
PROCEEDINGS OF BLACK HAT USA 2008, AUGUST 2008 1

Subverting the Xen hypervisor
Rafal Wojtczuk

rafal.wojtczuk@invisiblethingslab.com

August 7, 2008
Abstract— This paper outlines the recent work by the author

to design and develop a backdoor for machines running the Xen
hypervisor. An attacker can gain backdoor control over the host
by overwriting Xen code and data structures; as not a single byte
in dom0 domain is modified, the detection of such a backdoor is
difficult if conducted from within dom0.
It is shown that it is feasible to modify device drivers and core
kernel code to conveniently conduct DMA to arbitrary physical
address, which allows for control over the hypervisor. Two
backdoors have been implemented: one resides in the hypervisor
code, the other resides in a hidden domain with artificially
elevated privileges.

Index Terms— computer security, Xen hypervisor, backdoor,
DMA.

I. INTRODUCTION

BLUEPILL [1] and Vitriol [2] are well-known projects
that install a malicious hypervisor in run-time. Initially,

there is no hypervisor present on the target machine; these
projects are capable of inserting a malicious hypervisor on
the fly, without reboot, and since then exercise control over
the underlying OS.

Many analysts predict that in near future, many systems
will run some sort of hypervisor by default. This presents both
challenges and opportunities for attackers.

If the legal hypervisor is compromised and its code mod-
ified, this will give attacker similar capabilities to the ones
available to Bluepill and Vitriol. It would be no longer
necessary to hide the mere presence of hypervisor by masking
some side effects of a malicious hypervisor, as the (legal)
hypervisor is expected to be present and these side effects
can be attributed to it. Also, significantly less code must be
created, as a lot of necessary functionality is implemented in
the legal hypervisor.

In some architectures, the legal hypervisor can protect itself
against runtime modification, even if the attacker has all
privileges in the underlying OS. For instance, in case of Xen,
there is no supported method to modify Xen code in runtime
by the administrator of the dom0 domain.

In this paper we will discuss how the Xen 3.x hypervisor can
be modified in runtime with DMA transfers so that backdoor
functionality can be inserted. The generic framework allowing
to load compiled C code into Xen will be described. Two
backdoors using this framework will be evaluated. We will
also discuss possible detection methods.

II. A FEW IMPORTANT FACT ABOUT XEN 3.X
ARCHITECTURE

The Xen 3.x architecture is described in the documentation
bundled with the Xen source code[3]. The reader is encouraged

to get acquainted with these documents; in this section we will
only mention the details directly referenced later in this paper.
Also, throughout this paper, we cover only x86 32 and x86 64
architectures, and Linux as dom0’s OS.

The Xen hypervisor is directly loaded by the bootloader;
unlike e.g. VMware Workstation [4] it does not require a full
OS to be active in order to start. It is the only piece of code
running in ring 0. After its initialization, it starts the first VM
named dom0. The kernel of this VM (as well as all other
domains) runs in less privileged ring (1 in case of x86 32, 3
in case of x86 64), so it is under full control of the hypervisor.
Dom0 operating system (usually Linux, although NetBSD and
OpenSolaris are also supported) is special: unlike all other
domains, it is allowed to request Xen to conduct administrative
actions, like creating, starting and stopping other VMs.

Moreover, dom0 is allowed to access most of the hardware
directly. It exports restricted set of resources (e.g. disk space)
to other unprivileged domains. This design allows to use
mostly unmodified device drivers written for dom0 OS, instead
of porting all of them to Xen.

After dom0 has booted, it can request Xen to start other
VMs. There are two types of VMs:

• Fully virtualized. Requires processor support for virtual-
ization (Intel VTx or AMD AMD-V). Unmodified guest
OS can run in the VM. All operations that are privileged
or depend on the privileged state are intercepted by Xen
and simulated to provide illusion of full control over the
machine.

• Paravirtualized. The guest OS must be aware that it runs
under Xen’s control, and instead of performing privileged
operations directly, it requests Xen to conduct them.
Particularly, dom0 is a paravirtualized domain.

