
Matt Wood & Billy Hoffman
matt.wood@hp.com billy.hoffman@hp.com

Web Security Research Group -- HP Software

Veiled
A Browser Darknet

2

What is a Darknet?

A private network where users can freely
exchange ideas and content. Darknets
typically have additional features like
strong encryption, digital identities, or

storage systems

3

Innovation and Turmoil Abound!

New Set of Browser Wars
Desktop App <-> Web App

Server/Client <-> Peer-2-Peer
Browser Platform + Traditional Darknet + ??? = Profit

4

Original Darknets

•  Sneaknets
− Yokel with floppy

•  Freenet (1999)
− Strong Crypto
− Shared Storage

•  WASTE (2000)
− Private/sharing

•  Gnutella(~2000)
− P2P qualities

•  Clones (2001-)

5

Tor is *not* a Darknet!

6

Barriers to Darknet Adoption

•  Technical Barriers
− Installing/Configuring

•  Firewall
•  NAT

− Not for Joe the Plumber

•  Social Barriers
− People are unaware they exist
− Freenet/Gnutella/Kazaa are basically open networks

•  Difficult to set-up your own
•  Creating your own “scene”

7

Web Ecosystem

•  HTML 5 Features
− Browser Storage
− CORS/XDomainRequest

•  JavaScript Advances
− V8/TraceMonkey

•  Lots of high quality JS
libraries
− UI/DOM
− AES/RSA

•  Ubiquitousnesslyosity
− Everyone has it
− Everyone can use it

8

A Browser Based Darknet

•  Properties we want
− Distributed Redundant File Storage
− Some anonymity
− Web in the Web
− Communication entirely over HTTP

•  Differentiating Properties
− Zero-footprint Install
− Web Clients are the new Web Server

•  P2P on top of HTTP

− Simple to create/destroy/join
− Focused on small to medium sized network/mesh

9

WHY?

•  Barriers are Bad!
•  Removing Barriers is Good!
•  Fewer Barriers allows more Participation!
•  More participation allows Innovation!

10

Veiled : Agenda

•  Architecture
•  Demo

− Tech Overview

•  Features
− Private Chat
− Redundant Distributed File Storage
− Web in the Web
− Distributed JS Computation
− Server Failover

•  Threat Analysis
•  Next Steps/New Tech

11

High Level Architecture

•  Router is single
server script file
− Routers can

peer

•  Client is Pure
JS and HTML
− Clients connect

to Routers

•  Messages can
traverse whole
network

12

Veiled Demo

13

Veiled Router

•  Single Dynamic Page
•  Provides COMET connection to

Client
•  Provides Ajax Targets for Client
•  Provides Peering hooks for other

Routers
•  Provides transient storage

(server memory)

14

Veiled Client

•  Pure JS/HTML
•  Content served by a Router
•  Provide callbacks for COMET data pipe
•  Contains API to use browser storage

− Whatwg_db/LocalStorage/Cookies/GlobalStorage

•  Contains JS Encryption Routines
•  UI

15

COMET?

•  Traditional HTTP “pulls” data
•  COMET is a hack to make HTTP push possible

− faster than long polling for lots of messages

16

Messaging in Veiled

•  Client-Client Communication
•  Client-Router Communication
•  Router-Router Communication

17

Client-Client Messaging

•  Two Types of Messages
− Multicast
− Routed

•  Occurs above HTTP Layer
•  Message Format

− Type
− Action
− Origin ID
− Target ID
− Data
− Distance
− Unique ID

18

Router-Client Communication

•  Client initiates COMET connection
− Hidden iframe

•  Easy
•  Messages streamed to client via individual <script> tag function calls
•  Higher bandwidth than long-polling

− Times out after 2-5 minutes, refreshes

•  Client uses AJAX to forward local messages/events to
Router

•  Can Use HTTP Auth
•  Can Use SSL

19

Router-Router Peering

•  HTTP/S Connection
− Comet-y
− No need for JS Tricks
− Uses JSON for interop
− PHP’s fsockopen

•  First connection contains connect back information
•  Both Servers need to be mutually accessible
•  Performs Routing
•  Can be setup with HTTP Auth

− to prevent vagabonds

20

Routing with Modified AODV

•  AODV
− Ad-hoc On-demand Distance Vector
− Used for mesh networks

•  Modified specifically to take
advantage of protocol between
clients

•  Why?
− Reduces Traffic
− Minimizes clients receiving traffic not

meant for them

21

Veiled Features

•  Global Chat
− More of a debugging mechanism

•  Private Chat
•  Redundant Distributed File Storage
•  Web in the Web
•  Distributed JavaScript Jobs
•  Server Failover

22

Private Chat

•  RSA Key Exchange
− Keys generated by OpenSSL
− Uses PidCrypt JS Library
− Exchange AES 256 Key using RSA

•  AES + CBC
− AES Key generated from

•  Hash(RSA Priv Key/Time/Domain)

•  Completely Encrypted on the Client
•  Possible MITM

− Verify public keys

23

•  Request Peers from Darknet
− Can opt-out

•  Receive Client Aliases and Public Keys on Darknet
•  Start Chat Session with Client

