diagram

shows what this looks like in memory:

Figure 16 – Insert Attack Step 1

We’ve got a valid set of free blocks, in a valid FreeList[0], all with entries in the

heap cache. We’ll do a 1-byte overflow of a NUL into the block at 0x1574D0:

Practical Windows XP/2003 Heap Exploitation 47

Figure 17 – Insert Attack Step 2

This does the corruption that we’d expect, slightly changing the size of the block in

the 0x211 heap cache bucket. Let’s assume the application allocates a 0x1FF (x8)

sized buffer. This is proceeding similarly to our first attack method, but this time,

we’ll assume that the attacker has control over the first few bytes written into the

buffer it just got back from HeapAlloc().

Figure 18 – Insert Attack Step 3

Practical Windows XP/2003 Heap Exploitation 48

So, two useful things have happened. First, our corrupted block has been removed

from the real valid FreeList[0], as its linkage pointers were correct when the

allocation occurred. Second, the heap cache entry for size 0x211 is incorrect and is

pointing to a buffer that is only of size 0x200.

Our goal now is to perform an attack against unsafe linking, which, once we are at

this point, parallels the FreeList[0] Insertion attack outlined by Brett Moore. Ideally,

the next thing we’d need to happen would be for the application to free a block of a

size less than 0x200, but higher than 0x91. This will cause the block being linked in

to the free list to be placed right before our corrupted block, which isn’t actually on

the real FreeList[0]. For the payload of this attack, we will target a look-aside list.

BLink has been set to 0x1506E8, which is the base of the look-aside list for block

size 0x2.

(We’re making a few assumptions as to the application’s subsequent allocation and

free behavior, but it’s worth noting that the system doesn’t necessarily have to free a

block at this point, as an allocation that split a block and left the correct post-coalesce

remainder would accomplish the same thing.)

To keep things straightforward, let’s assume that the application frees a block of size

0x1f1. What will happen is the following:

Listing 17 – Linking Walkthrough

afterblock = 0x1574d8;
beforeblock = afterblock->blink; // 0x1506e8

newblock->flink = afterblock; // 0x1574d8
newblock->blink = beforeblock; // 0x1506e8

beforeblock->flink = newblock; // *(0x1506e8)=newblock
afterblock->blink = newblock; // *(0x1574d8 + 4)=newblock

The heap manager will write the address of our block to the base look-aside list

pointer at 0x1506e8. This will replace any existing look-aside list with a singly-linked

list of our own construction. It will look like this:

Listing 18 – Look-aside Representation

lookaside base(0x1506e8) -> newblock(0x154bb8)
 newblock(0x154bb8) -> afterblock(0x1574d8)
 afterblock(0x1574d8) -> evilptr(0xAABBCCDD)

Thus, three allocations from the corrupted look-aside list will cause our arbitrary

address, 0xAABBCCDD, to be returned to the application. That will look like the

following:

Practical Windows XP/2003 Heap Exploitation 49

Figure 19 – Insert Attack Step 4

Summary

If the attacker can change the current size field of a block that is pointed to by the

heap cache, that block won’t be properly removed from the heap cache, and a stale

pointer will remain. If the attacker can cause the application to allocate a buffer from

that stale pointer, and the attacker can control the contents of what is stored in that

buffer, he/she can provide malicious forward and back links.

This attack uses malicious forward and back links designed to overwrite the base of a

look-aside list when a new block is linked in to FreeList[0]. It is an adaptation of the

insertion attack described by Brett Moore in Heaps about Heaps (Moore 2008),

altered to use the heap cache de-synchronization technique. The attacker causes a new

block to be inserted immediately before the stale heap cache entry, which means that

the new block’s address will be written to the attacker-controlled BLink pointer. By

pointing BLink at the base of a look-aside list, the attacker can provide their own

singly-linked list, causing the attacker-supplied arbitrary FLink pointer to eventually

be used to service an allocation.

Practical Windows XP/2003 Heap Exploitation 50

The end-result of the attack is that the attacker can get attacker-controlled data written

to an arbitrary address, by explicitly controlling the address returned to an allocation

request.

Prerequisites

• The attacker must be able to write into the current size field of a block that is

free and present in the heap cache.

• The attacker must be able to predict subsequent allocations that the

application will make.

• The attacker must avoid allocations that cause splitting or re-linking of the

corrupt block, or prepare/inherit a buffer that prevents coalescing.

• The attacker must control the contents of the first two DWORDS of what is

written into the buffer allocated via the heap cache.

Existing Attacks

This attack is unique in its ability to allow for the exploitation of a 1-4 byte overflow

for blocks of a size higher than 1024. Beyond this unique property and its setup using

the heap cache, it can be considered to be in the same class of attacks as the insertion,

searching, and re-linking attacks described by Brett Moore in his presentation Heaps

about Heaps. (Moore 2008)

De-synchronization Size Targeting

One problem that occurs when attacking the heap cache in practice is that there is a

lot of linking and unlinking traffic against the free lists in general. This activity can

complicate multi-step attacks and conspire to make them probabilistic and non-

deterministic.

Outside of multi-threading scenarios, one simple cause of unexpected free list activity

is block splitting. Block splitting occurs because most larger allocation requests will

not perfectly correspond in size with a free block resident in FreeList[0]. Instead, a

free block that is overly large will be selected and then split into two blocks: a result

block, and a remainder block. The result block services the allocation request from

the application, so it is unlinked from FreeList[0], marked as busy, and handed up to

the caller. The remainder block holds the excess bytes that were unused when

fulfilling the allocation request. It will have a new chunk header synthesized, be

coalesced with its neighbors, and then be linked into the appropriate FreeList[n].

Given some control of the application’s allocation and free behavior, there are a few

ways an attacker can increase the resiliency of these attacks. We’ll briefly look at one

technique, which involves creating a hole in the heap cache for a specific allocation

size, and using entries to defend that hole from spurious activity.

Practical Windows XP/2003 Heap Exploitation 51

Shadow Free Lists

The general approach for handling variance in the execution flow in a real-world

program is to try and maintain a mostly innocuous, consistent heap cache. This means

that most requests should end up pointing at valid FreeList[0] blocks, and the system

should largely function correctly. For an attack targeting one particular allocation

size, one can set up what is essentially a shadow FreeList[0] and dial in sizes that

cause a specific trapdoor to be created in the heap cache. Consider the following three

buckets in the heap cache:

Figure 20 – De-synchronization Size Targeting

Here, we have a FreeList[0] with a head node and two entries (the white nodes in

0x155FC0 and 0x1595E0). These are valid and self-consistent, and synchronized with

their corresponding cache bucket entries. Now, we have a stale desynchronized

bucket (bucket 0x92 in the heap cache). It is pointing at the shadow FreeList[0],

which is logically consistent except for not having a head node.

