
[Black Hat USA 2009]  Anti-Forensics: The Rootkit Connection 

  1 | Below Gotham Labs 

 

  

 Black Hat USA 2009  
  Conference Proceedings 

 

 

 

Anti-Forensics: The Rootkit Connection 

 
Bill Blunden 
Principal Investigator  
Below Gotham Labs   
www.belowgotham.com 
 

 

 

 

Abstract 

Conventional rootkits tend to focus on defeating forensic live incident response 

and network monitoring using a variety of concealment strategies (e.g. hooking, 

detour patching, covert channels, peer-to-peer communication, etc.). However, 

the technology required to survive a post-mortem analysis of secondary storage, 

which is just as vital in the grand scheme of things, recently doesn’t seem to have 

garnered the same degree of coverage. In this paper, we’ll examine different 

approaches to persisting a rootkit and the associated anti-forensic tactics that can 

be employed to thwart an investigator who’s performing an autopsy of a disk 

image. 
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Introduction 

―If the campaign is protracted, the resources of the state  

Will not be equal to the strain‖ 

—Sun Tzu 

 

Though live incident response has its place, particularly on mission-critical 

systems, it suffers from a notable flaw: a rootkit being pursued at runtime is a 

part of the machine’s execution state and is in a unique position where it can 

interfere with data collection.     

 

For example, back in March of 2005, forensic investigators from the Swedish 

Telecom Manufacturer Ericsson identified a rootkit that had been installed on a 

series of switches in central offices run by Vodafone Greece, the largest cell 

phone service provider in the country. Engineers at Vodafone inadvertently 

stumbled across the rogue software after its auto-update mechanism prevented 

the delivery of a text message (which generated an audit trail in the system’s 

error logs). This memory-resident rootkit survived for as long as it did because it 

patched the switch’s runtime image to conceal its presence and also modified the 

system’s native integrity checking facilities to make it appear as though nothing 

had been altered [1].    

 

The forensic software vendors who sell live response tools usually downplay the 

threat of rootkit interference.  For example, Technology Pathways sells a forensic 

toolkit called ProDiscover IR. According to the online help for this product [2]: 

 

“Some administrators will suppose that if a rootkit could hook (replace) File I/O 

request they could simply hook the sector level read commands and foil the 

approach that applications such as ProDiscover® IR use.  While this is true on 

the most basic level, hooking kernel sector read commands would have a trickle-

down effect on all other kernel level file system operations and require a large 

amount of real-to-Trojaned sector mapping and/or specific sector placement for 

the rootkit and supporting files. This undertaking would not be a trivial task even 

for the most accomplished kernel mode rootkit author.” 

 

As it turns out, the very same countermeasure that Technology Pathways brushed 

off as unlikely was presented by Darren Bilby at Black Hat Japan 2006 in a 

proof-of-concept rootkit called DDefy [3]. This rootkit employed a filter driver 

that intercepted IRP_MJ_READ I/O requests on their way to the official disk 
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driver so that requests for certain sectors could be altered to yield sanitized 

information. In this manner, a valid drive snapshot is generated that excludes the 

rootkit.    

 

In an effort to deal with rootkit interference, some security tools vendors tried to 

sidestep the OS entirely and go right to the hardware to collect data with the 

guarded expectation that they’d be able to preclude a rootkit’s involvement. For 

instance, a security tool vendor named Komoku (which was acquired by 

Microsoft in March of 2008 [4]) at one point offer a hardware-based RAM 

capturing tool named CoPilot. This tool used a PCI card to allow the investigator 

to extract a snapshot of a running computer’s volatile memory.   

 

Enter Joanna Rutkowska, who demonstrated at Black Hat Federal 2007 that it 

was possible to defeat this sort of hardware-based approach by fiddling with the 

map table of the motherboard’s Northbridge [5]. In other words, it’s entirely 

feasible for rootkit to foil hardware-based forensic tool by manipulating related 

motherboard components that the forensic tool relies upon to read memory. After 

all, peripheral devices don’t exist in a vacuum; they depend upon other hardware 

elements that can be subverted by a knowledgeable attacker.   

 

There’s a lesson in this race to the metal. If a rootkit has embedded itself on your 

server: even if you go straight to the hardware you can’t necessarily trust what 

the server is telling you at runtime because the rootkit may somehow be altering 

the information that’s being acquired.  

Post-Mortem Dance Steps 

Given the quandary of live incident response, one option that an investigator can 

exercise during an investigation is to power down the server in question so that 

they can examine the machine’s drives from a trusted forensic workstation. This 

is assuming that it’s financially and legally tenable to do so.   

 

Once a machine has been powered down, the classic post-mortem tends to follow 

a step-wise sequence of actions (see Figure 1). The investigator will begin by 

creating a duplicate image of secondary storage and then recover files from this 

replica with the immediate goal of collecting as large a data set as possible. To 

this end they may attempt to carve out deleted files, file fragments, alternate data 

streams, slack space, and other assorted ―hidden‖ items. 
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Next, they’ll take the resulting set of file system objects and generate a meta-data 

snap-shot (e.g. timestamps, checksums, etc.) which they’ll use to help them weed 

out ―known‖ file system objects.  

 

Once they’ve identified known ―good‖ and ―bad‖ objects, what they’re left with 

is a subset of unknown files. These unknown files will then take center stage for 

the remainder of the investigation. The analyst will search for binary signatures 

in an effort to locate executables and then dissect what they find using the tools 

of static and runtime executable analysis. 

 

 

 
 

 

In this paper, we’ll look at each phase of secondary storage analysis in turn and 

discuss ways in which an intruder can undermine the process and permit their 

rootkit to remain undetected. Ultimately, no countermeasure is perfect; there are 

tradeoffs and downsides associated with every technique. The basic idea is to 

leave as little evidence as possible, and to make the evidence that you do leave 

behind so expensive to analyze that the investigator is more likely to give up or 

perhaps be drawn to an incorrect, but more convenient, conclusion. 

Worst-Case Scenario 

Ultimately, the degree to which you’ll need to employ anti-forensic measures is a 

function of the environment that you’re targeting. In the best-case scenario, 

you’ll confront a bunch of overworked, apathetic, system administrators who 

could care less what happens just as long as their servers are running and no one 

is complaining (―availability all at costs!‖). In this instance, you could probably 

Figure 1 

Disk Analysis 
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get away with hiding in plain sight: camouflaging your rootkit so that it looks 

legitimate to a cursory inspection. As long as you don’t do anything reckless, 

you’ll probably coast quietly under the radar. 

 

In the worst-case scenario, you’ll be going toe-to-toe against a skilled 

investigator who has the resources, motivation, skill set, and authority to do what 

they need to in order to track you down. You know the sort of person. They’re 

passionate, results-oriented, and constantly honing their skills. For grins they buy 

used hard drives off of eBay just to see what they can recover.  

 

NOTE 

For the sake of keeping this discussion interesting, we’re going to assume the 

worst-case scenario.    

 

In a truly locked-down environment, it’s not unheard of for security professionals 

to assume that one of their systems has been compromised a priori, and 

preemptively employ forensic techniques to flush out an intruder. In other words, 

even if a particular system appears to be perfectly healthy they’ll utilize a 

rigorous battery of auditing and verification procedures to confirm that it’s 

trustworthy.     

Strategies for the Worst-Case 

There’s no such thing as a burglar-proof safe. With the right tools and know-

how, it’s usually just a matter of time before you crack it open. This is why the 

Underwriters Laboratories rates safes in terms of their resistance to a specific set 

of tools for a certain period of time. For example, a safe that’s designated with a 

rating of TRTL-30x6 can withstand hand tools (TL) and torch (TR) attack on all 

six sides for 30 minutes.  

 

Likewise, there’s no such thing as a foolproof anti-forensic tactic. With the right 

tools and know-how, it’s just a matter of time before a savvy forensic 

investigator will overcome the fortifications that you’ve established. Given that 

an impenetrable defense is fairly unrealistic, the goal then is to buy as much time 

as you can.  

