

BitTorrent Protocol Abuses

Written by Michael Brooks and David Aslanian

Introduction

The BitTorrent protocol is now 7 years old. The protocol has become wildly successful in a very

short period of time, but with this success comes growing pains. The protocol originally

envisioned by Bram Cohen is fairly secure. Vulnerabilities have been introduced by people

trying to do things with the protocol that it was never meant to do. BitTorrent was never meant

to be an exclusive protocol; however private BitTorrent networks are increasing in popularity.

Most vulnerabilities can be identified by a Common Vulnerability and Exposure (CVE) number.

Currently there are 36,976 vulnerabilities classified by this system
i
. Most CVE numbers fall into

specific categories and given a Common Weakness Enumeration (CWE) number. For instance,

all SQL Injection Vulnerabilities are classified by CWE-89.

In the current BitTorrent Specification there are three CWE violations.

Immortal Sessions

All private BitTorrent communities are vulnerable to CWE-384
ii
 (Session fixation) which ranks

in at Number 7 of the OWASP top 10
iii

. All BitTorrent Clients authenticate with private trackers

using a session ID sent as a GET parameter. This value cannot be changed because there is no

system in the protocol to notify the BitTorrent client of a new Session ID.

One could exploit this vulnerability by sniffing the network for announce requests or .torrent

files. Another tried and true method is XSS in the web application. Due to this session fixation

vulnerability, SQL Injection in the tracker leads to immediate access without need to break a

password hash. Often immortal session Ids are a password hash, which is the case with many of

the private BitTorrent networks. Password hashes should always be kept secret. The hashing of

passwords is meant to be a last line of defense after the database has been compromised, but

many programmers don't understand this principle.

Client Side Trust

Another vulnerability that exists in every private network is CWE- 602
iv

 “Client-Side

Enforcement of Server-Side Security” otherwise known as Client Side Trust. With every

announce request the client is expected to report on how much they have uploaded, downloaded

and how much is remaining to download. Private BitTorrent networks use these announce

requests to enforce a share ratio. For instance some Private BitTorrent networks will impose a

50% ratio, in which you must upload ½ as much as you download. The tools used to spoof this

information are well known. These simple tools send HTTP GET requests informing the tracker

that the client has uploaded data, when in fact little or no data has been uploaded by the

BitTorrent client. RatioMaster is an example of a spoof client. However some BitTorrent

communicates have been able to detect this method. One approach to detecting this type of

cheating by looking at a large jump in the amount of data transferred. Another approach would

be to identify clients that are uploading when no “leechers” are present.

A more difficult to detect method is if the BitTorrent client lies to the tracker saying that it hasn't

transferred any data. In addition the client never reports that the transfer as completed. From the

announce server's perspective the BitTorrent client is unable to contact other people in the

swarm, which could happen under legitimate conditions. The BitTorrent client used to

accomplish this is called StealthBomber. Modifications where to the original Python BitTorrent

5.2.2 client written by Bram Cohen to produce this client. The StealthBomber is open source

and can be download here: http://code.google.com/p/bittorrenthacks/

Man in the Middle Attack Against Message Stream Encryption

The 3
rd

 vulnerability to affect BitTorrent falls under CWE – 300
v
 (Channel Accessible by Non-

Endpoint) better known as a “Man in the Middle” attack. This is a vulnerability in the MSE

protocol used for BitTorrent encryption. This is not the first security problem discovered that

affects MSE. A company by the name of Ipoque is able to detect and throttle MSE traffic using

Deep Packet Inspection.
vi

 Further more, a research paper titled Attacks on Message Stream

Encryption
vii

 goes over many problems with MSE. The biggest problem with this paper is that

many of the attacks discussed are highly theoretical and may not possible in the real world. To

make matters worse not source code has been provided to prove or otherwise verify any of the

attacks presented in the paper. The attack on MSE discussed in this paper was developed

without knowledge of the paper “Attacks on Message Stream Encryption”, and source code to

the following attack is public.
viii

Threat profiling is the most important part of building a cryptographically secure protocol. The

engineer must be very clear on what he is trying to defend against and must use what is already

available. Good engineering is standing on the shoulders of giants. MSE on the other hand is re-

inventing the wheel. In fact some of the threats facing protocols like MSE where discussed in

the fundamental paper “New Directions In Cryptography“ written by Whitfield Diffie and Martin

E. Hellman in 1976.
ix

 If the engineers that built MSE had read “New Directions In

Cryptography”, they probably would have built their protocol differently.