The Xen services can be requested by the guest domain
by invoking hypercalls. Xen sets up the IDT entry for the
software interrupt 0x82 so that guest’s kernels can issue int
0x82 instruction, and then the control is passed to a Xen func-
tion (hypercall) selected by the value of the eax/rax register.
A hypercall validates the arguments provided by the guest
and if the required action does not violate security policies,
it is executed. Example hypercalls are do mmu update and
do set gdt, whose purpose should be self-explainable.

III. GETTING CONTROL OVER XEN WITH DMA

A. Introduction

Let’s assume that an attacker gained root privileges in dom0.
It can be an effect of improperly secured access to a vulnerable
network service running in dom0. Also, in the past there were
known vulnerabilities in code running in dom0 that can be

PROCEEDINGS OF BLACK HAT USA 2008, AUGUST 2008 2

dom0
userspace

domU
userspace

domU
userspace

dom0 kernel domU kernel domU kernel

device
drivers

Xen hypervisor

Hardware

ring 0

x86_32: ring 1
x86_64: ring 3

ring 3
processes processes processes

Fig. 1. The simplified Xen architecture

exploited from within other unprivileged domain; see CVE-
2007-4993 [5] or CVE-2007-5497[6] for examples.

If the attacker wishes to plant a backdoor in the Xen code,
he will need the ability to alter Xen memory. He can modify
the bootloader so that after reboot, a backdoored Xen version
will start; however this approach has disadvantages:

• The reboot of the hypervisor is a very noticeable event,
that may reveal the intrusion.

• The ability to alter the boot process can be limited; pos-
sible means include booting from media write-protected
by hardware, or more sophisticated techniques like Intel
Trusted Execution Technology[7].

Therefore, the attacker needs to alter Xen memory in run-
time. It is a well-known fact (particularly, explicitly mentioned
in the Xen documentation) that without means to restrict DMA
transfers (via IOMMU[8] or VT-d[9]; most chipsets do not
support these today) any DMA capable device can overwrite
arbitrary physical memory, including regions occupied by Xen
code.

Let’s note that the abilities of DMA-capable devices pose
problems for other systems that separate device drivers from
the rest of the privileged code, e.g. ones based on microkernel
design (like Minix3[10]).

Luic Duflot in his paper [11] discusses similar ideas. He
showed that AGP GART or USB subsystem can be configured
to overwrite arbitrary physical memory. However, we will
take a slightly different approach. Instead of using particular
devices, which are easy to program1, but can be disabled by
the administrator (or not present at all), we will use popular
hardware: a network card or a hard drive. Moreover, we will
not dwell into all details on how a given device is programmed
to schedule a DMA transfer; we will let the code of the device
driver (and kernel support code) do most of the work. As we
will see, in the HDD case, we will achieve portability over
any make of device.

There is one particular issue to be considered: the device
that we want to program for arbitrary DMA access can be used
by the OS. We have to act so that we do not disrupt normal

1Luic uses PIO only to configure the devices; we can do more, e.g. access
the relevant iomem

operation of the device. Particularly, unloading of the existing
driver and initializing device from a scratch is not an option.

There is another paper by Luic Duflot [12] that discusses
how to abuse System Management Mode of a x86 processor
to gain full control over the physical memory. However, as all
modern BIOSes protect the SMM code from modification by
OS, this type of attack is unlikely to succeed2, so we will not
discuss it here.

B. A network card example

The network card has a nice property: as generally the
network medium is unreliable, we can afford to temporarily
drop all packets sent to the card by the OS; their loss will be
attributed to the medium. Naturally, we must not affect higher
layer structures, as the ip routes.