 

This central tenet is based on the reality that every investigator has a resource 

budget. Even well-funded, dedicated, forensic analysts who are willing to work 

in their off hours have a finite amount of time they can devote to any particular 



[Black Hat USA 2009] Anti-Forensics: The Rootkit Connection 

 Below Gotham Labs | 8 

case. Can you imagine someone with a backlog of machines and a supervisor 

who’s breathing down their neck?  

 

Naturally, a forensic analyst will leverage automation to ease their workload and 

speed things up. There’s an entire segment of the software industry that caters to 

this need. Even then, there’s always that crucial threshold where relying on the 

output of an expensive point-and-click tool simply isn’t enough. In some cases, 

an appropriate tool won’t exist and will have to be custom built, requiring yet 

more effort.  

 

As an attacker, your goal is to make the process of forensic analysis so grueling 

that the investigator is more likely to give up or perhaps be lured into 

prematurely reaching a false conclusion (one that you’ve carefully staged for just 

this very reason) because it represents a less painful, though logically viable, 

alternative. Put another way: why spend twenty years agonizing over a murder 

case when you can just as easily rule it out as a suicide? This explains why 

certain intelligence agencies prefer to eliminate enemies of the state by means of 

an ―unfortunate accident.‖      

 

To buy time and lead the investigator astray, you can employ five general 

strategies. Every anti-forensic tactic that a rootkit uses to evade a post-mortem 

disk examination can be seen as a manifestation of one or more of these 

strategies (see Table-1). This framework is an amalgam of categories originally 

presented by the grugq [6] and Marc Rogers [7].    

 

Strategy Tactical Implementations 

Data Destruction File scrubbing, Meta-data wiping, File System Attacks 

Data Concealment In-Band, Out-of-Band, and Application Layer Concealment 

Data Transformation Compression,  Encryption, Code Morphing, Direct Edits  

Data Fabrication Introduce known files, String decoration, False audit trails 

Data Source Elimination Data Contraception, In-Memory DLL Injection  

 

To reiterate our objective in terms of these five concepts:  

 

If your rootkit persists on disk then you want to buy time by leaving as little 

useful evidence as possible (data destruction).  

 

The evidence that you do leave behind should be difficult to capture (data 

concealment) and even more difficult to understand (data transformation).  

Table 1 

Core Strategies 
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Furthermore, you can augment the effectiveness of this approach by planting 

counterfeit leads and luring the investigator into following any number of false 

trails (data fabrication).  

 

Though, to be honest, probably the best way to foil the investigator is not to leave 

any evidence to begin with (data source elimination).  

 

NOTE 

Some anti-forensic treatments consider attacking the investigator’s forensic tools 

directly (e.g. leveraging a bug, or logical flaw, in the tool to run an exploit on the 

investigator’s machine or implement a denial-of-service attack). I’m going to shy 

away from this sort of instance-specific strategy in favor of focusing on more 

transferable technology that’s not as conspicuous.     

Disk Analysis: Tactics and Countermeasures 

"If you know the enemy and know yourself, you need not  

Fear the result of a hundred battles."  

—Sun Tzu 

 

The basics of forensic disk analysis are well-known. Entire books have been 

devoted to the topic [8]. We can pretty much predict what a skilled investigator 

will do, why they’ll do it, and this gives us a certain advantage. Let’s see what 

weapons we have at our disposal to make the investigator’s life miserable.   

Defense in Depth 

As I mentioned earlier, no counter-tactic is perfect. Thus, you should adopt a 

defense in-depth approach that takes several tactics and institutes them 

concurrently so that the minute that the investigator leaps one hurdle they fly 

head-first into the next one. Play your cards right and the forensic investigator 

just might throw their arms up and resign themselves to the most obvious 

conclusion.  
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Forensic Duplication 

In an effort to preserve the scene of the crime, so to speak, the investigator will 

create a duplicate of the original hard drive. This first-generation copy can then 

be used to spawn a number of second-generation copies, so that the original can 

be bagged and tagged.  

 

Reserved Disk Regions: One way to subvert duplication is to place your rootkit 

so far off the beaten path that it might be overlooked by the imaging tool. For 

example, the Host Protected Area (HPA) is a reserved disk region that’s often 

used to store diagnostic tools and system restore utilities.  Then there’s also the 

Device Configuration Overlay (DCO), which facilitates RAID by allowing 

disparate hard drives from different OEMs to behave as though they all have the 

same number of sectors (often leaving leftover space in the process) [9].   

 

Unfortunately, any contemporary tool worth its salt can detect and scan HPAs 

and DCOs. For instance, the EnCase tool suite sold by Guidance Software 

employs a drive docking platform called FastBloc 3 FE that can retrieve data 

hidden in HPAs and DCOs [10].   

Recovering File System Objects 

Having created a duplicate of disk storage, the investigator will then carve it up 

with their forensic tools to yield a set of file system objects (e.g. files, slack 

space, alternate data streams, file fragments, etc.). To protect our rootkit binary 

we can implement the following countermeasures:  

 

 Full Disk Encryption  

 File System Attacks 

 File concealment 

 

Full Disk Encryption: Though this sort of functionality is intended to safeguard 

data from an offline attack, it can also be enabled to hinder file carving. Privacy 

is a sword that cuts both ways. If a drive or logical volume has been encrypted, 

extracting files will be an exercise in futility (particularly if the decryption key 

cannot be recovered). As a matter of personal taste, I dislike this technique 

because it’s too conspicuous.   
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NOTE 

Some encryption packages use a virtual drive (i.e. a binary file) as their target. In 

this case, one novel solution is to place a second encrypted virtual drive inside of 

a larger virtual drive and then name the second virtual drive so that it looks like a 

temporary junk file. An investigator who somehow manages to decrypt and 

access the larger encrypted volume may conclude that they’ve cracked the case 

and stop without looking for a second encrypted volume. One way to encourage 

this sort of premature conclusion is to sprinkle a couple of well-known tools 

around along with the encrypted second volume’s image file (which can be 

named to look like a temporary junk file). 

 

File System Attacks: Some researchers advocate widespread destructive 

modification of the file system in order to prevent forensic tools from identifying 

files properly. In my eyes this approach, taken to this extreme, lies strictly in the 

―scorched earth‖ side of the spectrum. By maiming the file system you’re 

inviting the sort of instability and eye-catching behavior that rootkits are 

supposed to avoid to begin with. Not to mention that contemporary file carving 

tools don’t necessarily need the file system to begin with.  

 

NOTE 

Rootkits, like the one discovered at Vodafone Greece, have been discovered 

accidently, as result of the unintended side-effects that they introduce, rather than 

overtly triggering an alarm set by security software.   

 

File Concealment: If we stow our files in unexpected places, the forensic tools 

being employed may not recognize them as files. In terms of hiding data on disk, 

within the confines of a given file system, there are three strategies that were 

enumerated by Irby Thompson and Matthew Monroe at Black Hat DC 2006 [11]:  

 

 Out-of-Band Concealment 

 In-Band Concealment 

 Application layer Concealment 

 

Out-of-Band Concealment: This strategy aims to store data in spots that are not 

explicitly described by the file system specification. Both the HPA and DCO are 

examples of out-of-band regions. Slack space is yet another well known example 

(a topic that’s near and dear to the heart of any SubGenius).   



[Black Hat USA 2009] Anti-Forensics: The Rootkit Connection 

 Below Gotham Labs | 12 

 

 

―Eternal salvation, or triple your money back!‖ 

― J. R. "Bob" Dobbs 

 

 

 

On Windows XP, a user-mode application could stick data in a file’s slack space 

using the following sort of code. 

