

MOBILE APPLICATION SECURITY ON ANDROID

Context on Android security

Black Hat 2009

This document describes the Android Security Model and provides the context required to understand

the tools and techniques that will be demonstrated by Jesse Burns at his Black Hat USA talk, currently

scheduled for July 30
th

, 2009. Updates are available on the iSEC Partners website. A developer’s guild

to android is also maintained at that site, by the author at

http://www.isecpartners.com/files/iSEC_Securing_Android_Apps.pdf.

Prepared for Black Hat USA by: Jesse Burns

Questions: AndroidSecurityPaper@isecpartners.com

Updates: https://www.isecpartners.com

Date: June, 2009

Version 0.1

http://www.isecpartners.com/files/iSEC_Securing_Android_Apps.pdf
mailto:AndroidSecurityPaper@isecpartners.com
https://www.isecpartners.com/

Black Hat USA 2009 Page 2

Introduction

Android has a unique security model, which focuses on putting the user in control of the device.

Android devices however, don’t all come from one place, the open nature of the platform allows for

proprietary extensions and changes. These extensions can help or could interfere with security, being

able to analyze a distribution of Android is therefore an important step in protecting information on that

system. This document takes the reader through the security model of Android, including many of the

key security mechanisms and how they protect resources. This background information is critical to

being able to understand the tools Jesse will be presenting at Black Hat, and the type of information

you can glean from the tools, and from any running Android distribution or application you wish to

analyze.

Before reading this paper you should already be familiar with Android’s basic architecture and major

abstractions including: Intents, Activities, BroadcastReceivers, Services, ContentProviders and Binder
1
.

If you haven’t yet encountered most of these platform features you might want to start with the

Notepad
2
 tutorial. As Android is open source you should also have this code available to you. Both the

java and C code is critical for understanding how Android works, and is far more detailed than any of

the platform documentation. As will be discussed in the Black Hat talk, the difference between what the

documentation and the source say is often critical to understanding the systems security.

The Android Security Model

Android is a Linux platform programmed with Java and enhanced with its own security mechanisms

tuned for a mobile environment
3
. Android combines OS features like efficient shared memory,

preemptive multi-tasking, Unix user identifiers (UIDs) and file permissions with the type safe Java

language and its familiar class library. The resulting security model is much more like a multi-user

server than the sandbox found on the J2ME or Blackberry platforms. Unlike in a desktop computer

environment where a user’s applications all run as the same UID, Android applications are individually

siloed from each other. Android applications run in separate processes under distinct UIDs each with

distinct permissions. Programs can typically neither read nor-write each other’s data or code,
4
 and

sharing data between applications must be done explicitly. The Android GUI environment has some

novel security features that help support this isolation.

Mobile platforms are growing in importance, and have complex requirements
5
 including regulatory

compliance
6
. Android supports building applications that use phone features while protecting users by

minimizing the consequences of bugs and malicious software. Android’s process isolation obviates the

need for complicated policy configuration files for sandboxes. This gives applications the flexibility to

use native code without compromising Android’s security or granting the application additional rights.

1
 Binders are a bit of an advanced topic. We will introduce them in the Services section.

2
 http://code.google.com/android/intro/tutorial.html

3
 Cylon heritage is perhaps the most problematic security aspect of Android’s lineage.

4
 Hence getting code execution on most Android application doesn’t fully compromise the device!

5
 Like the need to support emergency calling, even on screen-locked or out of service phones.

6
 Government regulations vary widely so the platform needs a lot of flexibility.

http://code.google.com/android/intro/tutorial.html

Black Hat USA 2009 Page 3

Android permissions are rights given to applications to allow them to do things like take pictures, use

the GPS or make phone calls. When installed, applications are given a unique UID, and the application

will always run as that UID on that particular device. The UID of an application is used to protect its

data and developers need to be explicit about sharing data with other applications
7
. Applications can

entertain users with graphics, play music, and launch other programs without special permissions.

Malicious software is an unfortunate reality on popular platforms, and through its features Android tries

to minimize the impact of malware. However, even unprivileged malware that gets installed on an

Android device (perhaps by pretending to be a useful application) can still temporarily wreck the user’s

experience
8
. Users in this unfortunate state will have to identify and remove the hostile application.

Android helps users do this, and minimizes the extent of abuse possible, by requiring user permission

for programs that do dangerous things like:

– directly dialing calls (which may incur tolls),

– disclosing the user’s private data, or

– destroying address books, email, etc.

Generally a user’s response to annoying, buggy or malicious software is simply to uninstall it. If the

software is disrupting the phone enough that the user can't uninstall it, they can reboot the phone

(optionally in safe mode
9
, which stops non-system code from running) and then remove the software

before it has a chance to run again.

Security Responsibilities of Developers
Developers writing for Android need to consider how their code will keep users safe as well as how to

deal with constrained memory, processing and battery power. Developers must protect any data users

input into the device with their application, and not allow malware to access the application’s special

permissions or privileges. How to achieve this is partly related to which features of the platform an

application uses, as well as any extensions to the platform an Android distribution has made.

One of the trickiest big-picture things to understand about Android is that every application runs with a

different UID. Typically on a desktop every user has a single UID and running any application launches

runs that program as the users UID. On Android the system gives every application, rather than every

person, its own UID. For example, when launching a new program (say by starting an Activity), the

new process isn’t going to run as the launcher but with its own identity. It’s important that if a

program
10

 is launched with bad parameters
11

 the developer of that application has ensured it won’t

harm the system or do something the phone’s user didn’t intend. Any program can ask Activity

Manager to launch almost any other application, which runs with the application’s UID.

7
 This paper will cover how to safely do such sharing. Android offers several flexible mechanisms to choose from.

8
 For example they could play loud noises, interrupt the user or run down the battery.

9
 How to enter safe mode is device specific. One prototype platform required holding the Menu button while booting.

10
 By programs what is usually meant is an Activity or a Service. This will be covered in more detail later.

11
 Android applications don’t usually have parameters — there isn’t even a UI to specify them in the Home application.

Black Hat USA 2009 Page 4

Fortunately, the untrusted entry points to your application are limited to the particular platform features

you choose to use and are secured in a consistent way. Android applications don’t have a simple main

function that always gets called when they start. Instead, their initial entry points are based on

registering Activites, Services, BroadcastReceivers or ContentProviders with the system. After a brief

refresher on Android Permissions and Intents we will cover securely using each of these features.