It may seem that NIC is not suitable for our task: it uses
DMA to copy data between RAM and its internal buffers, and
the latter are not accessible directly. Therefore, all we can
achieve is to copy the contents of arbitrary memory location
to (or from) the network medium, and the latter is not easily
controllable. However, almost all NICs support ”loopback
mode”. In this mode, the transmit operation does not copy
a packet to the wire, but to internal buffers, and then the
packet is received back. That said, we can achieve arbitrary
physical memory access at address X. First, we stop the packet
queue (with netif tx disable() kernel function). Then we set
the loopback mode and promiscuous mode (so that there is
no check on the MAC header residing in the received data).
Then:

• reading: set a transmit ring entry so that the data pointer
points to X, and the receive ring entry data pointer points
to buffer we can read

• writing: set a transmit ring entry so that the data pointer
points to our data, and the receive ring entry data pointer
points to X

The good thing is that the implementation of the above
procedure is simple. On Linux, we can write a kernel module
that will get the address of the relevant ”struct net device”
structure with dev get by name() macro, and then we can
operate on the card state. For instance, for writing, the line in
tg3.c driver:

tg3 set txd(tp, tp >tx prod, map,
tx len, 0, 1);

will be changed in our module to

tg3 set txd(tp, tp >tx prod, arbitrary phys addr,
tx len, 0, 1);

Still, as the functionality to set the loopback mode is not
exported by Linux drivers3, for each card make we will
have to create appropriate code. The author has successfully
implemented tg3dma.c module, that works with all cards
supported by the Linux tg3.c driver.

2Naturally, assuming there are no bugs in the above protection
3But it is often implemented for the needs of the selftest functions,

accessible by ethtool

PROCEEDINGS OF BLACK HAT USA 2008, AUGUST 2008 3

C. A hard drive controller example

In order to set up a DMA transfer, a device driver needs
to obtain the physical address of a buffer passed by upper
layers. In case of HDD drivers, it turns out that the function
dma map sg() is used. On some architectures this function is
in fact a simple macro; in case of Xen 3.x dom0 Linux kernels,
it is a real function implemented and exported by the kernel.

The basic idea is: we will hook the dma map sg() function,
so that it will report an attacker-chosen physical address
X (instead of a real physical address of a buffer). Then,
write(somefd, userbuffer, len) syscall will result in DMA
transfer to disk not from the userbuffer, buf from address
X.
The challenge is that we cannot blindly redirect all transfers to
X. Other processes/kernel threads may issue disk access, and
if we redirect it to X, memory or filesystem corruption will
occur. So, we have to know whether a given dma map sg()
invocation is in progress in order to get the physical address
of our userbuffer.
The dma map sg() prototype is:

int dma map sg(struct device ∗dev,
struct scatterlist ∗sg, int nents,
enum dma data direction direction);

struct scatterlist {
struct page ∗page;
unsigned int offset;
dma addr t dma address;
unsigned int length;

};

dma map sg() is supposed to set the dma address field
with the physical address of the page field.
We could expect that if write(somefd, userbuffer, len)
syscall was invoked, then the page field will correspond to
the page occupied by userbuffer. Unfortunately, it is not so;
instead, the page field will point to the page structure used
by the filesystem cache. It is not easy to determine which
filesystem cache page will be used for our transfer. Therefore,
we need to bypass filesystem cache, by setting the O DIRECT
flag in open() syscall. Then, the hook for dma map sg() will
look like this:

call original dma map sg();
for (i = 0; i < nents; i++)

if (sg[i].page == page of userbuffer)
sg[i].dma address = our phys addr;

The author has successfully implemented directhdd.c kernel
module that allows for arbitrary memory access with the help
of any HDD controller. Again, the required amount of code
was small (c.a. 200 lines of C).

IV. XEN LOADABLE MODULE FRAMEWORK

A. Introduction

As shown in the previous section, it is relatively easy
to overwrite the physical memory occupied by Xen in a

controllable manner. Particularly, we can read a given page and
then apply modifications to it. In this section we will describe
the framework allowing to load compiled C code into Xen,
similarly to Linux loadable kernel modules.