What is MSE's threat model?

The following quote is from the MSE specification on bittorrent.org.
x

“The objective is NOT to create a cryptographically secure protocol that can survive unlimited

observation of passing packets and substantial computational resources on network timescales.

The objective is to raise the bar sufficiently to deter attacks based on observing ip-port numbers

in peer-to-tracker communications. ”

http://code.google.com/p/bittorrenthacks/

In the reference for the protocol its self they are saying that its insecure. It doesn't go out and say

it explicitly, but the whole reason why MSE was made was to fool ISPs’ traffic throttling ability.

Your ISP is a very powerful threat. You have to ask the ISP to use their wires and their routers to

access their network.

What are some of the problems with MSE?

MSE uses RC4, which is proven to be weak by the Fluhrer, Mantin and Shamir attack. This

attack is most notably used in cracking WEP. MSE is using RC4-drop 1024 in an effort to

improve RC4, but this isn’t a perfect fix. When AES is implemented properly, it is far more

secure than RC4 and that’s why AES is implemented in WPA2. Many of the other attacks

developed to speed up WEP cracking are not possible with MSE.

The real problem with MSE is how the RC4 keys are generated. Currently, MSE is using a

SHA1 hash to generate the RC4 key. The RC4 key is a 20 byte SHA1 hash. The key is base-256,

which is a full byte. Cryptographically secure keys should always be a full byte, and this is

similar to the string-to-key function outlined in RFC 2440
xi

. However, this is an unnecessary

calculation, a protocol with equivalent security could be built without ever having to make this

SHA1 calculation. Instead the key generation could rely on randomly generated numbers which

are cheaper to calculate. During a handshake each client must make two SHA1 hash calculations

which is a waste.

The SHA1 hash contains three elements. The first element is a static string “KeyA”. This would

make a prefixing attack against SHA1 much more difficult. The problem is that the attacker

shouldn't know the hash in the first place so generating a collision is out of the question. This is

probably a novice's mistake that just ends up wasting resources. The second element is a shared

secret derived from a Diffie-Hellman (DH) key exchange. DH key exchanges are very important

as they provide a shared secret. It all comes down to secrets and lies, this is the title of a great

book by Bruce Schneier. How do you keep a secret? How do you tell if someone is lying?

Modern cryptography has powerful tools to answer these two important questions.

DH key exchanges allow you to share a secret with someone. If the person lies about who they

are, then your secret is worthless. This is where Man In The Middle attacks come into play.

SSL/TLS also uses a DH key exchange; however, SSL/TLS is accompanied by a public-key and

often a Public Key Infrastructure (PKI) to verify identity.

This leads us to the third and final element of the RC4 key which is the “infohash” of the torrent.

The “infohash” is a SHA1 hash of the “info” sub-tree contained in the .torrent file. There are

three ways that this “infohash” can be leaked to a passive observer. The infohash is apart of

every announce and scrape request that the BitTorrent client sends to the BitTorrent tracker. This

is ideal from the attacker perspective because a scrape request must be sent prior to any MSE

connection. The “infohash” is also contained in the handshakes with other peers in the swarm.

Finally the “infohash” could be obtained by sniffing the transfer of the .torrent file.

MSE does have a specification for announce requests should use a SHA1 hash of the infohash.