Building such a shadow list is relatively straightforward, depending on the attacker’s

ability to control allocation and de-allocation. Once you do a de-synchronization and

further allocation that selects the desynchronized block, you will have a stale pointer

in the heap cache, but FreeList[0] will be valid in and of itself. The index will be

wrong, but the list will still be coherent. From there, if you link new free entries by

Practical Windows XP/2003 Heap Exploitation 52

selecting the poisoned entry out of the heap cache with the linking algorithm, the

inserted entries will form a shadow FreeList[0]. This list can only by reached through

the heap cache, and won’t be accessible via a normal traversal of FreeList[0].

Allocation

To see why this could be useful, let’s first consider allocation. Let’s assume that the

bucket at 0x92 is the critical size we are using to exploit the system, and we want to

tightly govern which requests modify its state. If you recall, a search for an

appropriately sized buffer is going to skim through the cache buckets using the

bitmap for fast resolution. Here, we’ve defended against this somewhat by causing a

valid free entry to exist in bucket 0x91. Let’s consider possible activity:

• If an allocation comes in for a size <=0x91, the valid entry in bucket 0x91 will

be selected and used. If the attacker arranges for multiple 0x91 entries to be in

the FreeList[0], they can be used as a stopgap to protect the malicious entry.

• If an allocation for 0x92 comes in, it will attempt to use the evil free list

chunk, but see that its size is too small to handle the request. Consequently, it

will forego the fake free lists entirely and just extend the heap and use new

memory to service the allocation request. (This happens because we set the

block size to a small value intentionally.)

• If an allocation for 0x93 comes in, it will use the valid free list entry in that

bucket.

Linking Searches

Now, let’s consider linking searches.

• If the search is for a size <=0x91, the valid free list entry in bucket 0x91 will

be returned.

• If the search is for 0x93, the valid free list entry will be used, which should be

innocuous.

• If the search is for exactly 0x92, the malicious free list chunk will be used. For

linking, it will see that the size is too small, but then follow the malicious free

list’s FLink. From this point on, the system will be operating on the shadow

free list that was provisioned entirely by the attacker. This can be used to

perform the insertion/linking attacks described previously.

Malicious Cache Entry Attack

So far, we’ve looked at attacks centered around creating a stale pointer in the heap

cache. There is a slightly different attack method, which aims to get an attacker-

controlled pointer directly into the heap cache. When a valid block is removed from

Practical Windows XP/2003 Heap Exploitation 53

the heap cache, the code that updates the cache trusts the FLink value in the block,

which can lead to exploitable conditions if the FLink pointer has been corrupted.

This attack is very similar to Moore’s attack on FreeList[0] Searching, which splices

the FreeList[0] in order to set up an exploitable situation (Moore 2008). The heap

cache changes the dynamics of the situation slightly, such that an attacker can make a

less-pronounced change to the data structure and alter a particular subset of

FreeList[0].

When the heap cache removes a block of a given size, it updates the bucket for that

size with a pointer to the next appropriate block in FreeList[0]. If there is no such

appropriate block, it sets the pointer to NULL and clears the associated bit in its

bitmap. Normally, every possible block size between 1024 to 8192 bytes has its own

bucket in the heap cache, and blocks higher than or equal to size 8192 bytes all go

into the last bucket. Buckets that represent a specific size – under normal conditions –

will only point to blocks of that size, and the last bucket will just point to the first

block in FreeList[0] that is too big for the heap cache to index. The following figure

shows a normal heap situation with the heap cache:

Figure 21 – Malicious Cache Entry Attack Diagram

Here, we see a small part of the heap cache, and we can see that the bucket for size

0x100 points to the block at 0x155FC0. There is a second block of size 0x100 in the

free list, at 0x1574D0, which is not pointed to by the heap cache. There is also a

block of size 0x101 at 0x1595E0, which is in the heap cache.

Practical Windows XP/2003 Heap Exploitation 54

So, if block 0x155FC0 is removed from the heap cache, the bucket for size 0x100

will need to be updated. In the above situation, it will be updated to point to

0x1574D0. If 0x1574D0 was later removed from the cache, the bucket for size 0x100

would be set to NULL.

The removal algorithm works by using the FLink pointer of the block it is removing

to find the next block in FreeList[0]. If that block is of the appropriate size, it sets the

heap cache entry to it. For the catch-all bucket, it doesn’t dereference the FLink

pointer since it doesn’t need to check that the sizes match. (It only needs to make sure

it’s not the very last block in FreeList[0].)

So, if an attacker can provide a malicious FLink value through memory corruption,

and this value is a valid pointer to an appropriate size word, then they can get a

malicious address placed into the heap cache. In the previous attacks, we altered the

size of a free chunk so that it would never be removed from the heap cache, causing

stale pointers to be returned back to the application. In this attack, we are attempting

to corrupt the FLink pointer of a free chunk, and to get our corrupt value to actually

be placed into the heap cache. Once our corrupt and arbitrary value is in the heap

cache for a particular size, it will be returned to the application, allowing for a

controllable write to arbitrary memory.

Dedicated Bucket

For entries not in the catch-all bucket, you generally would need to predict the size of

the entry you are overwriting, and provide a pointer that points to two bytes equal to

that size. If you get the size wrong, the heap cache won’t be updated, and you will

essentially be in a desynchronized state similar to the initial stages of the first attacks

we outlined. However, let’s assume that we can predict the target block’s size with

some regularity. For example, say you are overwriting a chunk with the following

values:

Practical Windows XP/2003 Heap Exploitation 55

Figure 22 – Malicious Cache Entry Attack Dedicated Bucket Step 1

Assume that the attacker knows the size of the chunk that is being corrupted, and does

the following overwrite:

Figure 23 – Malicious Cache Entry Attack Dedicated Bucket Step 2

Essentially, the attacker didn’t change anything beyond pointing the FLink at a free

list head node at the base of the heap. This takes advantage of the situation that the

attacker knows that an empty free list head node will point at itself, thus the “block”

at 0x150208 will be interpreted as the following:

Practical Windows XP/2003 Heap Exploitation 56

Figure 24 – Malicious Cache Entry Attack Dedicated Bucket Block

Now, the attacker would cause the application to allocate memory until the poisoned

value 0x150210 was in the heap cache entry for size 0x208. Note that the size of the

corrupt block being freed is 0x208, and the size of the block at its FLink pointer,

0x150208 is 0x208. Thus, when the corrupted block is removed from the heap cache,

it will pass the size check, and the heap cache will be updated to point to 0x150208.