B. Locating important code and data structures

The bootloader loads Xen at physical address 0x00100000.
In case of Xen 3.2.0 and later on x86 64 architecture, the
Xen boot code relocates the hypervisor to the top of physical
RAM. Hypervisor’s pages are mapped linearly at high virtual
addresses: on x86 32 (with PAE) starting at 0xff100000, on
x86 64 starting at 0xffffffff80200000. Thus, if we know the
virtual address of a variable/function, we can easily find its
physical address.
The hypercall table array stores all hypercall
addresses; int 0x82 handler invokes a hypercall by
call ∗ hypercall table(, eax, 4) (and similarly in case
of x86 64). Similarly, all exceptions are handled by
handle exception function; it calls appropriate function by
call ∗ exception table(, eax, 4) (and similarly in case of
x86 64). If we have access to the xen − syms binary, we
can easily retrieve the addresses of these tables from this file.
Otherwise, we can locate the hypercall args table array
by pattern matching (because this array has fixed content,
starting with "\x01 \x04 \x02 \x02 \x04 \x01 \x02 \x01 "
), and as this array is directly preceded by hypercall table
and exception table, we can discover their addresses as well.

We will also need a few more addresses of Xen functions;
if the xen− syms binary is not available, they can be located
as follows:

• xmalloc and printk. The alloc xenoprof struct()
function contains the following fragment:

static int alloc xenoprof struct(...)
{

...
d >xenoprof = xmalloc(struct xenoprof);
if (d >xenoprof == NULL) {

printk("alloc xenoprof struct(): "
"memory allocation failed \n");

return ENOMEM;
}
...

}

We can find the error message in the Xen binary; then by
finding the only reference to it we will discover printk
address; and by finding the reference to the basic block
containing the above printk invocation we can find the
address of xmalloc function.

• copy from user. A few hypercalls, e.g.
do physdev op compat, contain copy from guest
macro at its beginning. This macro contains calls to
copy from user and copy from user hvm; it is easy
to distinguish these two.

Many other important data structures are referenced from the
current vcpu structure; this structure resides at the bottom of

PROCEEDINGS OF BLACK HAT USA 2008, AUGUST 2008 4

the ring0 stack, so it can be found in runtime (the current
macro).

C. Code execution at ring 0

In order to execute code at ring 0, we can use the following
procedure:

• Using DMA, overwrite the body of do ni nypercall (hy-
percall no 11; it consists of ”return -ENOSYS” instruction
and is normally unused) with ”call 4(%esp)+ret” or ”call
%rdi+ret”. We need to do it just once.

• Invoke hypercall 11, giving as its first parameter the
address of arbitrary function (that can reside in guest
space).

In the framework, there is a function run0(void ∗ fun)
implementing the above.

D. Module loading and unloading

The module to be loaded is a normal ELF relocatable object;
one may need correct Xen includes to compile it. The xenload
utility performs the following actions:

• link the module with the xenlib.o file containing addresses
of functions and structures mentioned in the previous
subsection (so that the module can reference them)

• get the size S of the resultant static ELF
• using run0 function, allocate S bytes in the Xen heap by

calling the Xen xmalloc function; let it return address A
• relink the module, this time using the linker script that

specifies base A;
• copy the linked executable to address X (by calling

memcpy function via run0); as the linker script specifies
”impure” section layout, we can just copy the executable
contents and the sections will be positioned correctly

• parse the ”varname=value” pairs passed in the xenload
command line; initialize appropriate locations in the
loaded module; fill .bss section with zeroes

• retrieve the address of the ”init module” function from
the linked module

• call the ”init module” function via run0.
The xenunload utility just calls the ”cleanup module” function
in the module via the run0 primitive; for simplicity, the
allocated memory is not freed.

A sample module source code is included in appendix B.

V. DEBUG REGISTER BACKDOOR

A. Goals and assumptions

Armed with the tools described in the previous section,
we are ready to start designing a Xen-based backdoor. It is
supposed to grant remote access to dom0. The main property is
the lack of modification of the dom0 code and data structures,
so that a memory scanner running in dom0 cannot detect the
backdoor presence.