There are a few problems with this. The biggest is that I can't find a single announce server that

supports this feature and thus it is never used. Also the double-SHA1 could be easily cracked if

the attacker had a database of all known infohashes. An ISP could build a very inclusive

database of known infohashes and their corresponding double-sha1 counter parts (a rainbow

table) by monitoring their entire network. Keeping such a widely used piece of information a

secret is not practical. Further more, no static string should ever be used for this type of identity

verification. There is a strong parallel between this use of the double-sha1 “infohash” and the

use of a password’s message digest as a session ID (which was discussed at the beginning of the

paper).

What is the problem with a static string, and what makes asymmetric cryptography so important?

A static string is like a password. In order to use a static string for authentication, it must first be

distributed. Securely transmitting the static string is difficult, and a successful attack would mean

that the secret could be reused by anyone indefinitely. In contrast, when a public key is used to

verify the authenticity of a signature, your private key remains a secret. Hence, this means of

authentication does not sacrifice your identity. That is to say, an attacker could not then use your

signature to claim to be you. Specifically in terms of MSE the static string can be guessed. In

the source code provided for MSE MITM, we make the assumption that we don’t know the exact

key used for an incoming connection. We are given cipher text, but we are missing the exact

“infohash” portion of the RC4 key. Within the MSE protocol 8 null bytes are used to verify that

the RC4 cipher-text stream has been decrypted properly, this is referred to a Verification Check

(VC). This check can be used against the protocol. We can loop though a list of probable keys,

when the 8 null bytes are decrypted present in the decrypted message we know we have the

correct “infohash” and we can complete the handshake.

Ideal Conditions for MSE.

So, what if the .torrent file was sent over a proper HTTPS connection? What if all peer

communication was also encrypted with MSE? What if the announce server was also over

HTTPS or supported MSE? What if the .torrent file was on a private network? If all these

conditions were met, then the attacker could not complete the RC4 key and therefore could not

act as Man In The Middle.

There are a number of problems with this scenario. First of all, there is nothing forcing the client

to use HTTPS. Nothing is forcing the Tracker to use MSE, and I can't find a single Tracker that

supports it! The cryptographic chain is broken. In fact, I suspect that every single BitTorrent

client is leaking the very secret that MSE relies on.

There is yet another problem; only two BitTorrent clients (Opera and uTorrent under Windows)

will verify HTTPS properly. At the time of this writing uTorrent under Wine doesn’t even

support https. Many BitTorrent clients don't even bother to verify the TLS certificate and

always assume it is valid. An advanced attack such as SSLStrip isn't required; dsniff is more than

enough to carry out this attack. Azurues/Vuze, which was the first to implement MSE does not

recognize any Certificate Authority as valid, which is just as bad. Unauthenticated HTTPS

carries the exact same Man In The Middle problem as MSE. HTTPS is similar to MSE, they are

both using a DH key exchange and HTTPS can also use RC4. Due to compatibility, no client by

default forces MSE, so the key is being leaked in handshakes to other peers in the swarm. Most

BitTorrent communication is done using public trackers such as ThePirateBay.org and thus all of

the infohashes are public knowledge.

MSE can defend against a specific attack, and that is NSA Signal Intelligence. To this date, the

vast majority of the spying being conducted on US Citizens has been passive. In this case, MSE

does quite well. I bet there is an NSA guy thinking to himself: “Yeah, I can break that tiny RC4

key with one command my big ass server farm.”

A Real Solution

So what is the solution to all of these problems? MSE should never have been built! Let me be

very clear, MSE was built by people who don’t fully understand the cryptographic systems they

are using. MSE is wasteful of resources and does not provide the type of protection that the

authors desired. In fact, the solution to traffic shaping and keeping your data a secret existed

long before BitTorrent. The answer is SSL, which is now called TLS. TLS is both efficient and

effective, two things that MSE is not.