 

#define SZ_BUFFER  2000 

 

HANDLE fileHandle; 

char buffer[SZ_BUFFER]; 

DWORD nBytesWritten; 

 

//Step [1] - set the FP to the logical EOF 

SetFilePointer 

( 

 fileHandle,  //HANDLE hFile 

 0,   //LONG lDistanceToMove 

 NULL,   //PLONG lpDistanceToMoveHigh 

 FILE_END  //DWORD dwMoveMethod 

); 

 

//Step [2] - write data between the logical EOF and physical EOF 

WriteFile 

( 

 fileHandle,   //HANDLE hFile 

 buffer,   //LPCVOID lpBuffer 

 SZ_BUFFER,   //DWORD nNumberOfBytesToWrite 

 &nBytesWritten,  //LPDWORD lpNumberOfBytesWritten 

 NULL    //LPOVERLAPPED lpOverlapped 

); 

 

FlushFileBuffers(fileHandle); 

 

//Step [3] - move FP back to the old logical EOF 

SetFilePointer 

( 

 fileHandle,  //HANDLE hFile 

 -SZ_BUFFER,  //LONG lDistanceToMove 
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 NULL,   //PLONG lpDistanceToMoveHigh 

 FILE_CURRENT  //DWORD dwMoveMethod 

); 

 

//Step [4] - truncate the file nondestructively (on XP) 

SetEndOfFile(fileHandle); 

 

The primary challenge (or perhaps tedium) of this method is that you’ll need to 

keep track of which file’s slack space you used and how much of your data you 

put there. These associated bits of metadata will need to be archived somewhere 

(in a secondary file, or perhaps in predetermined disk regions). If this metadata is 

corrupted, you’ll lose your slack data.   

 

The Metasploit Anti-Forensics Project (MAFIA) developed the first publicly 

available tool for persisting data in slack space on Windows. This tool, 

appropriately named slacker.exe, uses an external index file to track slack 

space usage and works beautifully on Windows XP. The folks from the MAFIA 

presented this tool back at Black Hat USA 2005 [12].   

 

Microsoft has since plugged this user-mode hole in Vista, by re-wiring the 

SetEndOfFile() call to zero out slack space before returning. But this doesn’t 

mean we’re out of the game. Like it or not, that slack space is still there (heck, it 

exists by design). In fact, it wouldn’t be unreasonable to implement a kernel-

mode driver (KMD) that performed raw disk I/O to store data in slack space.  

 

Anyone intent on utilizing slack space using such a KMD would be advised to 

rely on static files that aren’t subjected to frequent I/O requests, as files that grow 

can overwrite slack space. Given this fact, the salient issue then becomes 

identifying such files (hint: built-in system executables are a good place to start).  

Also, be warned that a truly paranoid system administrator might periodically 

wipe slack space as a preventative measure.  

 

In-Band Concealment: This approach stores data in obscure spots that are 

described by the file system specification. Modern file systems are a byzantine 

cityscape of data structures, teaming with any number of alleyways and hidden 

tunnels. The basic idea of stowing data in the nooks and crannies of a file system 

has been addressed at length by the grugq on the UNIX platform [13]. He 

referred to his approach as the File Insertion and Subversion Technique (FIST), 

as in ―find a hole and then fist it.‖ The grugq is fond of colorful acronyms.      
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In order for FISTing to work as intended, the following prerequisites must be 

fulfilled: 

 

 The probability of the hidden data being overwritten is low. 

 A file system integrity check should not generate errors. 

 The tactic should allocate a nontrivial amount of storage space.    

 

On Windows, the NTFS Master File Table (MFT) is a viable candidate for 

FISTing. The MFT is the central repository for metadata on an NTFS file system. 

It’s basically a database consisting of a series of variable-length records, where 

each physical file in the file system is mapped to one or more records in the 

database. 

 

If you want to dig into details of the format of the records in the MFT, the official 

Microsoft documentation on the NTFS file system is a good starting point [14], 

but ultimately it doesn’t go beyond an introductory level of detail. To get the 

entire scoop on NTFS, you’ll need to read a book like Brian Carrier’s [15] and 

then cross the tracks to the Linux-NTFS project [16]. There’s also a discussion of 

the MFT in my book on rootkits [17]. I find it ironic that the open source 

community ends up being the best source of information on a technology put out 

by the people in Redmond. By keeping this information proprietary they’re 

making life more difficult for forensic investigators.  

 

The Linux-NTFS project shows what can be done through exhaustive Reverse 

Code Engineering (RCE). The driver and its associated documentation represent 

a truly impressive accomplishment. Because NTFS is a proprietary file system, 

the engineers involved in this project had to reverse engineer NTFS from scratch. 

According to the project’s web site, the methodology was roughly: 

 

   1. Look at the volume with a hex editor 

   2. Perform some operation, e.g. create a file 

   3. Use the hex editor to look for changes 

   4. Classify and document the changes 

   5. Repeat steps 1-4 forever 

 

An implementation of FISTing with NTFS was presented at Black Hat DC in 

2006 [11]. The project’s tool, FragFS, used entries in the MFT that corresponded 

to relatively static, nonresident, system files. The hodgepodge of free space was 

used to build a storage region was logically formatted into 16-byte units. While 
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slacker.exe uses an external index file to track metadata, FragFS uses the last 

eight bytes of each MFT record to maintain storage-related metadata.  

 

The 16-byte storage units allocated by FragFS are managed by a KMD in such a 

way that user-mode applications that employ the driver see a virtual disk drive. 

All of the details of storage management are hidden from view. The FragFS 

KMD presents a block-based storage device to the rest of the system. You can 

treat this disk like you would any other (e.g. create folder hierarchies, move files 

around, execute applications). Essentially, what FragFS does is to create a file 

system within a file system. Recall the X-Files, where Agent Mulder would make 

ominous sounding references to a shadow government within a government.     

 

Application Layer Concealment: The goal of this strategy is to store data 

within the recesses of individual files whose internal logical structure is defined 

by some user-mode application. Steganography is a classic instance of this train 

of thought that’s gained notoriety since 9/11. According to a former French 

defense ministry, terrorists who were apprehended in 2001 were instructed to 

transmit communications through stenographic messages embedded on pictures 

posted on the Internet [18].    

 

The trick with application layer concealment is to find a file that can 

accommodate modification and that’s normally subjected to frequent I/O 

operations, so that the investigator can’t use checksum-based techniques to detect 

your updates. In other words, find a noisy spot in the file system and hide in plain 

sight. Database stores are a perfect fit for these requirements.   

 

The Windows registry is analogous to Grand Central Station in New York City. 

One way or another, eventually everyone passes through it. The registry has lots 

of foot traffic, so to speak, and its contents are altered several times per second. 

Hence, there’s no way to reasonable checksum this sort of file. It perpetually 

changes by design. The best that an investigator can hope to do is to take an 

ASCII dump and perform a cross-time diff of two snapshots, and even then the 

typical level of activity in the registry is such that they’ll have no idea what to 

look for.    

 

The Achilles heel of storing contraband in a database file is that manipulating 

such a file through the official channels is trivial to log. Thus, if you can help it, 

you might want to side-step the official API in favor of manually accessing the 

database file [19].  Manual parsing isn’t as draconian as it seems. Specifically, 
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I’d suggest using the official API to initially allocate space inside of the database 

file and then prefixing the storage space with a signature of some sort. Then, 

when you need to manipulate or read this storage you can manually scan the file 

in question and use the signature as a beacon.    

 

NOTE 

Concealment has always been a short-term strategy. It’s security through 

obscurity by another name. If the investigator searches long enough, eventually 

they’ll uncover your hiding spot. Once the details of a specific hidden region are 

revealed (e.g. slack space, the MFT, ADS space), it’s not long before the tool 

vendors add the necessary functionality to their security products to scan it. Thus, 

if you’re going to hunker down in a murky corner, it would probably be a good 

idea to augment your defenses with a healthy dose of data transformation. This 

way, if the investigator does happen to find something, it looks like a load of 

random junk from /dev/random. Remember what I said earlier about wielding a 

defense in-depth?  

Recovering Deleted Files 

The preliminary goal of a post-mortem is to identify as many file system objects 

as possible. The more items that the investigator recovers the greater the chance 

is that they may come across a potential lead. To this end, they will attempt to 

carve out deleted files (i.e. files that no longer exist according to a naïve 

interpretation of the bookkeeping data structures, but whose bytes still reside 

somewhere on disk).  