The next allocation for block size 0x208 would cause 0x150210 to be returned to the

application, which would allow the attacker to potentially overwrite several heap

header data structures. The simplest target would be the commit function pointer at

0x15057c, which would be called the next time the heap was extended.

Catch-all Bucket

It isn’t necessary to predict the sizes when attacking a block in the catch-all block,

which, by default, contains any block larger than or equal to 8192 bytes in size. Here,

the primary requirement is to ensure that the blocks of size greater than or equal to

8192 bytes -- yet less than the attack size you choose -- are allocated before your

overwritten block. This will ensure that your entry will make it into the heap cache

for the last bucket entry, and the next large allocation should return the address you

provide. For example, if you overwrote the following chunk:

Figure 25 – Malicious Cache Entry Attack Catch-all Bucket Step 1

Practical Windows XP/2003 Heap Exploitation 57

And you supplied these values:

Figure 26 – Malicious Cache Entry Attack Catch-all Bucket Step 2

Assuming that you could handle coalescing by fortuitous BUSY flags or other

planning, and every block of size >=0x400 (8192/3) was allocated before your block,

your poisoned FLink of 0x150570 would be promoted to the entry in the cache

bucket. Then, the next allocation between 8192 and 11072 bytes would return

0x150578, allowing you to potentially cause the application to write to 0x15057c and

corrupt the commit function pointer. The size will be checked by RtlAllocateHeap(),

which will interpret the block contents as:

Figure 27 – Malicious Cache Entry Attack Catch-all Bucket Block

Summary

If the attacker can overwrite the FLink pointer of a large block that is in FreeList[0],

the corrupted value can eventually be propagated directly to the heap cache entry

itself. When the application next attempts to allocate a block of that size, it will get an

attacker controlled pointer instead of a safe piece of memory.

Practical Windows XP/2003 Heap Exploitation 58

Prerequisites

• The attacker must be able to overwrite the FLink pointer of a free block.

• The attacker must be able to cause allocations to occur that promote this

allocation to the heap cache.

• The application must make a predictable allocation that can be targeted by

corrupting a heap cache entry.

Practical Windows XP/2003 Heap Exploitation 59

Bitmap XOR Attack

We previously discussed a theoretical Bitmap Attack earlier in the paper. If there

were to be a scenario where you could increment an arbitrary DWORD, you could

attack the FreeListInUseBitmap and trick the memory manager into believing there

were free chunks in a FreeList when was not rightfully so.

So, directly altering the bitmap is an interesting and useful attack primitive, but it’s

not a generalized heap technique. This is because in the majority of memory

corruption vulnerabilities, you don’t get to pick exactly where your corruption will

occur. So, you generally won’t be able to easily reach and modify the bitmap.

However, it turns out that we can use various implementation flaws in the Heap

Manager to cause it to corrupt its own bitmap. These were published in Moore’s

Heaps about Heaps, and credited to Nicolas Waisman.

Let’s look at some pseudo-code to see how the FreeListInUseBitmap is actually

used to locate a sufficient free chunk:

Listing 19 – Bitmap Pseudo-code

/* coming into here, we've found a bit in the bitmap */
/* and listhead will be set to the corresponding FreeList[n] head*/

_LIST_ENTRY *listhead = SearchBitmap(vHeap, aSize);

/* pop Blink off list */
_LIST_ENTRY *target = listhead->Blink;

/* get pointer to heap entry (((u_char*)target) - 8) */
HEAP_FREE_ENTRY *vent = FL2ENT(target);

/* do safe unlink of vent from free list */
next = vent->Flink;
prev = vent->Blink;

if (prev->Flink != next->Blink || prev->Flink != listhead)
{
 RtlpHeapReportCorruption(vent);
}
Else
{
 prev->Flink=next;
 next->Blink=prev;
}

/* Adjust the bitmap */

// make sure we clear out bitmask if this is last entry
if (next == prev)
{
 vSize = vent->Size;
 vHeap->FreeListsInUseBitmap[vSize >> 3] ^= 1 << (vSize & 7);
}

The code above assumes that we have found a bit in the bitmap and that the FreeList

has been set to the appropriate bucket. It then proceeds to safe-unlink the node from

the list and XOR the bitmap if this was the last entry in the list. That is, the

FreeListInUseBitmap should be cleared if the list is empty. Unfortunately /

fortunately there are some problems with the code above.

Practical Windows XP/2003 Heap Exploitation 60

• The first problem is that the algorithm checks to see if ‘next == prev’ to

determine if the FreeList is empty. This is an easy condition to fake if you

have a 16-byte overwrite and will still continue executing regardless of the

safe-unlinking failing.

• The second problem is that the code takes the size from the chunk retrieved

from FreeList[n] and uses it as an index when updating the

FreeListInUseBitmap (vSize = vent->Size;). The problem with this is that,

just like the ‘next’ and ‘prev’ values, the size can also be forged when

performing an overwrite of the heap chunk metadata. The can lead to a de-

synchronized state where the memory manager believes a FreeList entry to be

populated / unpopulated when it is not the case.

• The third error is that instead of directly setting the FreeListInUseBitmap to

0 when FreeList[n] is empty, it performs an XOR operation. This means we

can toggle arbitrary bits if we overwrite a chunk’s size. This can permit us to

setup circumstances that are similar to the attack that Nico hypothesized as

previously discussed.

• The fourth and final error is that the size is not verified to be below 0x80

before indexing into the FreeListInUseBitmap. This means that we can

toggle bits in semi-arbitrary locations past the FreeListInUseBitmap. This

could be quite useful because the bitmap is located in the Heap Base.

As a result of all these errors, a one-byte heap overflow can turn into an exploitable

condition, as long the free chunk being overflowed is of a size that is less than 1024

bytes and the last free chunk of its size on its FreeList.

Secondly, if a full 16-byte overflow can occur, the ‘prev’ and ‘next’ pointers can be

made to be the same value, resulting in an XOR of the FreeListInUseBitmap

regardless if the FreeList bucket is empty or not.

Lastly is the issue of the code not checking if the heap chunk’s size is less than 0x80.