Android requires developers to sign their code. Android code signing usually uses self-signed

certificates, which developers can generate without anyone else’s assistance or permission. One reason

for code signing is to allow developers to update their application without creating complicated

interfaces and permissions. Applications signed with the same key (and therefore by the same

developer) can ask to run with the same UID. This allows developers to upgrade or patch their software

easily, including copying data from existing versions. The signing is different than normal Jar or

Authenticode
12

 signing however, as the actual identity of the developer isn’t necessarily being validated

by a third party to the device’s user
13

. Developers earn a good reputation by making good products;

their certificates prove authorship of their works. Developers aren’t trusted just because they paid a

little money to some authority. This approach is novel, and may well succeed, but it wouldn’t be

technically difficult to add trusted signer rules or warnings to an Android distribution if it proved

desirable.

Android Permissions Review
Applications need approval to do things their owner might object to, like sending SMS messages, using

the camera or accessing the owner’s contact database. Android uses manifest permissions to track what

the user allows applications to do. An application’s permission needs are expressed in its

AndroidManifest.xml and the user agrees to them upon install
14

. When installing new software, users

have a chance to think about what they are doing and to decide to trust software based on reviews, the

developer’s reputation, and the permissions required. Deciding up front allows them to focus on their

goals rather than on security while using applications. Permissions are sometimes called ―manifest

permissions‖ or ―Android permissions‖ to distinguish them from file permissions.

To be useful, permissions must be associated with some goal that the user understands. For example, an

application needs the READ_CONTACTS
15

 permission to read the user’s address book. A contact

manager app needs the READ_CONTACTS permission, but a block stacking game shouldn’t
16

.

Keeping the model simple, it’s possible to secure the use of all the different Android inter-process

communication (IPC) mechanisms with just a single kind of permission. Starting Activities, starting or

12
Authenticode is a popular Microsoft code signing technology documented here: http://msdn.microsoft.com/en-

us/library/ms537364(VS.85).aspx. They usually identify a company and are validated by a certificate authority.
13

 Some mobile platforms use code signing as a way to control and track developers. Android’s self-signing system just

makes software easier to maintain and use. Certificate chains and the standards third parties used to validate identities are

too complex for most users to understand, so Android uses a more social approach to developer identity.
14

 The same install warnings are used for side loaded and Market applications. Applications installed with adb don’t show

warnings but that mechanism is only used by developers. The future may bring more installers than these three.
15

 ―android.permission.READ_CONTACTS‖ is the permission’s full text.
16

 If the game vibrates the phone, or connects to a high score Internet server it might need VIBRATE or INTERNET

permission.

http://msdn.microsoft.com/en-us/library/ms537364(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms537364(VS.85).aspx

Black Hat USA 2009 Page 5

connecting to Services, accessing ContentProviders, sending and receiving broadcast Intents, and

invoking Binder interfaces can all require the same permission. Therefore users don’t need to

understand more than ―My new contact manager needs to read contacts‖.

Developer Tip: Users won’t understand how their device works, so keep

permissions simple and avoid technical terms like Binder, Activity or Intent when

describing permissions to users.

Once installed, an application’s permissions can’t be changed. By minimizing the permissions an

application uses it minimizes the consequences of potential security flaws in the application and makes

users feel better about installing it. When installing an application, users see requested permissions in a

dialog similar
17

 to the one shown in Figure 1. Installing software is always a risk and users will shy

away from software they don’t know, especially if it requires a lot of permissions.

17
 The dialog lists permissions; the installation dialog gives a bit more information and the option to install as well.

Black Hat USA 2009 Page 6

Figure 1 Dialog showing Application permissions to users.

(Chu, 2008)

From a developer’s perspective permissions are just strings associated with a program and its UID. You

can use the Context class’ checkPermission(String permission, int pid, int uid) method to

programmatically check if a process (and the corresponding UID) has a particular permission like

READ_CONTACTS
18

. This is just one of many ways permissions are exposed by the runtime to

developers. The user view of permissions is simple and consistent; the idiom for enforcement by

developers is consistent too but adjusts a little for each IPC mechanism.

Figure 2 shows an example permission definition. Note that the description and label are resources to

aid in localizing the application.

 <permission

 xmlns:android="http://schemas.android.com/apk/res/android"

18
 You would pass the fully qualified value of READ_CONTACTS, which is ―android.permission.READ_CONTACTS‖.

Black Hat USA 2009 Page 7

 android:name="com.isecpartners.android.ACCESS_SHOPPING_LIST"

 android:description="@string/access_perm_desc"

 android:protectionLevel="normal"

 android:label="@string/access_perm_label">

 </permission>

Figure 2 Custom permission definition in an AndroidManifest.xml file.

Manifest permissions like the one above have a few key properties. Two text descriptions are required:

a short text label, and a longer description used on installation. An icon for the permission can also be

provided (but isn’t in the example above). All permissions must also have a name which is globally

unique. The name is the identifier used by programmers for the permission and is the first parameter to

Context.checkPermission. Permissions also have a protection level (called protectionLevel as shown

above).

There are only four protection levels for permissions
19

:

Normal Permissions for application features whose consequences are minor

like VIBRATE which lets applications vibrate the device. Suitable

for granting rights not generally of keen interest to users, users can

review but may not be explicitly warned.

Dangerous Permissions like WRITE_SETTINGS or SEND_SMS are dangerous

as they could be used to reconfigure the device or incur tolls. Use

this level to mark permissions users will be interested in or

potentially surprised by. Android will warn users about the need for

these permissions on install.

Signature These permissions can only be granted to other applications signed

with the same key as this program. This allows secure coordination

without publishing a public interface.

SignatureOrSystem Similar to Signature except that programs on the system
20

 image also

qualify for access. This allows programs on custom Android systems

to also get the permission. This protection is to help integrate system

builds and won’t typically be needed by developers.

Figure 3 Android manifest permission protection levels

If you try to use an interface which you don’t have permissions for you will probably receive a

SecurityException. You may also see an error message logged indicating which permission you need to

enable. If your application enforces permissions you should consider logging an error on failure so that

19
 See http://code.google.com/android/reference/android/R.styleable.html#AndroidManifestPermission_protectionLevel or

search for ―Android Manifest Permission protectionLevel‖ for platform documentation.
20

 Of course custom system builds can do whatever they like; indeed you ask the system when checking permissions – but

SignatureOrSystem level permissions intend for third party integration and so protects more stable interfaces then Signature.

http://code.google.com/android/reference/android/R.styleable.html#AndroidManifestPermission_protectionLevel

Black Hat USA 2009 Page 8

developers calling your application can more easily diagnose their problems. Sometimes (aside from

the lack of anything happening) permission failures are silent. The platform itself neither alerts users

when permission checks fail, nor allows granting of permissions to applications after installation.