There are two aspects of backdoor stealthiness:
• How difficult it is to detect the presence of the backdoor

while it is not being used
• How difficult it is to detect the presence of the backdoor

while it is being used

In this section, we focus on the first issue. When activated,
the backdoor will provide arbitrary shell commands execution
capability; there is no attempt to hide these commands. We
will briefly discuss the second issue later.

The basic design of the debug register backdoor (or, dr
backdoor)4 is:

• When dom0 is active, Xen configures debug registers
DR3 and DR7 so that a call to the netif rx() function
(called by network interface driver to pass a received
packet to the network stack) will result in the debug
exception being raised

• The Xen debug exception handler is replaced by the
backdoor. When the handler determines that is was called
because of exception at address netif rx(), it will inspect
the packet payload. If the packet contains appropriate
magic bytes, shell will be executed in dom0 with the
arguments taken from the packet payload.

• Anytime when dom0 queries or sets debugging registers,
it cannot find out that they are used for the backdoor
purposes.

There is one important feature of this design. The fault to
Xen space and packet inspection by the backdoor happens very
low in the networking stack, just after the device driver has
retrieved the packet. Particularly, Linux firewall code has not
been run yet, therefore the packet will be inspected even if
all traffic is dropped by the firewall. Similarly, the backdoor
can force dropping of the packet (by returning control not
to netif rx, but to kfree skb), so the network monitoring tool
running in dom0 userspace will not even see the packet.

We will continue with more detailed description of a few
issues.

B. Debug registers handling

For each VM, Xen keeps its state, to be able to re-
store it during interVM context switch. Particularly, the
arch.guest context.debugreg array contains the values of the
debug registers. Normally, when a guest requests Xen to set
a debugging register, this array is updated along with setting
the register.

Dr backdoor hooks5 do set debugreg() hypercall, invoked
when the guest requests Xen to set a debugging register. When
dr backdoor sees (in the hooked hypercall) that the guest
attempts to set DR3 register (used by the backdoor), it will
allow the guest to do it (and become deactivated). Similarly,
when the backdoor sees that the guest sets the ”active” mask
for DR3 in DR7 to 0, it will regain control over DR3 (and
relevant DR7 bits) thus becoming active again.

Dr backdoor hooks arch.schedule tail function, thus it
enables DR3 for its purposes6 anytime the dom0 is selected
to run by the Xen scheduler.

The do get debugreg() hypercall needs not to be hooked;
it returns the value from the arch.guest context.debugreg

4Implementing a backdoor with debug registers in case of a usual OS is
discussed in a few papers, e.g. phrack article p65-8[13]

5It is not enough to change this hypercall’s address in hypercall table,
because this function is also called directly by Xen in GPF handler.

6checking arch.guest context.debugreg first to make sure that the guest
does not use DR3

PROCEEDINGS OF BLACK HAT USA 2008, AUGUST 2008 5

array, and the content of it is always coherent with what the
guest expect.

C. Implementing code execution in dom0

When dr backdoor decides that it has seen a command
packet, it is supposed to create a new shell process in dom0.
Theoretically, as the hypervisor has full control over the
dom0 address space, it could ”manually” tweak all dom0
kernel data structures so that a new process would be created.
However, creating a new process is a complicated action,
and implementing it in the backdoor would be difficult and
unreliable.

A different approach was chosen. Before loading
dr backdoor, we will allocate (via vmalloc exec) a ”scratch”
page in the dom0 address space. Most of the time this page
will contain only zeroes. When dr backdoor sees the command
packet, it will copy trampoline code to the scratch page, and
instead of returning control to the netif rx function, it will
set dom0’s EIP to the scratch page. After executing the shell,
the trampoline code in the scratch page will self-destruct by
returning into memset, so that no trace of backdoor code is
left in dom0 address space.

Thus we shifted the burden of executing the shell from the
hypervisor to the dom0 kernel. Still, it is not an easy task,
particularly because the trampoline code runs in the interrupt
context. The trampoline code must do the following:

• defer its execution until interrupt is completed by calling
execute in process context (a function exported by the
kernel)

• call one of call usermodehelper family functions to actu-
ally fork a shell. Most of these functions are macros;
call usermodehelper keys is the one exported by the
kernel.