This can result in the attacker specifying a size greater than 0x80, hence toggling bits

at a semi-arbitrary location past the FreeListInUseBitmap on the Heap Base. This is

limited by the width of the size (SHORT) and the operation on that size. Essentially

this means that we can toggle any of the bits from 0x150158 to 0x152157.

Practical Windows XP/2003 Heap Exploitation 61

Avoiding Crashes

Although it may seem trivial for exploitation to occur, it is not the case. There are

many problems associated with having the memory manager treat arbitrary locations

as valid heap chunks.

The first problem is ensuring that the 8-bytes before the memory being referenced by

the memory manager are interpreted as a ‘valid’ chunk header. For example, the

FLink and BLink of the address must be readable address.

The second and most common (read: painful experience) is block splitting. For

example, say that FreeList[3] is empty and you have just flipped a bit in the bitmap

to show that FreeList[4] is populated when it is actually empty:

Figure 28 – Avoiding Crashes

Assume that the Lookaside List is empty. If a request came in for 16 bytes (24 total

with the 8-byte chunk header), the memory manager would see that there are no free

chunks in FreeList[3] and proceed to check the FreeListInUseBitmap, finding the

bit set for FreeList[4]. Since it will treat the 8-bytes (FLink / BLink) as a valid heap

chunk header, it will have the following values:

Practical Windows XP/2003 Heap Exploitation 62

Figure 29 – Avoiding Crashes II

When the request for 24 bytes arrives, it will be fulfilled by the ‘free’ block in an

empty FreeList[4]. The memory manager will subtract 24 bytes from the size and see

that there are more than 8 bytes remaining, leading to a split of the memory. This

gives the remaining chunk a size of 0x0195, which would reference 0x195 x 8 bytes

down the heap to see to the next chunk (which isn’t actually a real heap chunk). This

can lead to access violations when attempting to dereference addresses that aren’t

readable. A great way to prevent block splitting would be to ensure that the flags are

set to 0x10, making it the last entry.

Practical Windows XP/2003 Heap Exploitation 63

Lookaside List Exception Handler

The LAL has an interesting behavior that may prove useful in the context of further

exploitation. Specifically, it is wrapped by a catch-call exception handler when it

performs dereferencing of the linkage pointer in the singly linked list. This means if

the FLink pointer in an LAL list is invalid, and causes an access violation when it is

de-referenced, the system will gracefully handle the condition, falling back to the

back-end manager without printing a warning.

Let’s look at some pseudo-code for LAL allocation:

Listing 20 – LAL Allocation

int __stdcall RtlpAllocateFromHeapLookaside(struct LAL *lal)
{
 int result;
 try {
 result = (int)ExInterlockedPopEntrySList(&lal->ListHead);
 }
 catch {
 result = 0;
 }

 return result;
}

Now we can look at the pseudo-code for ExInterlockedPopEntrySList:

Listing 21 – LAL Free

__fastcall ExInterlockedPopEntrySList(void *lal_head)
{
 do {
 int lock = *(lal_head + 4) - 1;
 if(lock == 0)
 return;

 flink = *(lal_head);
 }
 while (!AtomicSwap(&lal_head, flink))
}

You can see that dereferencing of the Lookaside List head is performed in the

ExInterlockedPopEntrySList function. If the FLink pointer is a non-readable address

an access voiloation will occur. This condition would be caught by the catch-all

exception handler setup in RtlpAllocateFromHeapLookaside, which could prove

useful for guessing addresses. An attacker could brute force readable addresses to

overwrite (i.e TIB/PEB, thread stack, heap address guessing).

Here is a theoretical example (warning: potentially huge bowl of strawberry

pudding). Imagine an attacker could massage the LAL into something that resembles

the following:

Practical Windows XP/2003 Heap Exploitation 64

Figure 30 – LAL Exploitation

We will also assume that an attacker can control allocations and the source of the data

copied:

Listing 22 – LAL Example

void PuddingMaker3000(int size, char *data)
{
 void *buf;
 buf = malloc(size);
 memcpy(buf, data, size);
}

In this case, the attacker can attempt to use the values on the LAL to overwrite values

in the PEB. If the address is not readable the exception handler will handle the error

and the allocation will be serviced by the back-end allocator, resulting in a valid

Practical Windows XP/2003 Heap Exploitation 65

write. If the address is readable the LAL will return the address and the attacker will

have an opportunity to overwrite the address he/she was attempting to guess. This

technique can also be used to bypass a heavily populated LAL if using the back-end

allocator is more desirable.

Note: Auditors should always look into the reasoning and functionality behind

exception handlers, especially when they are designed to catch all exceptions.

Practical Windows XP/2003 Heap Exploitation 66

Strategy

Heap exploitation is hard, even if you’re good at it.

Now, it’s not always hard. Sometimes things work out swimmingly, and the planets

align in your favor, and you wonder why every one makes such a big deal about it.

Secretly, you probably even suspect this is yet another data point that you are a genius

of unparalleled technical ability, who is capable of pulling off amazing feats of right-

brained intuition that would make Einstein cry at the mere beauty of their elegance,

assuming you could simplify it enough such that his merely normal-genius level mind

could comprehend it.

Or maybe that’s just Chris.

At any rate, eventually you’ll run into one that is properly hard. Hopefully, this

section will help you think of ways to make forward progress if you find yourself

flailing.

Application or Heap-Meta?

So, first, let’s talk about meta-data exploitation vs. application data exploitation.

Meta-data exploitation is where you attack the internal data structures used by the

Heap Manager itself in order to gain control of the target process. We’ve looked at

quite a few different tricks and tactics for pulling this off.

One of the primary advantages of this approach is that you can often be very certain –

a priori – of where heap meta-data will be relative to the memory corruption. You

also have a good idea what it will contain, and what data structures can be simulated

by repurposing the Heap Manager’s pointers, arrays, and lists. One key downside, of

course, is that heap meta-data is increasingly hardened against attack.

Application data exploitation is where you target the data in the actual heap buffers,

which can involve necessarily trashing in-line heap meta-data. This has a

parsimonious appeal, and we’ve personally gone back and forth on preferring this

technique in a vacuum. It is particularly effective if you can isolate corruption within

the same heap chunk or into a neighboring chunk that is naturally allocated with a

target block.

Ultimately, you don’t really have to choose which one you think is the “one true

way,” as the approaches are meeting in the middle in practice. Heap meta-data is

getting hardened over time, requiring the coordination of multiple heap blocks in

order to set up pathological conditions. Application data overwrites targeting a second

or third block will require essentially the same thought processes and tactics in order

to set up vulnerable situations.