 

Again, tactics intended to ensure privacy can be commandeered as tools to 

destroy evidence. Specifically, I’m talking about: 

  

 File Wiping 

 Meta-Data Shredding 

 Encryption 

 

File Wiping: The Defense Security Service (DSS), an agency under the 

Department of Defense, provides a clearing and sanitizing matrix (C&SM) that 

specifies how to securely delete data. The DSS distinguishes between different 

types of sanitizing (e.g. clearing versus purging). ―Clearing‖ data means that it 

can’t be recaptured using standard system tools. ―Purging‖ data kicks things up a 

notch. Purging ―protects the confidentiality of information against a laboratory 

attack‖ (e.g. magnetic force microscopy) [20]. 
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According to the DSS C&SM, ―most of today’s media can be effectively cleared 

by one overwrite.‖  Current research supports this [21]. Purging can be 

performed via the Secure Erase utility, which is uses functionality that’s built 

into ATA drives at the hardware level to destroy data. Secure Erase and can be 

downloaded from the University of California, San Diego (UCSD) Center for 

Magnetic Recording Research (CMRR) [22].  

 

NOTE 

Software-based tools that implement clearing often do so by overwriting data in 

place. For file systems designed to ―journal data‖ (i.e., persist changes to a 

special circular log before committing them permanently), RAID-based systems, 

and compressed file systems, overwriting in place may not function reliably with 

regard to specific files.   

 

Meta-Data Shredding: In addition to wiping the bytes that constitute a file, the 

metadata associated with a wiped file in the file system should also be destroyed. 

For example, in his seminal 2002 article in Phrack, the grugq presented a 

software suite known as the Defiler’s Toolkit (TDT) to deal with such problems 

on the UNIX side of the fence. This toolkit included a couple of utilities called 

Necrofile and Klismafile to sanitize deleted inodes and directory entries [6]. 

  

Encryption: One way to avoid having to deal with the minutiae of securely 

wiping data from secondary storage is simply to ensure that every byte of data 

that you write to disk is encrypted. In my mind, this is a far simpler and more 

elegant solution than wiping after the fact. Given strong encryption keys, 

algorithms like triple-DES provide adequate protection. Once the keys have been 

destroyed, the data is nothing more than useless random junk.  

 

Key Management: This highlights the truly salient aspect of this technique, 

which is preventing key recovery. The topic of securely managing encryption 

keys, from a developer’s vantage point, has been discussed in a number of books 

[24]. White Hat technology to the rescue! 

 

As long as you don’t store an encryption key on disk, the most that a forensic 

investigator can do is to hunt for it in memory at runtime or perhaps wade 

through the system’s page file post-mortem with the guarded expectation that 

they may get lucky.  
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To safeguard your encrypted data, you need to minimize the amount of time that 

a plaintext key exists in memory. In general, you should use it as quickly 

possible, encrypt it, and then zero out the memory that was storing the password. 

To protect against cagey investigators who might try and read the page file, there 

are API calls like VirtualLock() (on Windows machines [25]) and mlock() (on 

UNIX boxes  [26]) that can be used to lock a specified region of memory so that 

it’s not paged to disk.   

Collecting File Metadata 

Once the investigator has achieved a sufficient stockpile of file system objects, 

they’ll collect metadata on each item to construct a snapshot of their data set. 

This can include information like: 

 

 The file’s name 

 The full path to the file 

 The file’s size (in bytes) 

 MAC times (Modified, Accessed, and Created) 

 The cryptographic checksum of the file 

 

The two sets of parameters that interest us in particular are the MAC times and 

checksums. By altering these values we can hinder the investigator’s ability to 

create and plausible timeline and also force them to waste time chasing down 

false leads.  

 

Altering Checksums: Though checksums expedite the process of file 

comparison, they’re hardly robust. All it takes is a slight modification to generate 

a completely different hash value. A completely normal executable can be made 

to look suspicious by flipping a few bits.  

 

Though patching an executable can be risky, most of them have embedded string 

tables that can be altered without much fanfare. If you really want to go full bore, 

you could implement a more substantial patch by inserting a nontrivial snippet of 

functioning code into unused space between the sections of the executable [27]. 

When the investigator performs a binary diff between the original file and the 

modified version, they’ll see the injected code and alarms will sound. Hopefully 

this will lead the investigator away from the actual rootkit.     
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Modifying Timestamps: Changing MAC values on Windows requires the 

ZwOpenFile() and ZwSetInformationFile() system calls. Note that both of 

these routines can only be invoked at an IRQL equal to PASSIVE_LEVEL. The 

FILE_BASIC_INFORMATION argument fed to to ZwSetInformationFile() stores 

four different 64-bit LARGE_INTEGER values that represent the number of 100-

nanosecond intervals since the beginning of the year 1601. When these values are 

small, the Windows API doesn’t translate them correctly, and displays nothing. 

This behavior was first publicized by Vinnie Liu of the Metasploit  project. 

 

PCWSTR fullPath;  //assume this has been set elsewhere  

BOOLEAN modTimeStamp; //assume this has been set elsewhere 

 

OBJECT_ATTRIBUTES   objAttr; 

UNICODE_STRING   fileName; 

HANDLE    handle; 

NTSTATUS    ntstatus; 

IO_STATUS_BLOCK   ioStatusBlock; 

FILE_BASIC_INFORMATION  fileBasicInfo; 

RtlInitUnicodeString(&fileName,fullPath); 

 

InitializeObjectAttributes 

( 

 &objAttr,     //OUT POBJECT_ATTRIBUTES 

 &fileName,     //IN PUNICODE_STRING 

 OBJ_CASE_INSENSITIVE|OBJ_KERNEL_HANDLE, 

 NULL,      //IN HANDLE RootDirectory 

 NULL      //IN PSECURITY_DESCRIPTOR 

); 

if(KeGetCurrentIrql()!=PASSIVE_LEVEL){ return; } 

 

ntstatus = ZwOpenFile 

( 

 &handle,     //OUT PHANDLE 

 FILE_WRITE_ATTRIBUTES,   //IN ACCESS_MASK  

 &objAttr,     //IN POBJECT_ATTRIBUTES 

 &ioStatusBlock,    //OUT PIO_STATUS_BLOCK 

 0,      //IN ULONG ShareAccess 

 FILE_SYNCHRONOUS_IO_NONALERT  //IN ULONG CreateOptions 

); 

if(ntstatus!=STATUS_SUCCESS) 

{  

DbgPrint("%s","unable to open file");  
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} 

 

if(modTimeStamp) 

{ 

 fileBasicInfo.CreationTime.LowPart =1; 

 fileBasicInfo.CreationTime.HighPart =0; 

 fileBasicInfo.LastAccessTime.LowPart =1; 

 fileBasicInfo.LastAccessTime.HighPart =0; 

 fileBasicInfo.LastWriteTime.LowPart =1; 

 fileBasicInfo.LastWriteTime.HighPart =0; 

 fileBasicInfo.ChangeTime.LowPart  =1; 

 fileBasicInfo.ChangeTime.HighPart =0; 

 fileBasicInfo.FileAttributes = FILE_ATTRIBUTE_NORMAL; 

} 

else 

{ 

 fileBasicInfo = getSystemFileTimeStamp(); 

} 

ntstatus = ZwSetInformationFile 

( 

 handle,   //IN HANDLE FileHandle 

 &ioStatusBlock,  //OUT PIO_STATUS_BLOCK IoStatusBlock 

 &fileBasicInfo,  //IN PVOID FileInformation 

 sizeof(fileBasicInfo),  //IN ULONG Length 

 FileBasicInformation  //IN FILE_INFORMATION_CLASS 

); 

if(ntstatus!=STATUS_SUCCESS) 

{  

DbgPrint("%s","unable to mod timestamp");  

} 

ZwClose(handle); 

Identifying Known Files 

Having acquired a meta-data snapshot of their current data set, the investigator 

will use this meta-data to perform a cross-time diff against a baseline snapshot 

(something that, hopefully, they had the presence of mind to create sometime 

before the incident) in an effort to identify known good and known bad files. 

They’ll use the cross-time diff to winnow away at their original collection of 

files, leaving a subset of unknown files which will be the focus of the final stages 

of the post-mortem disk analysis (see Figure 2).  
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Recall that we’re interested in the worst-case scenario, where we’re facing a 

heavily-armed alpha geek. If an investigator has the time and computing 

horsepower, they may compare files at the binary level [28]. This will preclude 

us from getting cute with checksums. Specifically, I’m talking about a preimage 

attack: altering a binary and then adding on whatever bytes are needed in order 

for the resulting file’s checksum to match the original checksum.  