D. Deficiencies of dr backdoor

The idle dr backdoor cannot be detected by scanning dom0
memory. However, there are different methods.
Probably, the handling of debug registers in not entirely
transparent. There may be subtle differences to the clean
systems in corner cases (e.g if dom0 sets both DR0 and DR3
to the netif rx(), will the DR6 content be correct in the dom0
debug exception handler ?). They are possible to fix, but there
is a more severe problem. A simple timing analysis will reveal
that the first instruction of netif rx() takes much more time to
execute7, due to overhead imposed by the debug exception
handler. The baseline for timing analysis is easily obtainable.

Additionally, the Linux kernel assigns debug registers dur-
ing the context switch in a ”lazy” way. As a result, if a process
sets debug registers and then exits, they will not be reset. All
processes and kernel code will run with nonzero DR7, until a
debug exception is generated - only then it will be zeroed. Dr
backdoor will perceive DR3 as used and it will not re-enable
itself.

7Tests showed overhead around two orders of magnitude

VI. FOREIGN BACKDOOR

A. Introduction

Dr backdoor can be detected with timing analysis. It is
an effect of its design: it hooks some function in dom0,
and the associated overhead can be measured. In order to
overcome this problem, we must use other means of dom0
state inspection than hooking.

Xen provides API for a domain (which must be privileged)
to inspect other domain’s memory. We will start a separate do-
main (let’s name it ”lurker”) and by setting its ”is privileged”
flag in Xen structures, we will empower it to inspect the
memory of all other domains. Then, we will need a method to
ship a ”magic” pattern to some location in the domain memory.
This pattern need to stay in the memory long enough so that
VM context switch can happen and our lurker domain has a
chance to run and spot this pattern. Then the lurker domain
can force arbitrary code execution in dom0 (possibly with the
help of the hypervisor).

The author implemented the code capable of detecting
that a sshd process in dom0 domain has received a protocol
identification string with a ”magic” content. Then the lurker
domain changes the sshd process stack (and saved registers in
the kernel stack) so that it executes arbitrary shellcode.
This approach has a significant drawback. It is a good practice
to firewall dom0 so that its network services can be reached
only from trusted hosts. It would prevent the above scenario
from happening, as we won’t be able to contact the sshd
daemon in the dom0 at all. However, if there is any other
domain whose sshd can be reached, we can apply this ap-
proach as well; we will get, say, a remote command shell in an
unprivileged domain, but then we can ask the hypervisor (using
the run0 primitive, that can be used from an unprivileged
domain as well) to conduct arbitrary action on our behalf,
including spawning shell commands in dom0.

B. Some Xen-specific implementation details

Foreign backdoor is implemented as a initrd image for a
particular kernel version. When started, its init process:

• patches the kernel to disable the code that checks whether
the kernel runs in the initial domain. This code is clearly
redundant; the hypervisor enforces appropriate security
checks on its own.

• using the run0 primitive, it sets the ”is privileged” field
in its domain

• in the loop, starts scanning the dom0 processes list in
order to enumerate sshd processes

• for each sshd process, it inspects its state
In order to conveniently monitor memory in dom0, we need

a method to map a page by its virtual address. Libxenctrl
library provides API to

• retrieve the foreign domain’s cr3 register
• map a frame by its physical address
• using the above two primitives, walk the pagetables in

order to resolve a virtual address
One important detail is that if we want to inspect userland
memory (e.g. in sshd process), and this process is not sched-
uled to run at the moment, then we don’t want the current

PROCEEDINGS OF BLACK HAT USA 2008, AUGUST 2008 6

cr3 value, but the process’ Page Global Directory, stored in
task− > mm− > pgd.
The above functionality to handle virtual addresses is the
purpose of the xenaccess[14] library; however, xenaccess does
not work with some kernel/hypervisor version pairs, therefore
foreign backdoor uses the libxenctrl library only.