Practical Windows XP/2003 Heap Exploitation 67

Multiple Dimensions

Let’s consider one quick observation before we start discussing strategy:

There are multiple dimensions on which we need to conceptualize heap state when we

try to think of it abstractly.

First, we have the contiguous memory layout to consider. These are tracked primarily

with segments and UCR entries. The system keeps track of which chunk is last in a

particular segment, and sets a specific flag in the chunk (0x10). The Heap Manager

also maintains a pointer at the base of the heap to the last chunk in the segment.

Second, we have the data structures that model relations between buffers to consider.

These depend on the attack technique being used, but can comprise the LAL, LFH,

FreeList[n], FreeList[0], relevant bitmaps, and heap cache.

Note: This last chunk pointer update may be useful in furthering corruption as part of

the second-stage of an attack. (Conover and Horovitz 2004)

Practical Windows XP/2003 Heap Exploitation 68

Figure 31 – Two dimensional Visualization of Heap

Practical Windows XP/2003 Heap Exploitation 69

Determinism

Heap Spraying

Heap spraying was originally developed by Blazed and Skylined for use in browser

exploits. (Sotirov 2007) It is a technique that involves using JavaScript to fill memory

with a large, attacker-provided payload. This is performed with JavaScript strings or

arrays, though it could be performed with other primitives or browser functionality.

The string with the payload is repeated many times in memory to increase the

probability that a given address range contains the attacker controlled data. After this

is performed, the attacker can guess a valid return address, which can be used when

corrupting a function (or object) pointer as part of a vulnerability. The guessed

address is in the middle of the large heap grown heap, and will very likely contain the

NOP sled and shell-code. Let’s look at an example:

Listing 23 – Heap Spraying Example

var shellcode = unescape("SHELL_CODE_HERE");
var spray = unescape("%u9090%u9090");

var address = 0x0c0c0c0c;
var block_size = 0x100000;

//make a big NOP sled
var spray_size = block_size - (shellcode.length * 2);
while ((spray.length * 2) < spray_size)
{
 spray += spray;
}

spray = spray.substring(0, spray_size / 2);

var num_of_blocks = (address + block_size) / block_size;
var x = new Array();
for (i = 0; i < num_of_blocks; i++)
{
 x[i] = spray + shellcode;
}

The code above creates a large NOP sled and proceeds to concatenate the shell-code.

This is done so that the JavaScript string will allocate new memory. It then repeats

this string by storing it in an array num_of_blocks times. The attacker would then

attempt to overwrite a return address with 0x0c0c0c0c and hope that the payload is

present at that address. This technique involves certain trade-offs as far as reliability

vs. memory utilization, but it’s definitely not one to discard lightly as it’s extremely

useful.

The essence of this strategy is to tackle non-determinism by growing the heap such

that there is a very high likelihood that the contents will be predictable and useful.

Practical Windows XP/2003 Heap Exploitation 70

Heap Feng Shui

Heap Feng Shui is a library of techniques created by Alexander Sotirov to control

heap determinism under Internet Explorer using JavaScript. (Sotirov 2007) It was

originally presented at BlackHat Europe in 2007. Alex explored how Internet

Explorer allocates memory for JavaScript strings off of the system heap, which

involved a specific allocator wrapper, OLEAUT32.

Alex’s techniques were highly tied to the idiosyncratic allocator wrapper, but he

ultimately isolated the following low-level atomic actions:

- Allocate Buffer of Arbitrary Size w/ Arbitrary Content

 String Allocations in JS

- Free Buffer of Arbitrary Size w/ Arbitrary Content

 Intentionally invoke JS Garbage Collection

- Programmatic Control of Allocations and Frees

 Ah, isn’t browser exploitation awesome?

From these basic idioms, he tackled the difficulties introduced by the allocation

wrapper and developed:

- The Plunger Technique

Works around presence of a 6-block intermediate cache

The next layer of functionality in Alex’s code targets the Windows Heap Manager

functionality:

- freelist()

Used to add blocks to a freelist, making sure they don’t get placed on the LAL

and aren’t coalesced.

- lookaside()

Used to add blocks to a lookaside list.

- lookasideAddr()

returns the address of an LAL head pointer (heapbase + X)

Practical Windows XP/2003 Heap Exploitation 71

- vtable()

Sets up a fake vtable that contains shellcode in memory

He further details the following process that ties together these tools:

- Defragment the heap

Perform a large number of allocations in order to normalize the heap state

- Put blocks on free list

Alex discusses this in the context of an un-initialized data flaw, but it is

essentially his idiom for fixing a block in both the contiguous dimension and

the logical dimension (the free list)

- Empty lookaside

Empty out a look-aside entry that we will use to construct a specific shadow

c++ object/vtable data structure

- Free to the lookaside

Utilize LAL singly-linked list to double as a malicious object pointer / vtable.

Browser exploitation is an interesting situation, as you have programmatic control

over allocation, which generally gives you a significant advantage. We’ll build on

some the same building blocks that Alex choose, but first, let’s study the works of the

formidable Nicolas Waisman.

Practical Windows XP/2003 Heap Exploitation 72

Memory Leaks

There are two kinds of memory leaks that Nicolas Waisman isolates as part of his

process for heap exploitation. (Waisman 2008). Hard memory leaks are indefinite

memory leaks, in the same sense of the classic programming term, as most developers

understand it. Soft memory leaks are those where the buffer is eventually correctly

freed, but in the interim, the attacker has a degree of influence over its life-cycle. A

good example of a soft memory leak would be a buffer that is allocated when a

connection is opened and freed when a connection is closed. If the attacker can keep

multiple simultaneous connections open, this can be a very useful primitive,

especially if the buffer is freed immediately when the connection is closed.

The essential observation is that we are interested in predicting and controlling buffer

life-cycles. A buffer with an interminable life-cycle, or a relatively very long life-

cycle, is useful for tying up free buffers and LAL/free list entries with data to prevent

them from interfering with our attempts to pre-destine buffers (either in contiguous

memory or logically.)

A buffer with a short life-cycle that we can control is useful for causing actions to

occur with subtle timing, or to create patterns in memory when its use is interspersed

with the invocation of a buffer with a longer life-cycle.