Developer Tip: Your application might be used by people who don’t speak your

language. Be sure to internationalize the label and description properties of any

new permission you create. Have someone both technical and fluent in the target

languages review to ensure translations are accurate.

In addition to reading and writing data, many permissions allow applications to call upon system

services or start Activities with security sensitive results. For example, with the right permission a video

game can take full control of the screen and obscure the status bar, or a dialer can cause the phone to

dial a number without prompting the user.

Creating New Manifest Permissions
Applications can define their own permissions if they intend other applications to have programmatic

access to them. Using a manifest permission allows the end user to decide which programs get access,

rather than having the developer just assume access is acceptable. For example, an application that

manages a shopping list application could define a permission named

―com.isecpartners.ACCESS_SHOPPING_LIST‖ (ACCESS_SHOPPING_LIST for short). If the

application defines an exclusive ShoppingList object then there is now precisely one instance of

ShoppingList and the ACCESS_SHOPPING_LIST permission is needed to access it. The permission

would be required for callers trying to see or update the shopping list. Done correctly, only the

programs that declare they use this permission could access the list, giving the user a chance to either

consent or prevent inappropriate access. When defining permissions keep them clear and simple, make

sure you actually have a service or some data you want to expose not to just interactive users but to

other programs.

Adding permissions should be avoided using a little cleverness whenever possible. For example you

could define an Activity that added a new item to the shopping list. When an application called

startActivity and provided an Intent to add a new shopping list item, the Activity could display the data

provided and ask for confirmation from the user instead of requiring permission enforcement. This

keeps the system simple for users and saves you development effort. A requirement for Activities that

immediately altered the list upon starting would make the permission approach necessary.

Creating custom permissions can also help you minimize the permission requirements for applications

that use your program programmatically. For example, if an application needs permissions to both send

SMS messages and access the users location,
21

 it could define a new permission like

21
 Location determination can require multiple permissions depending on which scheme the particular phone uses.

Black Hat USA 2009 Page 9

―SEND_LOCATION_MESSAGE‖. This permission is all that applications using your service would

need, making their installation simpler and clearer to the user.

Black Hat USA 2009 Page 10

Intents

Intents are an Android-specific mechanism for moving data between Android processes and are at the

core of much of Android’s IPC. They don’t enforce security policy themselves, but are usually the

messenger that crosses the actual system security boundaries. To allow their communication role

Intents can be sent over Binder interfaces (since they implement the Parcelable interface). Almost all

Android IPC is actually implemented through Binder, although most of the time this is hidden from us

with higher level abstractions.

Intent Review
Intents are used in a number of ways by Android:

 To start an Activity – coordinating with other programs like browsing a web page

o Using Context’s startActivity() method.

 As broadcasts to inform interested programs of changes or events

o Using Context’s sendBroadcast(), sendStickyBroadcast(), and

sendOrderedBroadcast() family of methods.

 As a way to start, stop or communicate with background Services

o Using Context’s startService(), stopService(), and bindService() methods

 To access data through ContentProviders, such as the user’s contacts.

o Using Context’s getContentResolver() or Activities managedQuery()

 As call backs to handle events, like returning results or errors asynchronously with

PendingIntents provided by clients to servers through their Binder interfaces

Intents have a lot of implementation details
22

, but the basic idea is that they represent a blob of

serialized data that can be moved between programs to get something done. Intents usually have an

action, which is a string like ―android.intent.action.VIEW‖ that identifies some particular goal, and

often some data in the form of a Uri
23

. Intents can have optional attributes like a list of Categories, an

explicit type (independent of what the data’s type is), a component, bit flags and a set of name value

pairs called ―Extras‖. Generally APIs that take Intents can be restricted with manifest permissions. This

allows you to create Activities, BroadcastReceivers, ContentProviders or Services that can only be

accessed by applications the user has granted these rights to.

Intent Filters
Depending on how they are sent, Intents may be dispatched by the Android Activity Manager. For

example an Intent can be used to start an Activity by calling Context.startActivity(Intent intent). The

Activity to start is found by Android’s Activity Manager by matching the passed in Intent against the

IntentFilters registered for all Activities on the system and looking for the best match. Intents can

22
 Indeed the documentation for just the Intent class is far longer than this document.

23
 An instance of the android.net.Uri class.

Black Hat USA 2009 Page 11

override the IntentFilter match Activity Manager uses however. Any ―exported‖
24

 Activity can be

started with any Intent values for action, data, category, extras, etc. The IntentFilter is not a security

boundary from the perspective of an Intent receiver. In the case of starting an Activity, the caller decides

what component is started and creates the Intent the receiver then gets. The caller can choose to ask

Activity Manger for help with figuring out where the Intent should go, but doesn’t have to.

Intent recipients like Activities, Services and BroadcastReceivers need to handle potentially hostile

callers, and an IntentFilter doesn’t filter a malicious Intent
25

. IntentFilters help the system figure out

the right handler for a particular Intent, but doesn’t constitute an input filtering system. Because

IntentFilters are not a security boundary they cannot be associated with permissions. While starting an

Activity is the example I used to illustrate this above, you will see in the following sections that no IPC

mechanisms using IntentFilters can rely on them for input validation.

Categories can be added to Intents, making the system more selective about what code the Intent will

be handled by. Categories can also be added to IntentFilters to permit Intents to pass, effectively

declaring that the filtered object supports the restrictions of the Category. This is useful whenever you

are sending an Intent whose recipient is determined by Android, like when starting an Activity or

broadcasting an Intent.

Developer Tip: When starting or broadcasting Intents where an IntentFilter is

used by the system to determine the recipients, remember to add as many

categories as correctly apply to the Intent. Categories often require promises

about the safety of dispatching an Intent, helping stop the Intent from having

unintended consequences.