 

Having identified known good files via the cross-time diff, the investigator may 

sweep their collection of files with an anti-virus package to identify known bad 

files. Note, this will only detect malware that’s prolific enough that it ends up in 

the vendor’s signature database and corresponding black list.  

 

Injecting Known Bad Files: In his autobiography, Vinnie Teresa recounts a 

failed burglary where a gang of thieves missed out on a lucrative heist because 

they were misled by a small stash of valuables buried a couple of feet on top of a 

very large stash of valuables [29]. According to Teresa, they burglars hit the 

initial, smaller, stash and (thinking that they had hit the mother lode) stopped 

digging.   

 

This is the basic train of thought behind introducing known malware into a 

system. One way to get a forensic investigator to stop is to make them believe 

that they’ve identified the source of their problems. The trick is to make the 

investigator work hard enough that they’ll believe the decoy is genuine. In a 

world ruled by budgets and limited resources, it pays to lure the investigator with 

an easy way out.    

 

 

 

Figure 2 

File Categories 
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Flooding the System: One way to buy time is to introduce a large number of 

legitimate (known good) files. This will cause the set of unknown files to balloon 

and consume resources as the investigator tracks down the origin of the 

introduced files. Though, I’ll admit that this is another scorched earth defense. If 

an administrator sees a whole load of files on a server that they didn’t put there, 

they’ll probably assume that something fishy is going on. This is particularly true 

for servers that serve specific roles and which don’t rely on third-party products 

(e.g. domain controllers).      

File Signature Analysis 

Faced with a pool of unknown files, which may or may not have the correct file 

name extension, the investigator will use signature matching algorithms to 

determine what sort of files they’re dealing with. Executable files are of 

particular interest.  

 

Transmogrification: One way to foil this technique is to alter the header of a file 

so that it doesn’t match its normal signature. For example, According to the 

Windows PE specification, executable files begin with an MS-DOS stub whose 

first 16-bit word  is the magic number 0x4D5A (i.e. the ACSII string ―MZ,‖ which 

supposedly represents the initials of Mark Zbikowski) [30]. To foil a tool that 

relies on signatures like this, all you’d have to do is tweak the header. This 

header-based approach was adopted by Transmogrify, an anti-forensic tool 

developed by the MAFIA. It was the first publicly available tool to successfully 

foil EnCase’s file signature capabilities [31].  

 

Stenography and Encryption: We could take things a step further. Using a 

technique that’s stenographic in nature, we could encapsulate a configuration text 

file by wrapping it as encoded string variables inside of a counterfeit executable. 

Likewise, we could Base64 encode an executable to make it look like a mish-

mash of ASCII text or just encrypt it using a standard block cipher to do defeat 

the signature matching engine.   

Static Analysis of an Unknown Executable 

Confronted with an unknown executable, the first thing that an investigator will 

do is to examine it without actually running it. For instance, they may scan the 

raw binary for strings, use a tool like dumpbin.exe to see which routines it 

imports and export, and then maybe (if time permits) disassemble it to get a 

better idea of what it does.  
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Cryptors and Packers: The best way to defeat static deconstruction is to put 

your executable into a form that none of the tools in this phase can interpret. This 

is the motivation behind cryptors and packers. Both types of tools use the same 

basic underlying architecture, such that if you implemented a cryptor it wouldn’t 

be very difficult to recast it as a packer and vice versa.  

 

In a nutshell, these tools take an executable and either encrypt it or compress it. 

Next, these tools build a stub application and graft this onto the original (now 

encoded) application. When the combined executable is launched, the stub 

application decodes its payload and passes control to the original program’s entry 

point. Applications like Skype use this technology as a form of software 

protection [32].  

 

NOTE 

The stub code is essentially acting in a manner that’s reminiscent of a user-mode 

application loader (what’s known as a Userland Exec, a substitute for the UNIX 

execve() system call). The stub takes an arbitrary stream of bytes, situates it in 

memory, and makes the necessary adjustments so that the resulting image can 

executed properly. This sort of functionality is useful because, to an extent, it 

frees us from having to depend upon the operating system’s loader (which 

enforces certain restrictions that we’ll look at shortly).  

 

The specifics of exactly how this is implemented vary from one tool to the next. 

For example, the Ultimate Packer for eXecutables (UPX) takes an executable and 

merges its sections (.text, .data, .idata, etc.) into a single section named UPX1. 

The UPX1 section also contains the stub program that will unpack the original 

executable at run time.  

 

You can examine the resulting compressed executable with dumpbin.exe to 

verify that it consists of three sections: 

 

 UPX0 

 UPX1 

 .rsrc 

 

At runtime, the UPX0 section loads into memory first, at a lower address. 

The UPX0 section is nothing more than empty space. It doesn’t take up any space 

at all on disk, such that both UPX0 and UPX1 start at the same file offset in the 

packed binary. The UPX1 section is loaded into memory above UPX0, which 
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makes sense because the stub code in UPX1 will decompress the packed 

executable and move the decompressed bytes down below, starting at the 

beginning of UPX0. As decompression continues, eventually the unpacked data 

will grow upwards in memory and overwrite data in UPX1. The best way to watch 

this happen is with a debugger.  

 

The source code for UPX is available online if you’re curious to see how it’s 

implemented [33]. Be warned that it’s not a trivial implementation (as is the case 

with any production grade cryptor or packer). If you’d like to take a look at the 

internals of a cryptor, the source code for Yoda’s Cryptor is also online [34].  

  

Without a doubt, using custom tools is the way to go. This is because there are 

forensic utilities available (like PEid) that will detect, and sometimes even 

decode, an executable that has been processed by well-known packers or cryptors 

[35]. By using a custom cryptor or packer you’re not giving the investigator an 

easy out. Remember, this is all about buying time. For example, your custom tool 

could break up the executable file into multiple segments and use a combination 

of algorithms in concert. By far, the best treatment that I’ve read on how to create 

a custom tool was published back in 2006 by a researcher known as BigBoote in 

CodeBreakers Magazine [36].  

 

Embedded Virtual Machines: Another way to stifle static analysis is to use a 

machine encoding that the investigator’s tools can’t interpret. In other words, 

implement your rootkit code in terms of an arbitrary bytecode, which is 

interpreted at runtime by an embedded runtime environment.  

 

In this case the stub program, which normally unpacks or encrypts, is supplanted 

by a virtual machine. You could also merge this functionality together so that the 

stub program unpacks (or decrypts) its payload and then begins executing the 

bytecode inside. Again this tactic is far from perfect. Eventually the investigator 

would be able to reverse your bytecode and perform a static analysis.  

 

Key Management Revisited: If you implement a packer, this won’t be an issue. 

However, if you employ a cryptor you’ll need to worry about where to store the 

encryption key that the stub uses to decrypt the original application. One 

approach is to partition the original code into different segments and use a 

different encryption key for each segment. The encryption keys can be generated 

at runtime from some seed value so that they’re not readily available during static 

analysis.     
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A second approach would be to store the encryption key(s) outside of the stub 

executable, perhaps as an encoded series of bytes in an unused sector of a 

reserved disk region. Or perhaps you could stash an external key is PCI-ROM.  

 

A third approach would be to use an external key that depends upon distinct 

environmental characteristics of the target machine (service tag number, NIC 

MAC address, etc.). This is what’s been referred to as an ―environmental key,‖ 

an idea presented in a paper written by James Riordan and Bruce Schneier [37]. 

The BRADLEY virus uses environmental key generation to support code 

armoring [38].    

 

Camouflage: The problem with packed/encrypted executables is that they have 

very little, if any, embedded string data and very few imports/exports. This is a 

telltale sign to the investigator that they’re dealing with potentially malicious 

software. One way to address this issue is to wrap the stub with valid code so that 

it looks like a legitimate application. It’s also possible to decorate the stub by 

inserting string data into it at compile time so that the investigator has something 

to read when they dump it. The more technical this sort of content is the better. 

You want the investigator to think that they’re dealing with an offbeat value-

added tool.    

 

To further give the impression of authenticity, a resource definition script can be 

embedded into an application’s .rsrc section at link time.    