Practical Windows XP/2003 Heap Exploitation 73

General Process

We present a general process here, which is comprised of the following steps:

1. State of Nature – Get your bearings in a process post-corruption

2. Action Correlation – Correlate user actions to allocation behavior

3. Heap Normalization – Normalize the heap to predictable state

4. Fixing in Contiguous Memory – Create necessary holes in memory

5. Fixing in Logical Lists – Create necessary logical relationships

6. Corruption – Invoke the attack

7. Exploitation – Move from immediate corruption to code execution

This process is useful for both attacking application-specific data and attacking heap

meta-data.

1. State of Nature

The first thing that you want to do is get your bearings. Examine the process virtual

address space, and try to get a feel for how the heaps are being used. Essentially, you

want to have a general idea as to the state of the process when your attacker supplied

data is introduced.

Questions:

• Is the Heap Cache likely to be invoked already?

• Is there a LAL on the Heap you are corrupting?

• Is there an LFH?

• How populated is the LAL?

• How about the free lists?

If it’s a long-running process that handles user requests, chances are that you won’t

be able to make too many claims as to its state at any given moment. If it’s a new

process, then you can probably presuppose quite a bit more about the state of the

system.

2. Action Correlation

In order to make progress against difficult heap vulnerabilities, you need to do a fair

bit of studying of the process.

Practical Windows XP/2003 Heap Exploitation 74

First, make the assumption that the corruption will have to happen on the same heap.

i.e. you aren’t planning to jump across heap segments. (This assumption is just to

make the task easier, but you should by all means discard it if you can successfully

attack the process at the virtual memory/segment level.)

So, you want to study the exposed attack surface for interactions with the heap. This

is an iterative process where you find an action that may be useful, and then write the

necessary code and infrastructure to leverage that action.

If you get beyond where you are looking at the immediate corruption and are starting

to think about priming the heap with data structures or patterns, then you can look at

the other heaps to see if there’s a more straightforward mechanism to spray or prime

the heap.

Pay close attention to chunk life-cycles. Two things that will prove extremely useful

are soft and hard memory leaks. This is a good place to start. After that, you can look

for other atomic actions that may prove useful, or start working on wrangling the

heap. Here are some ideas for actions to isolate:

• You want to be able to have a permanent or long-living memory leak that you

can use to allocate buffers of an arbitrary size.

• You want to be able to allocate a buffer where you control the contents of the

first X bytes of that buffer, with X being between 4 and 32

• Short-life memory leaks are quite useful as well, as you can (ideally) use these

to time allocations and frees.

• The ability to free a buffer of an arbitrary size at an arbitrary time is useful for

de-synchronization attacks.

• Allocations where you control the size are useful for heap normalization and

hole creation, especially if you can find exposed routines that have very

different buffer lifetimes.

• An information leak, naturally, can tell you all kinds of useful data.

• Targets! You probably need something good to corrupt, possibly even at a

specific offset of something already on the heap. So, naturally, you should

study the process to find function pointers and other primitives that lend

themselves towards seizing arbitrary code.

When frustrated, it’s useful to sometimes take a break and spend time refining or

looking for new atomic actions, as they might prove useful later in exploitation. We

generally tend to do this analysis statically, but dynamic analysis can be just as

effective. (if not more-so.) One of the difficulties with this is having visibility into the

code. The following tools may prove useful:

Practical Windows XP/2003 Heap Exploitation 75

• Gera’s Heap Visualizer

• PaiDebug

• Immunity Debugger

o !funsniff

o !hippie

o !heap –d (target discovery)

• Heap GUI Tool

• Byukagen

If there are numerous allocations and frees that happen as a result of one user action,

it can be useful to look for the period of the function. For example, if one user action

causes 20 heap chunks to be manipulated, it’s a good idea to fully log the heap

activity (thread IDs and call stacks are extra bonus information.) Then, lay out the

chunks on a spreadsheet, with each row having 20 allocations / frees. You can then

correlate the actions to the attacker-provided input, and look for things like buffer

lengths and/or buffer contents being derived from these inputs.

3. Heap Normalization

Heap normalization is getting the heap from a relatively unknown state into a

predictable, manageable state.

Once you can do this with any regularity, you have a reasonable position from which

to work forward. Too often with heap exploitation, you end up fully developing an

attack vector that you can only initially trigger with 25% or 20% reliability. It is easy

to go down this road, as you can make tangible progress even though you’re locking

in uncertainty at the beginning.

It’s always useful to take a step back, and see if you can figure out mechanisms for

first getting the heap into a predictable state. Then, from that position, manipulating

the heap for further subterfuge is far less frustrating.

So, one possible goal for a predictable heap is one where there are nearly no available

free blocks.

• LAL – Multiple allocations of the same size can empty a LAL bucket. Be

careful though, as if they are soft memory leaks and you use a solid pattern for

the allocations, you could end up freeing a whole bunch more chunks to the

LAL when your connection closes or if the exploit fails gracefully.

Practical Windows XP/2003 Heap Exploitation 76

• FreeList[n] – Again, multiple allocations of the same size can empty a

FreeList[n]. This gets a little trickier, as you end up bouncing off of the Heap

Extend size as it grows heaps to service your request.

• Heap Cache – The Heap Cache can be a great ally when exploiting heap

vulnerabilities. First, you may need to perform several allocations and frees in

order to demonstrably trigger the runtime heuristics. Once the heap cache is in

place, you can use similar techniques as shown above to try and clean out the

entries for a certain range of buckets. Again, this can be somewhat subtle

when you start bouncing off the Heap Extend size with relinking.

Let’s look at a couple of patterns that may prove useful for heap normalization. The

first one is for creating a hole in a normalized heap:

Listing 24 – Hole Creation

void create_hole(int size)
{
 hardmemleak_alloc(size);
 softmemleak_alloc(“holeB”, size);
 hardmemleak_alloc(size);

 softmemleak_free(“holeB”);
}

This is a pattern to empty an LAL bucket with hard memory leaks:

Listing 25 – Empty LAL Bucket

void empty_lal_bucket(int size)
{
 int j;

 for (j=0; j<BIGGEST_LAL; j++)
 hardmemleak(size / 8);
}

This is a pattern to fill an LAL bucket with soft memory leaks:

Listing 26 – Fill LAL Bucket

void fill_lal_bucket(int size)
{
 int j;

 empty_lal_bucket(size);

 for (j=0; j<BIGGEST_LAL; j++)
 {
 hardmemleak_alloc((size-16) / 8);
 softmemleak_alloc(“buf1”, size / 8);
 hardmemleak_alloc((size-16) / 8);

 softmemleak_free(“buf1”);
 }
}

This is a pattern to empty the LAL with soft memory leaks:

