
Code Injection From the Hypervisor:
Removing the need for in-guest agents

Matt Conover & Tzi-cker Chiueh
Core Research Group, Symantec Research Labs



2

SADE:
SteAlthy Deployment and Execution

• Introduction
• A typical enterprise environment, what’s wrong with

it, and how SADE improves it

• Implementation
• How SADE is using VMsafe

• Performance
• In-guest agents versus SADE injected agents



3

SADE:
SteAlthy Deployment and Execution

• This project is focused on enterprise environments.
• Let me start with a higher-level vision…

• A simplified enterprise environment (pre-SADE):
– Workstation: one desktop computer per employee
– Agents: software components (anti-virus, update programs, etc.)

installed on each workstation
– Domain: all enterprise workstations are part of a domain (e.g., Active

Directory)
– Domain server: controls authentication, policies, and software updates

of workstations
– Domain administrator: maintains all of the workstations



4

SADE: Introduction

What’s wrong with this model?
1.Administrative headache
2.Wasted resources (disk space, electricity, CPU time, etc.)
3.Security risk



5

SADE: Introduction

• Administrative headache
– Domain administrator needs to keep all machines updated

– Need to install separate agents for everything (an anti-virus agent, a
software update agent, etc.)

– Less-than-seamless: if the user gets infected with a virus, it may
disable the anti-virus. Then what? Administrator needs to manually
clean the machine



6

SADE: Introduction

• Wasted resources
– Why does each desktop need an update program when the enterprise

desktops are all fairly homogenous?

– Antivirus scans all files at least once per workstation, although each
workstation mostly has the same files. The agent of each workstation
is working in isolation.

– Having the same software installed on each machine wastes disk
space

– Performing the same scans on each machine wastes electricity and
CPU resources



7

SADE: Introduction

• Security risk
– The classic problem of security software and threats operating at the

same privilege level

– If the security agent lives on the workstation, it can be disabled by
undetected malware.

– There is no way to real way to remediate this except to boot from a
rescue CD



8

SADE: Project Goal

• Eliminate the need for “agents” running on the user’s machine
– Instead of having agents everywhere, do all of these steps from a

central location
– Make “targeted deployments” when necessary

• How?
– Use virtual machines instead of workstations
– Do software updates from the hypervisor
– Do security checks from the hypervisor
– Do file scans from the hypervisor



9

SADE: Project Goal

• Benefits
– Simplifies the whole design
– Don’t need to maintain agents in each workstation
– Scanning files can be done once globally from the hypervisor rather

than once per machine



10

SADE: Project Goal

• You might know that VMWare already has a tool to load an
executable file inside the guest virtual machine…

• Why not just use VMware tools to load an executable?
– This is not meant to be used in a hostile environment.
– It will mount the program as an ISO (use the CDROM) and run a user-

mode executable from the CD
– This is very easy for a malware to detect and prevent (i.e., kernel-

mode rootkit hooking NtCreateProcess).

– Our approach never touches the disk of the guest. The code runs
directly from kernel-mode and doesn’t require the OS driver loader.

– This is a much better approach for a hostile environment…



11

SADE: Project Goal

• Benefits
– Malware on the workstation can’t disable the agents, because they

aren’t even there. They can pop in, at anytime, unexpectedly…



12

SADE: Project Goal

• A simplified enterprise environment (post-SADE):
– Workstation: each desktop computer replaced by a virtual machine
– Domain: all virtual machines run under a hypervisor
– Agents: stored in a central repository of the domain and deployed to

the workstation only when necessary

Team
Symantec!



13

SADE in a Nutshell

• The agent only exists in the guest while it is executing
– Once the agent finishes executing, it is removed from the guest and

the memory is wiped clean.

• Can be completed in less than second
– The window for malware to detect or disable our agent is very small



14

SADE in a Nutshell

• SADE can inject an agent into the guest virtual machine
without the help of the OS.

• SADE will load the driver itself, it does not rely on the native
OS driver loader

• Development is easy
– The agent is a standard Windows kernel driver compiled using

standard tools (Windows DDK, written in C)
– The agent can use all the standard kernel APIs like DbgPrint



15

Our Prototype

• In our implementation we used VMware’s ESX server as our
hypervisor and VMsafe APIs to interface with the hypervisor

• VMsafe gives us a way to detect when a memory page is
about to be read, written, or executed.

• Our prototype: Implemented an anti-virus scanner on the
hypervisor which then injects a remediation driver into the
guest virtual machine to remove a virus once detected.



16

Our Prototype

• Our prototype protecting two virtual machines (User VM 1&2)



17

Scenario

• Here’s the scenario I’ll be describing during the rest of the
talk..

• Using anti-virus definitions running on security VM to scan the
user VMs for malware.

– Use memory scanning rather than file scans

• A virus (W32.Gammima) is run in the user VM and detected.
– We want to remediate this virus by terminating the process
– We’ll inject code into the guest to do this.
– To be absolutely safe, we’ll do the remediation in kernel-mode

(protect against kernel rootkits)



18

Step 1: Detect the Threat

• Uses page execution trigger on all memory pages to detect
when a page is about to be executed

• Scans the memory page
• If the page is clean, remove the execution trigger from that

page and replace it with a write trigger
• No future attempts to execute that page will trigger the page

execution trigger
• If the page is modified, the page write trigger will be executed

and we’ll again scan the page.



