
Extracting Keys from Second Generation Zigbee Chips

Travis Goodspeed
1933 Black Oak Street
Jefferson City, TN, USA

travis@radiantmachines.com

ABSTRACT
First generation Zigbee chips were SPI slaves with no inter-
nal processing beyond cryptographic acceleration. Extract-
ing a key was as simple as spying on the SPI transactions.
The second generation chips, typified by the CC2430 from
Texas Instruments and the EM250 from Ember, contain
both a microcontroller and a radio, making the SPI sniffing
attack all but irrelevant. Nevertheless, both chips are vul-
nerable to local key extraction. This paper describes tech-
niques for doing so, focusing on the CC2430 as the EM250
has no protection against outside access. Recommendations
are made for defending CC2430 firmware by using compiler
directives to place sensitive information in flash memory,
rather than in RAM. All Chipcon radios with 8051 cores
released prior to the publication of this paper are expected
to be vulnerable.

Keywords
Zigbee, CC2430, EM250, System on a Chip (SoC)

1. GENERATIONS
First generation Zigbee chips, such as the CC2420, were sim-
ply digital radios with SPI interfaces and a bit of hardware-
accelerated cryptography. They could not run a Zigbee stack
themselves, but rather relied upon an external microcon-
troller to perform even the most basic of functions. It should
also be made clear that Zigbee is one specification for the
use of these radios, which in the first generation never im-
plemented more than the lowest layers of IEEE 802.15.4. [7]
pointed out the obvious with regard to the first generation,
which is that keys sent as cleartext by SPI can be sniffed to
allow an attacker to participate in a network.

The second generation of Zigbee chips were the first to hold
a complete Zigbee implementation internally, thanks to the
addition of internal, reprogrammable microprocessors. They
also lack the vulnerability to bus probing, as keys need not
travel over an exposed SPI bus. That said, the microcon-

To appear at Black Hat USA 2009
July, 2009, Las Vegas, Nevada.

troller cores were added for convenience, not security, as will
be explained below.

The third generation of chips will include more powerful
microprocessors and–hopefully–a lot more security. The of-
fering from Texas Instruments is the CC430 family, based
upon the MSP430X2 processor. Ember will be using the
Arm Cortex M3 in its EM300 series. These chips are out
of scope for this paper, as they are not yet commercially
available. Also, Freescale’s line of radios have not yet been
examined by the author, but they will be in the near future.

2. CONCERNING THE EM250
The Ember EM250 contains a 16-bit XAP2b microprocessor
from Cambridge Consultants Ltd.[3] Debugging support is
provided by that firm’s proprietary SIF protocol, with hard-
ware and software available only through Ember. SIF itself
is a variant of JTAG.

While the datasheet and various piece of marketing liter-
ature claim “The EM250 employs a configurable memory
protection scheme usually found on larger microcontrollers.”,
this refers not to a debugging fuse or bootloader password,
but rather to protection from accidental self-corruption of
memory. This is in the form of Application/System separa-
tion, allowing the EmberZNet stack to defend certain regions
of RAM and radio registers from accidental corruption by
the application software.[3]

The author has not yet evaluated the protection scheme for
its use in defending against stack overflow exploits. It is
possible, but not likely, that local privilege escalation from
Application to System mode is difficult.

In any case, the SIF debugging port of the EM250 does not
contain a security fuse. There is no supported method of
denying access to an attacker who controls those pins. Em-
ber is aware of the oversight, and they expect that the third
generation EM300 series does not share this vulnerability.
There are presently no plans to fix the EM200 series.

3. CONCERNING THE CC2430
The TI/Chipcon 2430 is a the combination of Chipcon’s
radio technology with an 8051 microcontroller. Also in the
same family are the CC1110, CC2431, CC2510, CC2511,
CC2530, and CC2531. These other chips have not been
tested by the author, but are expected by the documentation
to be similarly vulnerable at the time of this writing.

Like many schemes, including the bootloader (BSL) of some
MSP430 microcontrollers [6][5], the CC2430 protects flash
memory but not RAM. Further, as a Harvard-architecture
chip, all constants are copied into RAM by default as a per-
formance feature of the compiler. Thus, while the protection
scheme of the chip is sufficient to protect its programming,
it does nothing to prevent the extraction of keys! Extrac-
tion is as simple as erasing the chip by the debugger, then
reconnecting and dumping RAM.

4. EXPERIMENTAL APPARATUS
The GoodFET1 is a USB bus adapter developed by the au-
thor as a means of learning, among other things, the JTAG
protocol. Its firmware includes support for the Chipcon de-
bugging protocol, as documented in [1], allowing the Chip-
con radios to be debugged using a python script, “good-
fet.cc”.