Practical Windows XP/2003 Heap Exploitation 77

Listing 27 – Empty LAL

void empty_lal(void)
{
 int i;

 for (i=1024-8; i>=16; i-=8)
 empty_lal_bucket(i);
}

This is a pattern to fill the LAL with soft memory leaks:

Listing 28 – Fill LAL

void fill_lal(void)
{
 int i;

 for (i=1024-8; i>=16; i-=8)
 fill_lal_bucket(i);
}

This is a pattern to empty the FreeList[n] with hard memory leaks:

Listing 29 – Empty Freelist[n]

void empty_freelist(int size)
{
 int j;

 for (j=0; j<BIGGEST_FL; j++)
 hardmemleak(size / 8);
}

This is a pattern to empty the free lists with hard memory leaks:

Listing 30 – Empty FreeList[]

void empty_freelists(void)
{
 int i;

 for (i=1024-8; i>=16; i-=8)
 empty_freelist(i);
}

For normalizing layout:

Listing 31 – Normalization Pattern

empty_lal();
empty_freelist();
fill_lal();

4. Fixing in Contiguous Memory

Use the above patterns to leave holes in memory, and work with block splitting and

block coalescing.

Practical Windows XP/2003 Heap Exploitation 78

5. Fixing in Logical Lists

Time your requests in order to get a sequence of chunks in a logical data structure to

be predictable and/or exploitable.

6. Corruption

Memory corruption for modern vulnerabilities is usually fairly idiosyncratic. Writing

a fixed value at a strange offset or even adding a fixed value to a few bytes past the

semantic end of a piece of memory are relatively common situations these days. (This

may be somewhat dependent on the types of vulnerabilities for which you and your

colleagues are auditing / researching.)

So, the first rule of memory corruption on the heap is “Yes, it is totally, absolutely,

definitely, almost certainly, completely exploitable. There are so many ways I can

indirectly influence the heap state that the burden is on me to figure out how to

succeed.”

The second rule is that “Ok, we may have overstated the case in rule 1, as this is

really hard. It’s ok to fake it and/or hope for luck.” It’s ok to brute force it or fuzz

some things and try to discover new behaviors. You don’t have to tell anyone about

any fortuitous accidents after the exploit is written.

The third rule, which we may have stolen from Kurt Vonnegut, is “When in doubt,

castle.” When you’re at a loss, do something non-linear. Go look for new atomic

actions or try a different approach. Try and divide the problem into smaller steps, and

see if you can gain some ground.

Nicolas Waisman, in his speech about writing exploits in the face of modern

countermeasures, has a brilliant distillation of the experience of writing exploits circa

2008 (Waisman 2008). Here’s Nico’s timeline for a heap vulnerability in Windows

2003/XP SP2:

Listing 32 – Nico’s Timeline

1 day: Triggering the bug

1-2 days: Understanding the heap layout

2-5 days: Finding Soft and Hard Memleaks

10-30 days: Overwriting a Lookaside Chunk

1-2 days: Getting burned out, crying like a baby,

trying to quit, doing group therapy

2-5 days: Finding a Function pointer

1-2 days: Shellcode

Practical Windows XP/2003 Heap Exploitation 79

This isn’t a bad roadmap, depending on if things cut in your favor and your heap

experience, debugging, and reversing skills.

Note: Group therapy probably won’t help much unless Nico is in your group.

7. Exploitation

The LAL, if present, can be a very useful device for extending a limited form of

corruption into a write-n bytes to an arbitrary location primitive. The basic idea

behind the attack is to use safe-linking to overwrite a LAL head with a list comprised

of pointers under the attacker’s purview. If the attacker can then intentionally plumb

the corrupted LAL, he/she can come pretty close to making arbitrary changes to a

processes run-time state.

It’s worth keeping in mind that if an invalid address is placed on a LAL head, the

system will gracefully handle the situation and not crash due to exception handling

behavior. This probably can prove useful for address guessing or potentially as part of

a memory leak.

The Commit function pointer at the base of the heap is another useful device that is

quite useful when performing attacks against the FreeList[] or heap cache. Often

times, you can get a pointer to the base of the heap to be returned to the application

through subtle de-synchronization of heap data structures. The commit function

pointer is at base +0x57c, and it is called when the heap is extended. You can usually

trigger this just by doing a large single allocation.

Note: When targeting the commit routine function pointer, you often must necessarily

trample the critical section LockVariable, which is used to synchronize the heap.

You’ll need to provide a valid pointer here to survive until the commit routine pointer

is called. (check NULL)

Practical Windows XP/2003 Heap Exploitation 80

Conclusion

Windows heap exploitation has necessarily evolved in sophistication over the last

decade, commensurate with the increasingly hardened state of the Windows OS and

the non-deterministic nature of modern concurrent software. We have revisited the

best-of-breed published tactics, tracing a narrative from Microsoft’s mitigations in

Windows XP SP2 to the present XP SP3 and Server 2003 Heap Manager. Our

contribution to the discussion is a handful of specific technical attacks, which can

significantly change the risk profile of certain classes of memory corruption

vulnerabilities. Beyond our specific attacks and counter-measures, the take-away

from our research is ultimately something that most security professionals know

intuitively: it's better to err on the side of caution when evaluating the exploitability

of memory corruption flaws. In short, the heap is such a fascinatingly rich and

intricate system that even the bleakest, most-constrained memory corruption

vulnerabilities may eventually prove to be reliably exploitable by an attacker with

sufficient resources.

Modern exploitation naturally requires focusing on traditional tactics, such as specific

meta-data corruption techniques, shellcode and control-flow transition tricks, and

return-into-libc attacks against DEP/NX. Beyond this, exploitation increasingly

requires a thorough understanding of both the vulnerability and the target software’s

execution and general behavior. Much like with vulnerability research, effort invested

into understanding how software works at a fundamental level will pay dividends for

both attacking and defense. When attempting to exploit a heap overflow you can

think of the process as a series of steps leading to a win. An understanding of the

vulnerability scope and underlying Heap Management is first, followed by heap

normalization and corruption. Only then can one worry about actual exploitation.