19

Step 2: Prepare the Agent

• Read the agent driver into memory from disk
• This a Windows Portable Executable (PE) format driver
• The imports of the agent need to be resolved.

– Read the import table of the agent.
– For each API used (such as DbgPrint), we need to find the runtime

address of the API in the guest.
– Locate the export tables of the guest kernel (NTOSLRKNL and HAL).



20

Step 3: Find Memory for the Agent

• We need to inject the agent into the guest virtual machine
• Where should we put the agent? None of the memory inside

the guest virtual machine “belongs” to us
• Use a trick: put a page execution trigger on ExAllocatePool

– The equivalent of kmalloc on Windows
– When EIP register (the instruction pointer) is at the RET instruction,

look at the functions return value (in the EAX register)
– This points to memory just allocated, but not yet used
– Temporarily hijack this memory, inject bootstrap code to allocate

“permanent” memory.
– After bootstrap code finishes, restore control to ExAllocatePool



21

Step 3: Find Memory for the Agent

Security VM Guest VM

Just
allocated
memory

SADE

ExAllocatePool

#1: Detect when ExAllocatePool API is about to return

Some kernel
driver



22

Step 3: Find Memory for the Agent

Security VM Guest VM

Hijack
Memory

(temporarily)
SADE

ExAllocatePool

#2 Insert our bootstrap (allocation) code into the hijacked memory



23

Step 3: Find Memory for the Agent

Security VM Guest VM

SADE

Agent’s
Permanent

Memory
(not used yet)

ExAllocatePool

#3 Allocate agent’s permanent memory using bootstrap

Bootstrap
Code



24

Step 4: Invoke the Agent

• At the time the malware is detected, there are two possible
execution states:
– If the malware was running in ring 0 (a kernel mode rootkit), we can

just directly change EIP to point to the where the injected agent driver
is located.

– If the malware is running at ring 3 (which is usually the case), this
won’t work. User-mode code obviously cannot access kernel-mode
APIs or memory. In this case, we need to use a trick to force an
immediate transition to ring 0

• We force a fault (CPU exception) to force this transition



25

Step 4: Invoke the Agent

• Insert an invalid opcode at EIP (points into the malware
page).

• Place an execution trigger on the invalid opcode fault handler.
• When the guest VM resumes execution, instead of executing

the malware, it will immediately produce an invalid opcode
fault.

• Now the guest is running at ring 0, change EIP to point to the
agent’s code



• Overwrite the malware code with an invalid opcode

26

Step 4: Invoke the Agent

Security VM Guest VM

SADE
Agent’s

Permanent
Memory

Invalid Opcode
Fault Handler

Malware
(replaced

with invalid
opcode)



Guest VMSecurity VM

• Guest VM causes an invalid opcode fault

27

Step 4: Invoke the Agent

Invalid opcode
(causes fault)

Invalid Opcode
Fault Handler

Agent’s
Permanent

Memory
SADE



Guest VMSecurity VM

• Execution event on invalid opcode handler triggered

28

Step 4: Invoke the Agent

Invalid
opcode

Invalid Opcode
Fault Handler

Agent’s
Permanent

Memory
SADE



Guest VMSecurity VM

29

Step 4: Invoke the Agent

• Inject agent code into the allocated memory

Injected
Agent
Driver

SADE



30

Step 4: Invoke the Agent

Security VM Guest VM

SADE
Injected
Agent
Driver

Invalid Opcode
Fault Handler

• Invalid opcode fault handler is hijacked to execute agent



Guest VM

31

Step 5: Return from the Agent

Security VM

• Hypervisor detects when agent is finished

SADE
Injected
Agent
Driver



Guest VM

32

Step 5: Return from the Agent

Security VM

• Machine is back to the original state (no agent present)

SADE
Agent code

removed
again



33

Demo

• Run W32.Gammima virus
• Detected by SADE
• Inject remediation driver
• Remediation driver calls
NtTerminateProcess(NtCurrentProcess())



34

Performance

• Startup (1 time cost)
– 17 ms: Discover NTOSKRNL and parse export table
– 1 ms: Install bootstrap code (calls ExAllocatePool)
– 1.1 ms: Execute bootstrap code
– 2 ms: Relocate and load agent driver

• Inject and execute agent driver (for each malware event)
– 4.7 ms: Trigger and handle invalid opcode exception
– 0.1 ms: Ring3-to-ring0 transition
– 1 ms: In-guest function execution

• Restore original state (for each malware event)
– 1.9 ms: Restore original program context
– 0.1 ms: Ring0-to-ring3 transition

• Total time (for each malware event): 7.8 milliseconds

• Disclaimer: These numbers are specific to our prototype’s
implementation. This is not a VMware benchmark.



35

Closing Remarks

• The prototype is finished, stable, and works like a charm! This
prototype:

• Can be used to inject a legacy driver into the guest.
– It can handle a “hostile” guest virtual machine.
– It doesn’t eliminate the possibility of the agent being

detected/disabled, but it makes the window very small

• Significantly raises the bar for malware running in a
virtualized environment to detect or disable security agents

– This prototype demonstrates one of the security benefits of
virtualization over legacy hardware



36

Questions?
Thanks!

matthew_conover
@

symantec.com