− Initiator generates AES Key
− Encrypt with Remote Client’s public key
− Send

•  AES Key Exchanged
•  Begin chat encrypting with AES

Private Chat Protocol

24

Redundant Distributed File Storage

•  Goals
− Survive Clients leaving the network
− Secure Upload/Download of content
− Utilize browser storage

•  Why
•  How
•  Challenges

− JS has no access to local files
− Two Options

•  Trust Router to distribute slices
•  Use Flash/Java to read local file and provide to JS

25

•  Upload
− Select file and Submit HTML form
− Router slices into 1k chunks
− Multicast request for storage on darknet
− Wait for slices to be “registered”
− Send registered clients routed data packed

•  Download
− Multicast file identifier for retrieval
− Client’s check if their data store contains file identifier
− Send routed data packet if found

RDFS Protocol

26

Web in the Web

•  Builds on top of File Distribution
•  Retrieve Files from Magnet Hashes
•  JavaScript API to Support

− Embedded Images
− Embedded (i)Frames
− Rewriting Links to Magnet Hash

27

Distributed JS Computation

•  Distribute JavaScript Jobs to Clients
•  Inspired by JavaScript
•  Provide Client API for:

− Receiving jobs
− Reporting results

•  Challenges
− Dangerous JavaScript/XSS
− Threading/Blocking the UI

•  Worker threads (HTML5/Gears)

− Execute jobs in sandbox
•  Gareth Hayes: JSReg?
•  Google’s caja too much

28

Server Failover

•  Router Peering
− Publicize connect-back details to local clients
− Inform clients if peer goes down

•  If Client COMET connection goes down
− Retry
− Connect to router peer

29

Challenges

•  Debugging a “hidden” php connection blows!
− COMET, distributes PHP files, “threading,” multiple clients
− Pretty much left with printf() style debugging!

•  Shared Memory Locking/Threading
•  Over Reliance on Router

− “Untrusted” Router

•  Local Storage vs Global Storage
− Domain restrictions

30

Threading in PHP

•  Each connection is a “thread”
•  Use flock(windows) or semaphore (sys-v) for locking
•  Shared Memory message queue

− In transient Memory
− PHP’s shmop

31

Veiled Threat Analysis

32

Veiled External Threats

•  Malicious Client
− Disrupt/Inject faulty communications

•  HTTPS and HTTP Auth can defuse this mostly
•  Autodestruct network – new one needed

•  Malicious Router Process
− Rogue PHP script (since all are run by apache)
− Modify Shared Memory

•  Alter Message Queue
•  Remove Messages

− Not sure if there is a better was to secure shared mem…

•  MITM
− Mitigated with use of HTTPS

33

Veiled Internal Threats

•  Malicious Client
− Advertise false routes by sending spoofed packets
− Saturate Network with Multicast Traffic
− Send Bogus File slices during retrieval

•  Malicious Router
− Can MITM Private Chat RSA Key Exchange
− Compromise Clients IP’s connected to it

34

Advances/Next Steps

•  NAT Busting
•  File Storage with Browser Cache
•  Using Clients as Routers
•  Persistent-XSS as Com Port

− Very low bandwidth

•  Multiple Client-Router connections with CORS/
XDomainRequest

•  Using Completely Untrusted/Public Routers
•  Cloud Based Routers

35

NAT Busting with HTTP Request

•  Server Behind NAT
− Connection #1

•  Initiate connection to Remote
•  Send HTTP Request
•  Parse Response as it Arrives for Data

− Connection #2
•  Initiate connection to Remote
•  Send “long” HTTP Request
•  Remote parses Request as it Arrives

•  Vanilla PHP can’t inspect incomplete requests
− Perl has this built in

36

File Storage with Browser Cache

•  Use Browser Caching to
Store File Slices

•  Storage
− Make hash from file hash

and slice #
− Router serves up page,

client caches it

•  Retrieval
− Make hash from file hash
− Ajax Request to router

•  Cached Response

•  Server Response

37

Using Clients as Routers

•  Listen for messages on two routers
•  Mediate Requests/Responses between them
•  Benefits

− Link inaccessible routers with a client

•  Cons
− Requires constant browser session/tab
− Easier to MITM a network

38

Persistent-XSS as Shared Storage/Queue

•  Use Persistent XSS’s on the internet as storage.
− Hundreds of online notepads, lots are vulnerable to pxss

•  Decentralizes Network Further
•  How?

− Create JavaScript API to abstract PXSS as storage device
− Use iframe communication from pxss to local window
− JSONP if possible

39

Multiple Client-Router Connections

•  Using CORS/XDomainRequest
•  Benefits

− Redundant connection to Darknet
− Increased bandwidth
− Stronger connected Mesh

•  Challenges
− Reduce/Identify duplicate traffic

40

Others…

•  Using Completely Untrusted/Public Routers
− Use strong encryption on top of all messages
− However still allow routing somehow

•  Cloud Based Router
− Google App Engine Router

•  One Way Communication Darknet

41

•  Wikileaks is an amazing valuable service
•  Made misinformed comments about system properties
•  Wikileaks created their infrastructure from OS to Web

Server to avoid the collection of any user data
•  There is nothing to subpena
•  You guys rock!

Sorry Wikileaks!

42

Ask Questions!

•  Emails
− Matt Wood -- matt.wood@hp.com
− Billy Hoffman -- billy.hoffman@hp.com

•  Twitterlicious
− http://twitter.com/HP_AppSecurity