 

1 VERSIONINFO 

FILEVERSION 3,0,0,5 

PRODUCTVERSION 7,0,0,1 

{ 

 BLOCK "StringFileInfo" 

 { 

  BLOCK "040904E4" 

  { 

   VALUE "CompanyName", "Microsoft Corporation" 

   VALUE "FileVersion", "3.0.0.5" 

   VALUE "FileDescription", "COM Object handler" 

   VALUE "InternalName", "ATLHndlr" 

   VALUE "LegalCopyright", "© Microsoft Corp." 

   VALUE "OriginalFilename", "OLEObjMgr.exe" 

   VALUE "ProductName", "Microsoft® Windows®" 
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   VALUE "ProductVersion", "7.0.0.1" 

  } 

 } 

 BLOCK "VarFileInfo" 

 { 

  VALUE "Translation", 0x0409, 1252 

 } 

} 

  

Limitations: Using a packer or a cryptor should be viewed as a short-term 

defense (another hurdle in a long series of hurdles that you’ve set up to buy 

time). Inevitably, your program must run. Once the stub program has decoded its 

payload, the investigator can look at your executable in its original form in 

memory with a debugger. This leads to the next section…   

Runtime Analysis of an Unknown Executable 

Having acquired whatever they could from an inanimate unknown executable. 

The investigator will follow up their static analysis by launching the executable 

in a controlled environment to see what it does at runtime (e.g. enable logging, 

trace API calls, track registry edits, monitor network connections, capture 

packets, etc.). This differs from live response in that the investigator can stage 

things carefully in advance so that they can collect the maximum amount of 

useful information. To this end, virtual machines are often utilized so that 

repeated test runs can be made from a consistent starting state and also to 

sandbox the unknown executable. A debugger may also be brought into play so 

that the investigator can watch events unfold in slow motion.   

 

The anti-forensic techniques that can be brought into play are the same set of 

tools that software vendors use to implement client-side software protection, 

namely: 

 

 Tamperproofing 

 Obfuscation 

 Autonomy 
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NOTE 

It’s ironic that surmounting these anti-forensic tactics requires the forensic 

investigator to adopt the vantage point of a software cracker. In this scenario, 

traditional roles are inverted. The Black Hat is trying to protect their code and the 

White Hat is trying to reverse it. The White Hat becomes a Black Hat and the 

Black Hat becomes a White Hat! 

 

Tamperproofing: The practice of ―potting‖ electronic devices (also known as 

encapsulation) involves embedding the board components in a thermosetting 

resin to frustrate reverse engineering attempts. Tamperproofing is similar in 

spirit. It aims at making it difficult to modify a software application. 

Tamperproofing is relevant because most debuggers tend to alter the program 

they’re inspecting (e.g. software breakpoints, inserting NOP instructions, etc.). 

To foil the investigators efforts to poke around we’ll need to detect the presence 

of a debugger and then respond appropriately. 

 

Detecting a Debugger: There are routines in both the Windows SDK and the 

WDK that detect the presence of a debugger.  

 

BOOL WINAPI IsDebuggerPresent(void); //called in user-mode 

BOOLEAN KdRefreshDebuggerNotPresent(); //called in kernel-mode 

 

The first routine indicates if the current process is running under the auspices of a 

user-mode debugger. It resolves to all of four lines of assembly code: 

 

mov eax,dword ptr fs:[00000018h] 

mov eax,dword ptr [eax+30h] 

movzx eax,byte ptr [eax+2] 

ret 

 

A stealthy debugger might hook this call so that it always returns zero. One way 

to counter this is to sidestep the routine by inserting this assembly code directly 

into your application. The stealthy debugger could counter this by defense by 

directly altering the memory that the assembly code is referencing, which 

happens to be the BeingDebugged field in the Process Environment Block (PEB) 

of the application [39].  
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The second routine indicates if a kernel-mode debugger is active. It refreshes and 

then returns the value of KD_DEBUGGER_NOT_PRESENT global kernel variable. The 

same sort of interplay as described above, in terms of hiding a debugger and 

revealing it, can occur. 

 

Given the limited efficacy of these API calls, another way we can detect the 

presence of tampering is by using checksums. This is essentially how Microsoft 

implements Kernel Patch Protection [40].   

 

The trick to using checksums is to flood the reverser with a barrage of checks. 

Implement duplicate checks, rather than rely on a centralized API, and then make 

the checks dependent upon each other (have one checksum routine verify the 

validity of other checksum routines). This will prevent the reverser from isolating 

and disabling your checks by tweaking bytes in a single location. You should 

force them to track down dozens of checks.   

  

You can augment this approach by building in routines that reinstate important 

sections of code at runtime in the event that a reverser has tried to NOP out 

integrity checks. It goes without saying that you’ll probably want to implement 

your checksum code in such a manner that it doesn’t look like checksum code. 

This calls for a bit obfuscation and misdirection (something that we’ll discuss in 

short order). You may even want to institute an obvious set of fake integrity 

checks to lure the reverser away from the actual implementations.   

 

Responding: The most effective landmines are the ones that are triggered 

silently, well in advance of the resulting detonation. In this spirit, you should try 

to situate your integrity checking code outside the perimeter of the code which 

responds to the modification.  

 

It would be unwise to have your program shutdown abruptly. This would be too 

much of a tip off. One alternative is to introduce subtle bugs into your code and 

have the integrity checking code fix them if and only if it determines that the 

code under scrutiny has not been modified. These bugs should cause your 

application to behave erratically somewhere further down the line, making it 

difficult for the cracker to discover the cause and, more importantly, the location 

of the integrity checks.    
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Obfuscation: The goal of obfuscation is to recast an application into an 

equivalent form that’s more complicated, such that the original intent of the code 

is difficult to recover. At the same time we’d like the program to function 

properly and maintain the readability of the code base. This is one reason why 

obfuscation is often performed at the machine code level, after an application has 

been compiled. Code Morphing is a variation of this tactic that represents a 

program using a machine neutral bytecode and then obfuscates the bytecode, 

such that complexity is added at the intermediate level, before machine code is 

generated [41].   

 

With regard to obfuscation, there are tactics that can be applied to data and 

tactics that can be applied to code.  

 

Data Encoding: One way to muddy the water is to alter how the bits within a 

variable are used to represent values. For example, on a platform that normally 

operates on integer values in little-endian format, store values in the big-endian 

format.  

 

Data Aggregation: Aggregation determines how variables are grouped together 

to create compound data types. In the extreme case, you could merge all of the 

variables of an application into a heavily nested, arbitrarily sized, super structure 

replete with decoy fields and a custom heap.   

 

Data Ordering: Ordering defines how related storage is arranged in memory. 

For example, you could alter the ordering of your data by interleaving several 

arrays into one big array to confuse someone trying to follow your code. 

 

NOTE 

It goes without saying that it’s best to use these tactics concurrently; which is to 

say that you could construct a massive structure consisting of interleaved 

compound data types that use varying types of data encoding.   

 

Reducing Code Abstraction: Procedure-based languages like C and FORTRAN 

emerged because, after a certain point, assembly code became too complicated to 

maintain. These languages keep complexity at bay by enabling the programmer 

to work at a higher level of abstraction. Hence, one way to make life more 

difficult for the investigator is to do away with higher-level constructs that would 

be visible to someone looking at an assembly code dump.   
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For example, to prevent the consolidation of logic you can expand routines in-

line (which can often be implemented by toggling a compiler setting). A 

variation of this would be to have multiple versions of the same routine which are 

invoked at random, making it difficult for the investigator to nail down exactly 

where a program’s logic is implemented.  

 

On the other hand, you could take the concept of consolidation to an extreme and 

force all function calls to go through a central dispatch routine. Internally, this 

dispatch routine could use an address table to map return addresses on the 

caller’s stack to specific functions. This way the dispatcher would know how to 

route different invocations.    

 

Rearrange Code: Not all statements in a given routine are sequentially 

dependent. Hence, one way to sow confusion is to identify statements that are 

relatively independent and then shuffle them around. For added effect, this 

technique can be used with code interleaving, where the statements that make up 

routines are mixed together in what appears to be a single routine that uses 

opaque predicates to segregate the different code blocks.  

 

Breaking Code Conventions:  Most developers are taught that exception 

handling should not be used to intentionally transfer program control. This is one 

case where you should break this convention. Go ahead and perform non-local 

jumps by throwing exceptions. Try to make it look like error-handling so that the 

casual observer thinks that you’re just being cautious.   