This vulnerability can be tested for on any 8051-based Chip-
con device using the script provided in Figure 2. The script
first places 32 bytes of data into RAM, then dumps those
bytes back out as foo.hex. It then executes CHIP ERASE
to clear any security fuses and erase flash memory before
dumping data a second time as bar.hex. If the two dumps
are identical, then Data memory (RAM) has not been erased
along with Code memory (Flash). If the two differ, then the
chip is not vulnerable to this particular attack.

Figure 1 demonstrates that the CC2430 revision 0x04 is vul-
nerable. Similar results are obtained for all other chips of
this family at the time of this writing. Chipcon has been
made aware of the vulnerability, and they intend to fix fu-
ture chips.

5. PROTECTING 8051 CONSTANTS
Key identification within non-key data has been demon-
strated by various authors. The authors of [4] manage to
reliably identify disk encryption keys despite from briefly
unrefreshed DRAM, and they conclude with the statement
that

Ultimately, it might become necessary to treat
DRAM as untrusted, and to avoid storing sensi-
tive information there, but this will not become
feasible until architectures are changed to give
software a safe place to keep its keys.

While personal computers and the EM250 might lack such
a place, it is possible to instruct an 8051 compiler to store
a constant in Code (Flash) memory, rather than in Data
(RAM). This is described in [2], but as a workaround for
RAM limitations rather than as a security measure.

The “ code” keyword must be applied to any const variable
within code memory, as well as any pointer to such a con-
stant. This is because the 8051, as a Harvard machine, does
not have a unified address space. Also note that there is a
slight performance penalty to fetches from code memory, as
they cannot occur at the same time as an instruction fetch.

1http://goodfet.sf.net/

6. CONCLUSION
This paper has shown that all Chipcon radios at the time
of publication are vulnerable to key theft because of unpro-
tected Data memory. Further, as all popular 8051 compilers
place even constants in Data memory for performance rea-
sons, it can be assumed that all products which were shipped
prior to the authorship of this paper are vulnerable. Extract-
ing a key is as simple as connecting a debugger, erasing the
chip, then freely reading the contents of RAM.

Further, as the competing radios from Ember offer even less
security, the tamper resistance of wireless sensors should
perhaps be considered forfeit by default.

7. REFERENCES
[1] Chipcon. CC1110/CC2430/CC2510 debug and

programming interface specification.

[2] Chipcon. DN200 using constants in Code with Z-stack.

[3] Ember. EM250 datasheet.

[4] J. A. H. et al. Lest we remember: Cold boot attacks on
encryption keys.

[5] T. Goodspeed. MSP430 BSL passwords: Brute force
estimates and defenses, June 2008.

[6] T. Goodspeed. A side-channel timing attack of the
MSP430 BSL. Black Hat USA, August 2008.

[7] T. Goodspeed, D. Highfill, and B. Singletary. Low-level
design vulnerabilities in wireless control systems
hardware. In S4 2009.

APPENDIX
A. ACKNOWLEDGMENTS
It should be noted that Ember was extremely quick to reply
when contacted about the issue presented within this paper.
While TI was not so quick to respond, thanks are due to
those employees who ensured that the issue was acknowl-
edged.

Chipcon erasure vulnerability test.

by Travis Goodspeed

This script uses the GoodFET to load 32 bytes into data memory

then it sends CHIP_ERASE before requesting those same bytes back.

If the two files are identical, CHIP_ERASE has not cleared data

memory and keys held in data memory are exposed to an attacker.

1) Writing something non-random into data memory.

2) Dumping it back out, so we can compare by MD5 checksum.

3) Erasing the contents of memory, including fuses, by CHIP_ERASE.

4) Dumping a second time, now that the chip has been erased.

5) Comparing:

180e42d3d3850b7a31636385dc2c2eee foo.hex

180e42d3d3850b7a31636385dc2c2eee bar.hex

Images match. RAM is not cleared during a CHIP_ERASE.

Figure 1: Demonstration Log

echo "1) Writing something non-random into data memory."

goodfet.cc writedata app.hex 0xffe0 0xffff >>/dev/null

echo "2) Dumping it back out, so we can compare by MD5 checksum."

goodfet.cc dumpdata foo.hex 0xffe0 0xffff >>/dev/null

echo "3) Erasing the contents of memory, including fuses, by CHIP_ERASE."

goodfet.cc erase >>/dev/null

echo "4) Dumping a second time, now that the chip has been erased."

goodfet.cc dumpdata bar.hex 0xffe0 0xffff >>/dev/null

echo "5) Comparing:"

#Print results.

md5sum foo.hex bar.hex && \

echo "Images match. RAM is not cleared during a CHIP_ERASE." || \

echo "Images differ. Vulnerability not confirmed."

Figure 2: Vulnerability Test Script