Adding a category to an Intent restricts what it can do. For example an IntentFilter that has the

―android.intent.category.BROWSABLE‖ category is indicating it is safe to be called from the web

browser. Carefully consider why Intents would have a category and consider if you have met the terms

of that contract before placing a category in an IntentFilter. Future categories could (for example)

indicate an Intent was from a remote machine or un-trusted source but because this category won’t

match the IntentFilters we put on our applications today, the system won’t deliver them to our

programs. This keeps our applications from behaving unexpectedly when the operating environment

changes in the future.

24
 An activity is automatically exported if it has an IntentFilter specified, it can also be exported explicitly by adding the

attribute android:exported=‖true‖
25

 You can enforce a permission check for anyone trying to start an Activity however. This is explained in the section on

Activities.

Black Hat USA 2009 Page 12

Activities

Activities allow applications to call each other, reusing each other’s features, and allowing for

replacements or improvement of individual system pieces whenever the user likes. Activities are often
26

run in their own process, running as their own UID, and so don’t have access to the caller’s data aside

from any data provided in the Intent used to call the Activity.

Developer Tip: The easiest way to make Activities safe is just to confirm any

changes or actions clearly with the user. If starting your Activity with an Intent
27

could result in harm or confusion you need to require a permission to start it.

Activities cannot rely on IntentFilters (the <intent-filter> tag in AndroidManifest.xml) to stop callers

from passing them badly configured Intents. Misunderstanding this is actually a relatively common

source of bugs. On the other hand, Activity implementers can rely on permission checks as a security

mechanism. Setting the android:permission attribute in an <activity> declaration will prevent programs

lacking the specified permission from directly starting that Activity. Specifying a manifest permission

that callers must have doesn’t make the system enforce an intent-filter or clean intents of unexpected

values so always validate your input.

This code shows starting an Activity with an Intent. The Activity Manager will likely decide to start the

web browser to handle it, because the web browser has an Activity registered with a matching intent-

filter.

Intent i = new Intent(Intent.ACTION_VIEW);

i.setData(Uri.parse("http://www.isecpartners.com"));

this.startActivity(i);

Figure 4 Starting an Activity based on its IntentFilter

The following code demonstrates forcing the web browser’s Activity to handle and Intent with an

action and data setting that aren’t permitted by its intent-filter:

// The browser's intent filter isn't interested in this action

26
 Activities implemented by the caller’s program may share a process, depending on configuration.

27
 An Intent received by an Activity is essentially untrusted input and must be carefully and correctly validated.

Black Hat USA 2009 Page 13

Intent i = new Intent("Cat-Farm Aardvark Pidgen");

// The browser's intent filter isn't interested in this Uri scheme

i.setData(Uri.parse("marshmaellow:potatochip?"));

// The browser activity is going to get it anyway!

i.setComponent(new ComponentName("com.android.browser",

"com.android.browser.BrowserActivity"));

this.startActivity(i);

Figure 5 Starting an Activity regardless of its IntentFilter

If you run this code you will see the browser Activity starts, but the browser is robust and aside from

being started just ignores this weird Intent.

Figure 6 gives an example AndroidManifest entry that declares an Activity called

―.BlankShoppingList‖. This example Activity clears the current shopping list and gives the user an

empty list to start editing. Because clearing is destructive, and happens without user confirmation, this

Activity must be restricted to trustworthy callers. The ―com.isecpartners.ACCESS_SHOPPING_LIST‖

permission allows programs to delete or add items to the shopping list, so programs with that

permission are already trusted not to wreck our list. The description of that permission also explains to

users that granting it gives an applications the ability to read and change shopping lists. We protect this

Activity with the following entry:

<activity

 android:name=".BlankShoppingList"

 android:permission="com.isecpartners.ACCESS_SHOPPING_LIST">

 <intent-filter>

I <action

 android:name="com.isecpartners.shopping.CLEAR_LIST" />

 </intent-filter>

</activity>

Figure 6 Activity declaration requiring a caller permission.

When defining Activities, those defined without an intent-filter or an android:exported attribute are not

publicly accessible, that is, other applications can’t start them with Context.startActivity(Intent intent).

These Activities are the safest of all, but other applications won’t be able to reuse your application’s

Black Hat USA 2009 Page 14

Activities.

Developers need to be careful not just when implementing Activities but when starting them too. Avoid

putting data into Intents used to start Activities that would be of interest to an attacker. A password,

sensitive Binder or message contents would be prime examples of data not to include! For example

Malware could register a higher priority IntentFilter and end up getting the user’s sensitive data sent to

their Activity instead.

When starting an Activity if you know the component you intend to have started, you can specify that in

the Intent by calling its setComponent() method. This prevents the system from starting some other

Activity in response to your Intent. Even in this situation it is still unsafe
28

 to pass sensitive arguments

in this Intent. You can think of the Intent used to start an Activity as being like the command line

arguments of a program, which usually shouldn’t include secrets either.

Developer Tip: Don’t put sensitive data into Intents used to start Activities.

Callers can’t easily require Manifest permissions of the Activities they start, and

so your data might be exposed.

28
 For example processes with the GET_TASKS permission are able to see ―ActivityManager.RecentTaskInformation‖

which includes the ―baseIntent‖ used to start Activities.

Black Hat USA 2009 Page 15

Broadcasts

Broadcasts are a way applications and system components can communicate securely and efficiently.

The messages are sent as Intents, and the system handles dispatching them, including starting receivers,

and enforcing permissions.

Receiving Broadcast Intents
Intents can be broadcast to BroadcastReceivers, allowing messaging between applications. By

registering a BroadcastReceiver in your application’s AndroidManifest.xml you can have your

application’s receiver class started and called whenever someone sends you a broadcast. Activity

Manager uses the IntentFilters applications register to figure out which program to use for a given

broadcast. As we discussed in the sections on IntentFilters and Activity permissions, filters are not a

security mechanism and can’t be relied upon
29

 by Intent recipients. As with Activities, a broadcast

sender can send a receiver an Intent that would not pass its IntentFilter just by specifying the target

receiver component explicitly
30

. Receivers must be robust against unexpected Intents or bad data. As

always in secure IPC programming, programs must carefully validate their input.

BroadcastRecievers are registered in the AndroidManifest.xml with the <receiver> tag. By default they

are not exported, but can be exported easily by adding an <intent-filter> tag (including an empty one)

or by setting the attribute android:exported=“true”. Once exported, receivers can be called by other

programs. Like Activities, the Intents that BroadcastReceivers get may not match the IntentFilter they

registered. To restrict who can send your receiver an Intent use the android:permission attribute on the

receiver tag to specify a manifest permission. When a permission is specified on a receiver, Activity

Manager validates that the sender has the specified permission before delivering the Intent. Permissions

are the right way to ensure your receivers only gets Intents from appropriate senders, but permissions

don’t otherwise affect the properties of the Intent that will be received.