 

Code Encryption: It’s not unheard of to encrypt and decrypt sensitive routines at 

runtime, though such routines would probably not be thread-safe (as it’s 

dangerous to have several threads concurrently encrypting/decrypting the same 

region of memory).  

 

Then there’s also the issue of key management. One way to solve this problem is 

to use a sensitive routine’s checksum as the encryption key. You also may want 

to encrypt several non-critical routines so that you can avoid tipping off the 

investigator as to where the interesting stuff is hidden. Furthermore, you should 

make sure that the executable sections containing the sensitive routines are 

writable (using compiler-based configuration settings).    

 

One final caveat of this tactic is that you’ll probably want the encrypted code to 

start off in its encrypted state when the application loads into memory. To this 
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end, you can open up the compiled executable with a hex editor and manually 

overwrite a routine with its encrypted equivalent.  

 

 

Obfuscation Strategy Tactical Implementations 

Data Encoding Use big-endian values on a little-endian platform  

Data Aggregation Merge variables into one big structure 

Data Ordering Array interleaving  

Reducing Code Abstraction Inline expansion, redundancy, centralized dispatching 

Rearranging Code Routine interleaving 

Breaking Code Conventions Exception handling as a flow control mechanism 

Code Encryption Use routine checksums as an encryption key 

 

Automation: If you employ obfuscation at the bytecode or machine code level, 

you probably won’t want to do it by hand. Instead, rely on an automated tool to 

obfuscate for you. There are solid commercial tools out there, like StrongBit’s 

EXECryptor package [42] which offer code morphing features. However, if you 

have the requisite motivation and resources there’s nothing stopping you from 

building your own tool to acquire an added degree of control and to help guard 

against automated deobfuscators.     

 

Autonomy: Using the official API to get things done will leave a perceptible 

trail. In the absence of a debugger, the investigator can still crank up their audit 

settings to the max, trace API calls, capture network packets, etc. By staying off 

the beaten path, so to speak, you can make it harder for the investigator to see 

what you’re doing. Fair warning, while this is a very powerful strategy, it can be 

equally difficult to implement.  

 

This is the beauty of self-reliant code. The basic idea is to make the interface 

between your code and the native OS as small as possible. Rather than rely on the 

native TCP/IP stack, install and use your own. This will allow you to sidestep the 

host-based firewall and associate network connection logging. Rather than 

reading specific registry directly, make a copy of the relevant hives and read the 

copies. Rather than rely on native drivers and the Windows Hardware 

Abstraction Layer, communicate directly with hardware. The fewer subsystems 

you interact with, the harder it is for them to tattle on you.  

 

Table 2 

Obfuscation Summary  
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At Black Hat Europe in 2006, Joanna Rutkowska’s demonstrated a tool named 

deepdoor that implemented this train of thought [43]. The deepdoor rootkit was a 

relatively self-contained chunk of code that hid out in kernel space by patching a 

series of bytes in the NDIS data section. In other words, the only interface 

between the rootkit and the operating system was a couple of double words in the 

Windows networking subsystem.    

 

A couple of years later, at Black Hat USA 2008, Sherri Sparks and Shawn 

Embleton kicked things up a notch with the Deeper Door [44]. In this case the 

researchers implemented a rootkit that interacted directly with the host machine’s 

NIC hardware in an effort to bypass local security software.  

Staying Memory Resident 

"True victory lies in breaking the enemy's resistance without fighting."  

—Sun Tzu 

 

An ex-convict once told me that the surest way to out-smart a prison guard was 

never to end up in prison to begin with. The same thing could probably be said 

with regard to disk analysis. The best way to defeat an investigator performing a 

post mortem of a hard drive is probably never to end up on the drive to begin 

with.  

 

Up until this point, we’ve assumed that our rootkit will persist on disk 

somewhere. Now we’re going to loosen this constraint so that we can introduce 

the anti-forensic strategy of Data Source Elimination. There are a number of 

interesting ways to realize this strategy, though all of the variations that we’ll 

examine revolve around the same basic goal: finding ways to execute an arbitrary 

stream of machine instructions on a targeted machine while storing little or 

nothing on disk.    

Syscall Proxying 

This is a technique that was originally popularized by Maximiliano Cáceres [45]. 

The basic idea behind this technique is to install a syscall server on a 

compromised machine that will execute low-level system calls on behalf of a 

specially written remote application running on the attacker’s machine. This 

application uses a syscall stub to marshal its system call input parameters, send 

requests over the network to the server component, and then marshal output 
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parameters returned by the server. The general architecture of this scheme is 

reminiscent of the RPC model.  

 

As the specially written application requests system services from the kernel, 

these requests are ferried over to the compromised machine via the extra syscall 

client and server layers. This gives the attacker the ability to launch an arbitrary 

user-mode program on their machine, which appears to be running locally. 

When, in reality, the end result of execution is taking place on the compromised 

machine.     

 

There are a number of commercial tools that implement syscall proxying. For 

example, Core Security Technologies sells an automated exploitation tool named 

CORE IMPACT that uses this technique [46].  

 

Though this novel approach is theoretically sweet, it has demonstrated drawbacks 

in the field. Performance is an issue, which isn’t surprising given the number of 

system calls that the average application makes and the work that’s required to 

marshal and un-marshal the associated parameters. There have also been 

problems associated with remote execution of fork()-like system calls.  

Memory Resident Development Tools 

A memory resident compiler allows the attacker to send source code snippets to a 

compromised machine that are then translated to position independent machine 

code. This code can be loaded and executed on the fly. The benefit of this tactic 

is that the attacker can focus on program logic rather than get bogged down in the 

details of a given platform-specific machine encoding. The drawbacks include all 

of the complexity and headaches associated with maintaining a compiler.     

 

The MOSDEF compiler, originally developed by Dave Aitel, is a widely 

acknowledged example of this approach [47][48]. Written in Python, it was 

originally designed to support Immunity’s CANVAS exploit framework. It has 

been released to the public under the LGPL license. The MOSDEF 2.0 compiler 

can be downloaded for free from Immunity’s web site [49].  
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Data Contraception   

 Data Contraception, an approach conceived by the grugq [23], involves staying 

memory resident by means of a server component which offers access to its 

address space (or that of another application) on the compromised host. The 

client component, running on the attacker’s machine, feeds a stream of 

executable code to the server. The server takes this stream of bytes and loads it 

into its address space, ultimately passing program control to the entry point of the 

loaded code.   

 

NOTE 

The grugq’s server can be viewed as a network-enabled extension of the stub 

application that we encountered back in our discussion of packers and cryptors. 

Like the stub, the server is type of Userland Exec. The difference is that, in this 

scenario, the byte stream being loaded is retrieved from a network connection 

rather than the hard drive.   

 

 In an effort to minimize the amount of forensic evidence, data contraception 

mandates that the server component should be a common utility that won’t stand 

out too much (i.e. a known good file) rather than a custom-built tool. The 

general-purpose nature of the server tends to force much of the work on to the 

client, which can end up being rather complicated.   

 

The grugq’s proof-of-concept server, named Remote Exec, was a combination of 

the GNU Project Debugger (gdb) and a custom library named ul_exec (as in 

Userland Exec) which was one of the grugq’s earlier projects [50]. The ul_exec 

library does most of the real work necessary to load and execute an arbitrary byte 

stream. It clears out a region in memory, maps the program’s segments into this 

region, sets up the stack, and transfers program control to the new entry point. 