With this in mind, we’ve outlined a general strategy for evaluating the risk of heap

vulnerabilities, which is an abstract multiple-step process. Exploitation is essentially a

non-linear, creative task, so any such process will naturally have limitations, but

hopefully we’ve collected some useful tidbits and ideas for making progress. We

covered the normalization of the process state to address non-determinism, defensive

and pre-emptive tactics for increasing robustness, fixation within multiple logical

dimensions, and general techniques for increasing awareness of process behavior. We

underscored the usefulness of isolating a set of software-specific atomic idioms that

are useful in constructing larger patterns. As Nicolas Waisman has pointed out,

memory leaks are notably useful for pre-destining allocations and avoiding

difficulties like block-splitting and chunk coalescing. Ultimately, heap exploitation is

the art of understanding the allocation and de-allocation behavior of the target

application and how one can influence that behavior.

Finally, it’s worth appreciating that Microsoft has made considerable strides in heap

security and hardening in newer versions of Windows. We limited our scope to

Windows XP and Server 2003, and the majority of the specific technical tactics

outlined in this talk do not directly apply to Vista and subsequent Windows versions.

Practical Windows XP/2003 Heap Exploitation 81

This is due to both considerable reworking of the underlying Heap Manager internals,

as well as specific security hardening and technical counter-measures. Security

enhancements in the newer versions include: ASLR/heap base randomization, heap

meta-data encryption, termination on heap corruption, and NX/DEP. There is still a

nuanced, rich attack surface, as Ben Hawkes’ recent work has demonstrated, but there

is no doubt that these changes have made heap exploitation much more difficult. In

general, attackers will take the path of least resistance, and Microsoft’s recent

progress has convincingly shown that attacking application meta-data is going to be

increasingly prevalent as the Heap Manager becomes more and more resilient.

Practical Windows XP/2003 Heap Exploitation 82

Bibliography

Anisimov, Alexander. 2004. Defeating Microsoft Windows XP SP2 Heap Protection

and DEP bypass. Positive Technologies White Paper,

http://www.maxpatrol.com/defeating-xpsp2-heap-protection.pdf

Conover, Matt and Oded Horovitz. 2004. Reliable Windows Heap Exploits.

CanSecWest 2004,

http://www.cybertech.net/~sh0ksh0k/projects/winheap/CSW04%20-

%20Reliable%20Heap%20Exploitation.ppt

Conover, Matt and Oded Horovitz. 2004. Reliable Windows Heap Exploits. X’Con

2004,

http://xcon.xfocus.org/XCon2004/archives/14_Reliable%20Windows%20Heap%

20Exploits_BY_SHOK.pdf

Conover, Matt and Oded Horovitz. 2004. Windows Heap Exploitation (Win2KSP0

through WinXPSP2). SyScan 2004,

http://www.cybertech.net/~sh0ksh0k/projects/winheap/XPSP2%20Heap%20Exp

loitation.ppt

Conover, Matt. 2007. Double Free Vulnerabilities - Part 1. Symantec Security Blog,

http://www.symantec.com/connect/blogs/double-free-vulnerabilities-part-1

Falliere, Nicolas. 2005. A new way to bypass Windows heap protections.

SecurityFocus White Paper, http://www.securityfocus.com/infocus/1846

Flake, Halvar. 2002. Third Generation Exploitation. Blackhat USA 2002,

http://www.blackhat.com/presentations/win-usa-02/halvarflake-winsec02.ppt

Hawkes, Ben. 2008. Attacking the Vista Heap. Ruxcon 2008,

http://www.lateralsecurity.com/downloads/hawkes_ruxcon-nov-2008.pdf

Hewardt, Mario and Daniel Pravat. 2008. Advanced Windows Debugging. New

Jersey: Addison-Wesley. (Sample Chapter:

http://advancedwindowsdebugging.com/ch06.pdf)

Immunity Inc. Immunity Debugger heap library source code. Immunity Inc.

http://debugger.immunityinc.com/update/Documentation/ref/Libs.libheap-

pysrc.html (accessed June 1, 2009)

Johnson, Richard. 2006. Windows Vista: Exploitation Countermeasures. Toorcon 8,

http://rjohnson.uninformed.org/Presentations/200703%20EuSecWest%20-

%20Windows%20Vista%20Exploitation%20Countermeasures/rjohnson%20-

%20Windows%20Vista%20Exploitation%20Countermeasures.ppt

Practical Windows XP/2003 Heap Exploitation 83

Litchfield, David. 2004. Windows Heap Overflows. Blackhat USA 2004,

http://www.blackhat.com/presentations/win-usa-04/bh-win-04-litchfield/bh-win-

04-litchfield.ppt

Microsoft. 2009. Virtual Memory Functions. MSDN Online,

http://msdn.microsoft.com/en-us/library/aa366916(VS.85).aspx

Moore, Brett. 2005. Exploiting Freelist[0] on XP Service Pack 2. Security-

Assessment.com White Paper,

http://www.insomniasec.com/publications/Exploiting_Freelist%5B0%5D_On_X

PSP2.zip

Moore, Brett. 2008. Heaps About Heaps. SyScan 2008,

http://www.insomniasec.com/publications/Heaps_About_Heaps.ppt

Sotirov, Alexander. 2007. Heap Feng Shui in JavaScript. Black Hat Europe 2007,

http://www.blackhat.com/presentations/bh-europe-07/Sotirov/Presentation/bh-

eu-07-sotirov-apr19.pdf

Waisman, Nicolas. 2007. Understanding and bypassing Windows Heap Protection.

SyScan 2007,

http://www.immunityinc.com/downloads/Heap_Singapore_Jun_2007.pdf

Waisman, Nicolas. 2008. Apology of 0days. H2HC,

http://www.immunitysec.com/downloads/ApologyofOdays.pdf

Practical Windows XP/2003 Heap Exploitation 84

© Copyright IBM Corporation 2009

IBM Corporation
New Orchard Road
Armonk, NY 10504
U.S.A.

Produced in the United States of America

07-09

All Rights Reserved

IBM, the IBM logo, ibm.com, Internet Security
Systems, Proventia and SiteProtector are trademarks or
registered trademarks of International Business Machines
Corporation in the United States, other countries, or both.
If these and other IBM trademarked terms are marked on
their first occurrence in this information with a trademark
symbol (® or ™), these symbols indicate U.S. registered
or common law trademarks owned by IBM at the time
this information was published. Such trademarks may
also be registered or common law trademarks in other
countries. A current list of IBM trademarks is available on
the Web at “Copyright and trademark information” at ibm.
com/legal/copytrade.shtml

Microsoft, Windows, Vista, Server, and XP are all
trademarks or registered trademarks of Microsoft
Corporation in the United States, other countries, or both.

Other company, product or service names may be
trademarks or service marks of others. References in
this publication to IBM products or services do not imply
that IBM intends to make them available in all countries in
which IBM operates.