Safely Sending Broadcast Intents
When sending a broadcast, developers include some information or sometimes even a sensitive object

like a Binder. If the data being sent is sensitive they will need to be careful who it gets sent to. The

simplest way to protect this while leaving the system very dynamic is to require the receiver to have a

permission. By passing a manifest permission name (receiverPermission is the parameter name) to one

of Context’s broadcastIntent() family of methods you can require recipients to have that permission.

This lets developers control which applications can receive the Intent. Broadcasts are special in being

able to very easily require permissions of recipients; when you need to send sensitive messages prefer

this IPC mechanism.

29
 IntentFilters can sometimes help Intent sender safety by allowing the sending of an Intent that is qualified by a category.

Receivers that don’t meet the category requirements won’t receive it, unless the sender forces delivery by specifying a

component. Senders adding categories to narrow deliver therefore shouldn’t specify a Component.
30

 See the examples given for Activities in the Activity Permissions section. These examples can be applied to broadcasts by

using sendBroadcast() rather than startActivity() and adjusting the components appropriately for your test classes.

Black Hat USA 2009 Page 16

For example, an SMS application might want to notify other interested applications of an SMS it

received by broadcasting an Intent. It can limit the receivers to those applications with the

RECEIVE_SMS permission by specifying this as a required permission when sending. If an application

sent the contents of an SMS message on to other applications by broadcasting an Intent without

asserting that the receiver must have the RECEIVE_SMS permission then unprivileged applications

could register to receive that Intent — creating a security hole. Applications can register to receive

Intents without any special privileges. Therefore, applications must require that potential receivers have

some relevant permission before sending off an Intent containing sensitive data.

Developer Tip: It is easier to secure implementing Activities than

BroadcastReceivers because Activities can ask the user before acting. However,

it is easier to secure sending a broadcast than starting an Activity because

broadcasts can assert a manifest permission the receiver must have.

Stick Broadcasts
Sticky broadcasts are usually informational and designed to tell other processes some fact about the

system state. Sticky broadcasts stay around after they have been sent, and also have a few funny

security properties. Applications need a special privilege, BROADCAST_STICKY, to send or remove

a sticky Intent. You can’t require a permission when sending a sticky broadcast, so don’t use them for

exchanging sensitive information! Also anyone else with BROADCAST_STICKY can remove a sticky

Intent you create, so consider that before trusting them to persist.

Developer Tip: Avoid using sticky broadcasts for sharing sensitive information,

since they can’t be secured like other broadcasts can.

Black Hat USA 2009 Page 17

Services

Services are long running background processes provided by Android to allow for background tasks

like music playing or running of a game server. They can be started with an Intent and optionally

communicated with over a Binder interface by calling Context’s bindService() method
31

. Services are

similar to BroadcastReceivers and Activities in that they can be started independently of their

IntentFilters by specifying a Component (if they are exported). Services can also be secured by adding

a permission check to their <service> tag in the AndroidManifest.xml. The long lasting connections

provided by bindService() create a fast IPC channel based on a Binder interface (see below). Binder

interfaces can check permissions on their caller, allowing them to enforce more than one permission at

a time or different permissions on different requests. Services therefore provide lots of ways to make

sure the caller is trusted, similar to Activities, BroadcastReceivers and Binder interfaces.

Calling a Service is slightly trickier. This hardly matters for scheduling MP3s to play, but if you need to

make sensitive calls into a Service, like storing passwords or private messages, you’ll need to validate

the Service you’re connect to is the correct one and not some hostile program
32

 that shouldn’t have

access to the information you provide. If you know the exact component you are trying to connect to,

you can specify that explicitly in the Intent you use to connect. Alternately, you can verify it against the

name provided to your SeviceConnection’s onServiceConnected(ComponentName name, IBinder

service) implementation. That isn’t very dynamic though and doesn’t let users choose to replace the

service provider.

To dynamically allow users to add replacement services, and then authorize them by means of checking

for the permission they declared and were granted by the user we can use the component name’s

package
33

 as a way to validate a permission. We received the name of the implementing component

when we receive the onServiceConnected() callback, and this name is associated with the applications

rights. This is perhaps harder to explain than to do and comes down to only a single line of code!

res = getPackageManager().checkPermission(permToCheck, name.getPackageName());

Figure 7 Checking a package has a permission

Compare the result of the checkPermission() call shown above with the constants

PackageManager.PERMISSION_GRANTED or PackageManager.PERMISSION_DENIED. As

documented the returned value is an integer, not a boolean.

31
 This is a slight oversimplification, but by using bindService() you can eventually get a binder channel to talk with a

Service.
32

 An old attack on many IPC mechanisms is to ―name-squat‖ on the expected IPC channel or name. Attackers listen on a

port, name, etc. that trusted programs use to talk. Clients therefore end up talking to the wrong server.
33

 Also available to your ServiceConnection’s onServiceConnected(ComponentName name, IBinder binder) method.

Black Hat USA 2009 Page 18

ContentProviders

Android has the ContentProvider mechanism to allow applications to share raw data. This can be

implemented to share SQL data, images, sounds or whatever you like; the interface is obviously

designed to be used with a SQL backend and one is even provided. ContentProviders are implemented

by applications to expose their data to the rest of the system, the <provider> tag in the applications

AndroidManifest.xml registers a provider as available and defines permissions for accessing it.

The Android security documentation mentions that there can be separate read and write permissions for

reading and writing on a provider ―…holding only the write permission does not mean you can read

from a provider…‖ (Google Inc., 2008). People familiar with SQL will probably realize that it isn’t

generally possible to have write-only SQL queries. For example an updateQuery() or deleteQuery() call

results in the generation of a SQL statement in which a where clauses is provided by the caller. This is

true even if the caller has only write permission. Controlling a where clause doesn’t directly return data,

but the ability to change a statement’s behavior based on the stored data value effectively reveals it.

Through watching the side effects of a series of calls with clever where clauses, callers can slowly

reconstruct whatever data is stored
34

. You could certainly create a provider for which this was not the

case, especially if the provider is file or memory based, but it isn’t likely that this will just work for

simple SQL based providers. Keep this in mind before relying on write-only provider access.