 Userland Exec: Additional Work 

Additional work has been done to revisit the implementation of the grugq’s 

Userland Exec to make it amenable to use in an exploit’s payload [51]. Also, on 

the Windows front, research that precedes the grugq’s was done by Gary Nebbett 

(author of venerated Windows NT/2000 Native API Reference). Gary developed 

an in-memory loading technique that’s referred to as ―Nebbett’s Shuttle,‖ which 

was covered in detail by Nick Harbour at Black Hat USA 2007.      
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In-Memory Library Injection 

In-memory library injection is a variation of the Userland Exec approach. Instead 

of loading an entire executable into the host’s address space, this tactic involves 

loading a dynamically linked library without touching disk storage. The steps 

necessary to implement this tactic have been published in an article by Skape and 

Jarkko Turkulainen [52]. For example, on the Windows side of the fence, loading 

a DLL in-memory over a network connection can be performed using the 

following steps:  

  

1. Load the system libraries that will be used during following steps 

2. Read the size of the DLL byte stream from a socket 

3. Use the above size to allocate memory for the DLL byte stream 

4. Read the DLL from the socket and store it in the allocated memory 

5. Establish and initialize the DLL’s sections in memory 

6. Hook the system calls used for loading DLLs 

7. Load DLL with a predetermined pathname 

 

The real voodoo occurs in terms of hooking the system calls normally used to 

load DLLs. These libraries are built from the ground up with the expectation that 

they’ll be loading a DLL that resides on disk. To fool them into doing otherwise, 

extra functionality has to be introduced and the best way to do that is by 

intercepting the path of execution.   

 

In-memory library injection has been used by the Metasploit Meta-Interpreter 

(i.e. Meterpreter). The Meterpreter is essentially a payload within the Metasploit 

framework that can be extended at runtime. In other words, it offers a shell that 

allows you to dynamically add new features. It facilitates this by enabling 

developers to write their own DLLs and then inject them into the address space 

of an exploited process [53]. The canonical example of a Meterpreter extension 

would be Sam Juicer, a DLL that dumps hashes from the Windows SAM 

database [54].  

A Hybrid Approach: Persisting without Persisting 

One way to have your cake and eat it too may be to rely on a heartbeat monitor. 

This approach is based on ideas presented by Joanna Rutkowska at Black Hat 

Federal in 2006 [43]. In this scenario, compromised machines run a memory 

resident rootkit that periodically emits a predefined network signal. This signal is 

detected by a heartbeat monitoring station. If the heartbeat monitor fails to detect 
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a signal from a machine that’s known to be compromised, the monitor assumes 

that the machine has been restarted and proceeds to reinstall the deposed rootkit 

via some zero-day exploit.    

Firmware-Based Rootkits 

"The enemy's spies who have come to spy on us must be sought out,  

Tempted with bribes, led away, and comfortably housed. Thus they  

Will become converted spies and available for our service."  

—Sun Tzu 

 

Yet another way to stay off the disk and stymie a post-mortem is to hide in the 

firmware. Strictly speaking, this is less effective than staying memory resident as 

an anti-forensic tactic because its leaves more artifacts behind (more evidence for 

the investigator). Depending on your target, it can also be a significant 

investment with regard to R&D because of the hardware-specific elements 

involved. Nevertheless, in some circumstances it can be a viable option worth 

considering.  

Publicly Available Research 

The BIOS-based rootkit is an elusive species. There hasn’t been a lot of work 

done, but the research that has been performed is instructive. In 2006 and 2007, 

John Heasman gave a number of well-received Black Hat presentations on BIOS-

based Rootkits [55][ 56] and hacking the Extensible Firmware Interface [57]. 

More recently, at CanSecWest 2009, Anibal Sacco and Alfredo Ortega discussed 

how to hack the Phoenix Award BIOS [58]. If you want to sift through all of the 

gory details, there have been books written on the subject [59].  

A Commercial Implementation 

In terms of related commercial products, Absolute Software sells a product 

named Computrace that consists of two distinct components: 

 

 An Application Agent 

 A Persistence Module 

 

The application agent (rpcnet.exe) is a user-mode service that phones home 

with inventory tracking data. The persistence module runs quietly in the 

background, checking to see if the application agent needs to be reinstalled. 
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Recently, Absolute Software has worked with hardware OEMs to implant the 

persistence module in the system BIOS [60]. It’s not impossible to envision a 

scenario where someone finds a way to subvert the persistence module to 

reinstall an arbitrary agent, turning the spy against its original handlers… 

Commentary  

"When using our forces, we must seem inactive"  

—Sun Tzu 

 

We’ve waded around in the murky depths for a while. It’s time to surface again 

for air. Let’s step back from the trees to view the forest and consider the high 

level anti-forensic issues that a rootkit architect must address.    

The Tradeoff: Footprint and Failover 

Over the course of this paper we’ve looked at a number of solutions to the 

problem of disk analysis. So then, what’s the best way to protect against a post-

mortem disk analysis? Should we reside on disk and use a multi-layered defense? 

Or should we just stay Memory Resident? Or maybe we can get away with 

hiding in ROM? 

 

There’s no perfect solution. Different jobs require different tools. The ideal 

solution that works well in every environment doesn’t exist. You’ll have to 

evaluate your needs and decide which set of tradeoffs you can live with. Residing 

on disk will allow you to survive reboot, but will also leave a footprint on disk. 

Staying memory resident will minimize your footprint at the expense of 

resiliency in terms of system shutdown.  

 

Ultimately, the solution you choose will reflect several factors:  

 What’s the nature of the machine(s) being targeted? 

 How valuable is the data being sought after? 

 What kind of security professionals are you dealing with? 

 

If the deployment you’re targeting involves a cluster of high-end mainframes, 

you can assume availability and stay memory resident. On the other hand, if 

you’ve staked out an outpost on an executive’s laptop, then you’ll probably want 

to store some components to disk (at least until you find a more stable 

environment).  
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Likewise, if the data you’re after is classified as Top Secret and is guarded by a 

phalanx of dedicated security professionals, the ROI probably justifies the effort 

necessary to build an exact replica of the target environment and to develop a 

special-purpose custom solution to ensure that your code doesn’t leave any 

artifacts behind. In other words, we’re talking about an exotic one-off rootkit that 

would have limited utility outside the immediate area of operation.    

Logistical Issues 

You can destroy, hide, transform, fabricate, and contain all you want. Somewhere 

along the line you’ll still need a way to get the ball rolling. In other words, 

execution has to start somewhere, so how do we launch our rootkit? Will this 

code necessarily have to reside on disk?  

 

Recall that we’re assuming the worst-case scenario; that we’re facing off against 

a highly skilled analyst who has the time, resources, knowledge base, and 

mandate to do what needs to be done to unearth our rootkit.  

 

Hence, the best way to initiate rootkit execution is probably through an exploit 

because doing so relies solely on a flaw that’s located in existing executable, 

nothing new is introduced on disk. If possible, you should use a zero-day exploit 

that not many people know about. 

  

NOTE 

This leads one to ponder if flaws have intentionally been left as backdoors 

disguised as a legitimate bug. There’ve been rumors of this type of tactic being 

implemented by American intelligence agencies at the hardware level [61].  

We’re not alone in this sort of skullduggery. China is also rumored to have 

implemented this sort of tactic [62].      

 

You may feel the need to hedge your bet. After all, even high-end financial 

institutions have been known to occasionally shut down their servers. For 

example, it’s been reported by Microsoft that the Chicago Stock Exchange power 

cycles its systems every day after the market closes [63]. My guess is that this is 

done to protect against memory leaks and other subtle problems.  

 

In you need to persist in this sort of environment; you may want to consider a 

BIOS-based persistence module that will reintroduce your rootkit in memory in 

the event of a system restart. If implementing a BIOS-based initiator isn’t a 

feasible option, you’ll have to fall back on finding refuge on disk. In this case, 
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you should expect that your rootkit launch code, which is naked (unencrypted) by 

necessity, will inevitably be discovered. Hence you should implement a minimal 

loader that acts like Data Contraception server which re-introduces the rootkit 

proper into its address space.     

 

There are endless variations. For example, you could implement a persistence 

module in the BIOS that guarantees the presence of a Data Contraception server 

on disk, which in turn loads a rootkit.    

Coming Full Circle 

Forensic investigators and their ilk have openly bemoaned the fact that they can’t 

keep up with the Black Hats [7]. In my opinion, state of the art anti-forensic 

tactics have pretty much rendered post-mortem disk analysis ineffective. This 

pushes us right back to where we started, to the arena of live incident response 

and network security monitoring. Perhaps this also explains why no one is 

talking about disk-based anti-forensics! It’s in these two areas (live response and 

network monitoring) that the arms race between White Hats and Black Hats 

continues. A rootkit may not use disk storage at all, but it still has to execute in 

memory and it almost always communicates with the outside.  
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