TLS or Transport Layer Security is the solution and should have been used from the very

beginning. TLS is an encrypted tunnel for the OSI Layer 4 otherwise known as the Transport

Layer. This means that it doesn't matter what the Application Layer looks like, the traffic will

indistinguishable to the attacker. If BitTorrent used TLS then an ISP could not disrupt it without

affecting HTTPS and other TLS dependent protocols. To make BitTorrent disruption even more

difficult, clients can change their communication port to 443 or another port commonly used by

TLS. However, in more extreme cases such as Iran, encrypted communication is

indiscriminately blocked.
xii

 An even more extreme solution is required to circumvent this

terrible practice.

A very important feature of TLS is that it supports the ability to resume handshakes. This makes

it so that only one TLS handshake is required per user in the swarm, even though the clients are

continuously connecting and disconnecting from each other. Resuming TLS handshakes is an

important part of FTP over TLS.
xiii

 I suspect that the authors of MSE didn’t know of this

property of TLS, which could have been their motivation for reinventing the wheel.

Another important feature of TLS is that both the server and the client can verify each other’s

identity! This addresses the session fixation issue described earlier between the client and

tracker. BitTorrent clients could also authenticate other peers in the swarm. This is an effective

means of securing private BitTorrent networks. But who would be the Certificate Authority?

Verisign doesn't support piracy and their trust is expensive! Furthermore, I don't trust Verisign,

but we all are forced to. The best solution is that the BitTorrent tracker could also be a

Certificate Authority. If a member of the community is kicked out, their certificate could be

revoked immediately. OpenCA is free and simple to use, with minor modifications I believe it

could be an effective Certificate Authority for BitTorrent networks.

i
 http://cve.mitre.org/cve/ (Total CVEs given in the upper right)

ii
 http://cwe.mitre.org/data/definitions/384.html (Session Fixation)

iii
 http://www.owasp.org/index.php/Top_10_2007-A7 (Broken Authenticantion and Session Management)

iv
 http://cwe.mitre.org/data/definitions/602.html (Client-Side Enforcement of Server-Side Security)

http://cve.mitre.org/cve/
http://cwe.mitre.org/data/definitions/384.html
http://www.owasp.org/index.php/Top_10_2007-A7
http://cwe.mitre.org/data/definitions/602.html

v
 http://cwe.mitre.org/data/definitions/300.html (Man In the Middle)

vi
 http://www.prweb.com/releases/2007/04/prweb521773.htm (Improved Identification of Encrypted P2P Protocols)

vii
 http://www.tcs.hut.fi/Publications/bbrumley/nordsec08_brumley_valkonen.pdf (Attacks On Message Stream

Encryptoin)
viii

 http://code.google.com/p/bittorrenthacks/ Source Code for A MITM against MSE.
ix

 http://www.cs.rutgers.edu/~tdnguyen/classes/cs671/presentations/Arvind-NEWDIRS.pdf (New Directions in

Cryptography)
x
 http://www.bittorrent.org/beps/bep_0008.html

xi
 http://www.ietf.org/rfc/rfc2440.txt (OpenPGP Message Format)

xii
 http://asert.arbornetworks.com/2009/06/a-deeper-look-at-the-iranian-firewall

xiii
 http://en.wikipedia.org/wiki/Secure_Sockets_Layer#Resumed_TLS_handshake

http://cwe.mitre.org/data/definitions/300.html
http://cwe.mitre.org/data/definitions/300.html
http://cwe.mitre.org/data/definitions/300.html
http://www.prweb.com/releases/2007/04/prweb521773.htm
http://www.tcs.hut.fi/Publications/bbrumley/nordsec08_brumley_valkonen.pdf
http://code.google.com/p/bittorrenthacks/
http://www.cs.rutgers.edu/~tdnguyen/classes/cs671/presentations/Arvind-NEWDIRS.pdf
http://www.bittorrent.org/beps/bep_0008.html
http://www.ietf.org/rfc/rfc2440.txt
http://asert.arbornetworks.com/2009/06/a-deeper-look-at-the-iranian-firewall
http://en.wikipedia.org/wiki/Secure_Sockets_Layer#Resumed_TLS_handshake