Declare the read and write permissions you wish enforced by the system directly in the

AndroidMainfext.xml’s <provider> tag. These tags are android:readPermission and

android:writePermission. These permissions are enforced at access time, subject to the limitations of

the implementations discussed above. A general permission tag needed for any access can also be

required.

Developer Tip: Assume clients with write access to a content provider also have

read access. Describe any write permission you create as granting read-write

access to SQL based providers.

Implementing a provider that is shared with other applications involves accepting some risks. For

example, will those other applications properly synchronize their accesses of the data, and send the

right notifications on changes? ContentProviders are very powerful, but you don’t always need all that

power. Consider simpler ways of coordinating data access where convenient.

An advanced feature providers may use is dynamic granting and revoking of access to other programs.

The programs granted access are identified by their package name, which is the name they registered

with the system on install (in their <manifest> tags, android:package attribute). Packages are granted

34
 Attackers exploiting ―blind‖ SQL injection flaws use this technique for flaws that don’t directly expose query results.

Black Hat USA 2009 Page 19

temporary access to a particular Uri. Generally, granting this kind of access doesn’t seem like a great

idea though as the granting isn’t directly validated by the user, and there may not be correct restrictions

on the query strings the caller can use. I also haven’t worked with this option enough to give advice

about using it securely
35

. It can be used by marking your provider tag with the attribute

android:grantUriPermissions=―true‖, and a subsequent <grant-uri-permission>
36

 with attributes

specifying which Uri’s are permitted. Providers may then use grantUriPermission() and

revokeUriPermission() methods to give add and remove permissions dynamically. The right can also be

granted with special Intent flags: FLAG_GRANT_READ_URI_PERMISSION, and

FLAG_GRANT_WRITE_URI_PERMISSION. Code doing this kind of thing would be a great place to

start looking for security holes.

Avoiding SQL injection
To avoid SQL injection requests need to clearly delineate between the SQL statement and the data it

includes. If data is misconstrued to be part of the SQL statement the resulting SQL injection can have

difficult to understand consequences, from harmless bugs that annoy users to serious security holes that

expose a user’s data. SQL injection is easily avoided on modern platforms like Android by using

parameterized queries which distinguish data from query logic explicitly. The ContentProivder’s

query(), update(), delete() and Activities’ managedQuery() methods all support parameterization. These

methods all take the ―String[] selectionArgs‖ parameter, a set of values that get substituted into the

query string in place of ―?‖ characters, in the order the question marks appear. This provides clear

separation between the content of the SQL statement in the ―selection‖ parameter, and the data being

included. If the data in selectionArgs contains characters otherwise meaningful in SQL, the database

still won’t be confused. You may also wish to make all your selection strings final in order to avoid

accidentally contaminating them with user input that could lead to SQL injection.

SQL injection bugs in data input directly by the end user are likely to annoy users when they input

friends whose name contains SQL meta-characters such as the single quote or apostrophe. A SQL

injection could occur wherever data is received and then used in a query, that means data from callers

of Binder interfaces, or data in Intents received from a broadcast, Service or Activity invocation, and

these would be potential targets for malware to attempt to exploit. Always be careful about SQL

injection, but consider more formal reviews of code where data for a query is from remote sources

(RSS feeds, web pages, etc.). If you use parameterized types for all values you refer to and never use

string concatenation to generate your SQL, you can avoid it completely.

35
 Expect an update to this paper with details on using this securely, or send me your tips.

36
 See the rather weak documentation for this here:

http://code.google.com/android/reference/android/R.styleable.html#AndroidManifestGrantUriPermission

http://code.google.com/android/reference/android/R.styleable.html#AndroidManifestGrantUriPermission

Black Hat USA 2009 Page 20

Intent Reflection

A common idiom when communicating on Android is to receive a callback via an Intent. For an

example of this idiom in use you could look at the Location Manager, which is an optional service. The

Location Manager is a binder interface with the method LocationManager.addProximityAlert(). This

method takes a PendingIntent, which lets callers specify how to notify them. Such callbacks can be

used any time, but occur especially frequently when engaged in IPC via an Activity, Service,

BroadcastReceiver or Binder interface using Intents. If your program is going to send an Intent when

called, you need to avoid letting a caller trick you into sending an Intent they wouldn’t be allowed to. I

call getting someone else to send an Intent for you ―intent reflection‖, and preventing it is a key use of

the android.app.PendingIntent class which was introduced in Android SDK 0.9.

If your application exposes an interface allowing its caller to be notified by receiving an Intent, you

should probably change it to accept a PendingIntent instead of an Intent. PendingIntents are sent as the

process that created them. The server making the callback can be assured that what they send will be

treated as coming from the caller and not from themselves. This shifts the risk from the service to the

caller. The caller now needs to trust the service with the ability to send this Intent as itself, which

shouldn’t be hard as they control the Intent’s properties. The documentation for PendingIntent wisely

recommends locking the PendingIntent to the particular component it was designed to send the

callback to with setComponent(). This controls the Intent’s dispatching.

Black Hat USA 2009 Page 21

Files and Preferences

UNIX-style file permissions are present in Android for file-systems which are formatted to support

them, such as the root file system. Each application has its own area on the file system which it owns

almost like programs have a home directory to go along with their user ids. An Activity or Service's

Context object gives access to this directory with the getFilesDir(), getDir(), openFileOutput(),

openFileInput(), getFileStreamPath(), methods but the files and paths returned by the context are not

special and can be used with other file management objects like FileInputStream. The mode parameter

is used to create a file with a given set of file permissions (corresponding to the UNIX file

permissions). You can bitwise-OR these permissions together. For example, a mode of

MODE_WORLD_WRITABLE | MODE_WORLD_READABLE makes a file world-readable
37

 and

writable. The value MODE_PRIVATE cannot be combined this way as it is just a zero. Somewhat

oddly the mode parameter also indicates if the resultant file is truncated or opened for appending– with

MODE_APPEND.

Figure 8 is a simple example of creating an example file that can be read by anyone.

fos = openFileOutput("PublicKey", Context.MODE_WORLD_READABLE);

Figure 8 Creating a World Readable file to write a public key into

The resultant FileOutputStream (called fos above) can be written to only by this process, but read by

any program on the system should you wish to share it.

This interface of passing in flags that indicate files are world-readable or world-writable is simpler than

the file permissions Linux supports but should be sufficient for most applications
38

. Generally any code

that creates data that is world accessible must be carefully reviewed to consider:

 Is anything written to this file sensitive?
39

 Could a change to this data cause something unpleasant or unexpected to happen?

o Is the data in a complex format whose native parser might have exploitable

vulnerabilities?
40

 If world-writeable, do you understand that a bad program could fill up the phones memory and

your application would get the blame?
41

37
 World is also known as other, so MODE_WORLD_WRITEABLE creates other writeable files, like the command

―chmod o+w somefile‖ does.
38

 To experiment with full Linux file permissions you could try executing chmod, or the ―less documented‖

android.os.FileUtils class’s static method setPermissions(), which takes a filename, a mode uid and gid.
39

 For example something you only know because of a permission you have.
40

 Historically a lot of complex file format parsers written in C or C++ have had exploitable parser bugs.
41

 This kind of anti-social behavior might happen. Because the file is stored under your application’s home directory, the

user might choose to fix the problem by uninstalling your program or wiping its data.

Black Hat USA 2009 Page 22

Obviously executable code like scripts, libraries or configuration files that specify which components,

sites or folders to use would be bad candidates for allowing writes. Log files, databases or pending

work would be bad candidates for world readability.

SharedPreferences is a system feature that is backed by a file with permissions like any others. The

mode parameter for getSharedPreferences(String name, int mode) uses the same file modes defined by

Context. It is very unlikely you have preferences so unimportant you don’t mind if other programs

change them. I recommend avoiding using MODE_WORLD_WRITEABLE, and suggest searching for

it when reviewing an application as an obvious place to start looking for weaknesses.

Mass Storage
Android devices are likely to have a limited amount of memory on the internal file system. Some

devices may support larger add on file systems mounted on memory cards however. For example, the

emulator supports this with the –sdcard parameter, and it is referenced repeatedly in Android’s

documentation. Storing data on these file systems is a little tricky. To make it easy for users to move

data back and forth between cameras, computers and Android, the format of these cards is VFAT. VFAT

is an old standard that doesn’t support the access controls of Linux, so data stored here is unprotected.

You should inform users that bulk storage is shared with all the programs on their device, and

discourage them from putting really sensitive stuff there. If you need to store confidential data you can

encrypt it, and store the tiny little key
42

 in the application’s file area, and the big ciphertext on the

memory card. As long as the user doesn’t want to use the storage card to move the data onto another

system this should work. You may need to provide some mechanism to decrypt the data and

communicate the key to the user if they wish to use the memory card to move confidential data

between systems.

42
 A tiny 128 bit key is actually very strong. You can probably generate it at random as users will never need to see it. But

think about the implications for backups before trying this.

Black Hat USA 2009 Page 23

Binder Interfaces

Binder is a kernel device driver that uses Linux’s shared memory feature to achieve efficient, secure

IPC. System services are published as Binder interfaces and the AIDL (Android Interface Definition

Language) is used not just to define system interfaces, but to allow developers to create their own

Binder clients and servers. The terminology can be confusing, but servers generally subclass

android.os.Binder and implement the onTransact() method while clients receive a binder interface as an

android.os.IBinder reference and call its transact() method. Both transact() and onTransact() use

instances of android.os.Parcel
43

 to exchange data efficiently. Android’s support for Binder includes the

interface Parcelable. Parcelable objects can be moved between processes through a Binder.

Under the covers, a Binder reference is a descriptor maintained by the Binder device (which is a kernel

mode device driver). Binder IPC can be used to pass and return primitive types, Parcelable objects, file

descriptors (which also allows memory maps), and Binders. Having a reference to a binder interface

allows calls to its interface (i.e. call transact() and have a corresponding call to onTransact() occur on

the server side) — but does not guarantee that the service exposing the interface will do what the caller

requests. For example, any program can get a reference to the Zygote system service’s Binder and call

the method on it to launch an application as some other user, but Zygote will ignore such requests from

unauthorized processes.

Binder security has two key ways it can enforce security: by checking the caller’s identity, and by

Binder reference security.

Security by Caller Permission or Identity Checking
When a Binder interface is called, the identity of the caller is securely provided by the kernel. Android

associates the calling application’s identity
44

 with the thread on which the request is handled. This

allows the recipient to use their Context’s checkCallingPermission(String permission) or

checkCallingPermissionOrSelf(String permission) methods to validate the caller’s rights. Applications

commonly want to enforce permissions they don’t have on callers and so

checkCallingPermissionOrSelf(String permission) allows the application to still call itself even if it

lacks the normally needed permission. Binder services are free to make other binder calls, but these

calls always occur with the services own identity (UID and PID) and not the identity of the caller.

Binder services also have access to the callers identity using the getCallingUid() and getCallingPid()

static methods of the Binder class. These methods return the UID and process identifier (PID) of the

process which made the Binder call. The identity information is securely communicated to the

implementer of a Binder interface by the kernel
45

.

43
 The native implementation of this Parcel formats data as it is expected by the kernel mode Binder device.

44
 The application’s UID, and its process’s current PID are provided.

45
 This is similar to how UNIX domain sockets can tell you the identity of the caller, or most IPC mechanisms on win32.

Black Hat USA 2009 Page 24

A Binder interface can be implemented a number of ways. The simplest is to use the AIDL compiler to

create a Stub class which you then subclass. Inside the implementations of the methods the caller is

automatically associated with the current thread so calling Binder.getCallingUid() identifies the caller.

Developers who direct requests to handlers or implement their own onTransact() (and forego AIDL)

must realize the identity of the caller is bound to the thread the call was received upon and so must be

determined before switching to a new thread to handle a request. A call to Binder.clearCallingIdentity()

will also stop getCallingUid() and getCallingPid() from identifying the caller. Context’s

checkPermission(String permission, int pid, int uid) method is useful for performing permission checks

even after the callers identity has been cleared by using the stored UID and PID values.

Binder Reference Security
Binder references can be moved across a Binder interface. The Parcel.writeStrongBinder() and

Parcel.readStrongBinder() methods allow this and provide some security assurances. When reading a

binder reference from a Parcel with readStrongBinder() the receiver is assured (by the kernel’s binder

driver) that the writer of that binder had a reference to the received binder reference. This prevents

callers from tricking servers by sending guesses of the numerical value used in the server’s process to

represent a Binder the caller doesn’t have.

Getting a reference to a Binder
46

 isn’t always possible. Because servers can tell if callers had a

particular binder, not giving out references to a Binder can effectively be used as a security boundary.

While Zygote might not protect its binder interfaces from exposure, many Binder objects are kept

private. To use reference security, processes need to carefully limit the revealing of Binder objects.

Once a process receives a Binder it can do whatever it likes with it, passing it to others or calling its

transact() method.

Binders are globally unique, which means if you create one nobody else can create one that appears

equal to it. A Binder doesn't need to expose an interface, it might just serve as a unique value. A Binder

can be passed between cooperating processes. A service could provide callers a Binder which acts as a

key, knowing that only those who receive the key (or had it sent to them) could later send it back. This

acts like an unguessable, easily generated password. The Activity Manager uses the reference nature of

Binders to control management of Surfaces and Activities.

46
 By Binder, I mean a reference to a binder interface. When programming in Java these are represented by an

android.os.Binder object.

Black Hat USA 2009 Page 25

Conclusion

Android applications have their own identity enforced by the system. Applications can communicate

with each other using system provided mechanisms like files, Activities, Services, BroadcastReceivers,

and ContentProviders. If you use one of these mechanisms you need to be sure you are talking to the

right entity — you can usually validate it by knowing the permission associated with the right you are

exercising. If you are exposing your application for programmatic access by others, make sure you

enforce permissions so that unauthorized applications can’t get the user’s private data or abuse your

program. Make your applications security as simple and clear as possible. When communicating with

other programs, think clearly about how much you can trust your input, and validate the identity of

services you call. Before shipping, think about how you would patch a problem with your application.

A note on ―root‖ access: code with root access, like knives or fire, is both useful and dangerous.

Obviously some system processes like the Zygote need root to do their jobs. You have probably found

that on the emulator it is easy to become root (su, adb shell, etc.) but Android distributions trying to

slow recovery of data from lost phones or meet government regulations might not allow this. You may

find yourself needing root access, for example to create some super encrypted and compressed virtual

memory feature. This sort of thing is easy for custom builds of Android, running on emulators. Turning

on security is actually a feature of an Android distribution. If the SystemProperty ―ro.secure‖ is not set

to 1, then the platform makes little effort at security. As much fun as it is to run Android on an emulator

though, many developers will want their custom builds to work on phones too. For this a development

platform
47

 or a hardware platform with a friendly bootloader
48

 that will let you load your code is

needed.

This background information should be sufficient for you to be able to understand the presentation I

will be making at Black Hat USA. It also includes most of the information provided in my developers

guide for creating secure Android applications. Understanding Android application security is the

starting point, not the end point for being able to understand Android distribution security. The tools I

am presenting will help us look at whole distributions, and proprietary extensions to understand what

we are dealing with and the security issues they

47
 OpenMoko is open, although porting hasn’t been done as of this writing.

48
 A bootloader is the code that a device uses to start. Some loaders attempt to prevent the loading of custom software, this

helps you feel better if you lost a phone that had personal data on it – but also inhibits deployment of custom builds.

Black Hat USA 2009 Page 26

Acknowledgements

This material is based on the developers guide the author published in 2008, shortly after the open-

sourcing of the Android platform. Acknowledgements to the people that helped in writing that are given

in the guild, which is maintained at

http://www.isecpartners.com/files/iSEC_Securing_Android_Apps.pdf. I would also like to thank Black

Hat USA, which is providing the venue for the release of my tools and my presentation of on Android

internals and security.

Android Terminology

Activity – A screen that a user interacts with. When you create an Android application the default is to

create an Activity for it. Android’s ―hello world‖ program uses an single Activity.

Activity Manager – A system program that manages Activitys, Receivers, Services, low memory

conditions, as well as some IPC dispatching. Its Binder is available through getSystemService(String).

AIDL – Android Interface Definition Language, an object oriented interface description language that

makes it easy to communicate over Binders between processes. Optimized for Java but workable in C.

AndroidManifest.xml – A main file every application uses to define itself to the system. The starting

point for Android security where Activities, BroadcastReceivers, Services, ContentProviders,

permissions and the need for permissions are all declared.

Binder – This is a real thing in your address space, it has a unique identity and is known about by the

underlying OS. If you make one and I make one they aren’t identical, if I send you mine and you send

it back I can tell that it isn’t some other Binder even though they don’t have little names on them. You

can use a Binder to talk between processes, or as an unforgeable token.

Linux – The famous Linux kernel. Used by Android and extended to support Binder and friends at

http://git.android.com.

Parcelable – An interface that allows something to be put in a Parcel. This interface is usually needed

to send an object over a Binder interface. Intents and Bundles are two common Parcelable classes.

Permission – The right to do something. There are many ways of expressing permissions; Android

introduces Manifest Permissions which take up a few pages in this paper.

Reference Security – Capabilities is one notion of how security can be implemented by passing

unforgeable tokens that represent authority around. Binders are references that can be used this way.

Side Loading – Direct user installation of applications, for example a website with an .APK users can

directly install from the browser. Note that self-signed certificates don’t prevent active network

attackers from changing the code, so always install over SSL!

http://www.isecpartners.com/files/iSEC_Securing_Android_Apps.pdf

Black Hat USA 2009 Page 27

Works Cited

Chu, E. (2008, August 28). Android Market: a user-driven content distribution system. Retrieved

August 30, 2008, from Android Developer's Blog: http://android-

developers.blogspot.com/2008/08/android-market-user-driven-content.html

Google Inc. (2008, August 29). Security and Permissions in Android. Retrieved August 30, 2008, from

Android - An Open Handset Alliance Project: http://code.google.com/android/devel/security.html

Burns, Jesse (2009, October) DEVELOPING SECURE MOBILE APPLICATIONS FOR ANDROID.

http://www.isecpartners.com/files/iSEC_Securing_Android_Apps.pdf

	/
	Introduction
	The Android Security Model
	Security Responsibilities of Developers
	Android Permissions Review
	Creating New Manifest Permissions

	Intents
	Intent Review
	Intent Filters

	Activities
	Broadcasts
	Receiving Broadcast Intents
	Safely Sending Broadcast Intents
	Stick Broadcasts

	Services
	ContentProviders
	Avoiding SQL injection

	Intent Reflection
	Files and Preferences
	Mass Storage

	Binder Interfaces
	Security by Caller Permission or Identity Checking
	Binder Reference Security

	Conclusion
	Acknowledgements
	Android Terminology
	Works Cited