Once we have the ability to manipulate the memory of sshd
process, we need to perform the following tasks:

• retrieve client’s identification string (before the terminat-
ing newline is sent)

• if the magic string has been sent, insert and execute
shellcode

The challenge is to do it without any information on the sshd
binary version. As we will see, these tasks are not related to
hypervisor topic; yet they are technically interesting, therefore
they are described in the following subsection.

C. sshd transmutation

The code responsible for client identification string receiv-
ing looks the same in all opensshd versions (in function
sshd exchange identification()):

/∗ the ”buf” array is on the stack ∗/
for (i = 0; i < sizeof(buf) 1; i++) {

if (atomicio(read, sock in, &buf[i], 1) != 1) {
/∗ log error ∗/
cleanup exit(255);

}
/∗ handle \r ∗/
if (buf[i] == ’\n’) {

buf[i] = 0;
break;

}
}

So, the identification string is read by one byte with the read
syscall, and stored on the stack. Therefore, in order to observe
that the whole magic string has been sent, the following check
(specific for x86 32) that relies on the fact that the process
sleeps in the read syscall, will suffice:

• walk the processes list; recognize the sshd processes by
name (the comm field)

• for each sshd process, inspect its kernel stack (pointed
to by task− > thread.esp0); locate the system call
frame by searching for the word on the stack equal
syscall call + 7 8. Then we know the location of saved
registers.

• if the orig eax is not the number of ”read” syscall, exit
• if the saved ebx does not look like a file descriptor

number, or the saved ecx does not point to the stack,
or saved edx is not 1, exit

8The system call function (from arch/i386/kernel/entry.S) does roughly:
ENTRY(system call)
push all registers on the stack (arguments to the system call)
syscall call:
call *sys call table(,%eax,4)
Surprisingly, the syscall call address is exported in kallsyms.

• let N be the length of the magic string; copy N bytes
from userspace from address saved ecx-N to a temporary
buffer; check whether this buffer contains the magic string

The diagram in appendix A shows the relation between all the
referenced data structures.

The last question remains: how to insert shellcode. A few
straightforward approaches will not work against a recent
Linux distribution (like Fedora):

• copy shellcode to the process stack or heap, set the saved
eip to point to this location: neither the stack nor heap is
executable

• copy shellcode to one of the memory regions occupied
by a mapped executable: as the binaries are mapped as
shared, we would damage all sshd processes

• setup return-into-libc payload on the stack: besides know-
ing the libraries version, we would have to determine their
actual base (they are randomized)

• copy the shellcode to the VDSO region: this has space
limitations, and also the change would be visible in all
processes (VDSO is mapped as shared)

One solution would be to change the process’s page tables
directly so that the stack would be executable. Currently,
a different approach was taken; it can be useful in other
scenarios as well. The main idea is to execute sys mprotect on
one of the stack pages. We don’t want to look for this function
in libc, so we will call it via int $0x80 in VDSO (function

kernel vsyscall). In order to do this, we need to set eax
to NR mprotect. But we cannot achieve this by altering
the kernel stack; eax is always overwritten with the syscall
return value. Therefore, we will transit through sys sigreturn
(function kernel sigreturn in VDSO) in order to get full
control over all registers9. Full procedure:

• change the saved eip so that it points to sys sigreturn
code in VDSO10

• setup the sigreturn frame. The registers in the sigreturn
frame should be set so that sys mprotect will be executed
(particularly eip= kernel vsyscall, eax=NR mprotect)
after sys sigreturn, setting a part of the stack as exe-
cutable

• copy shellcode to the stack region marked as executable;
the top stack word should be set to point to the shellcode,
so that after the ”ret” from sys mprotect, the control will
be transferred to the shellcode.

D. Detection and possible improvements

The lurker domain can be well hidden. As showed in
appendix B, it is easy to hook domctl hypercall so that
this domain will not show in the ”xm list” output. Probably
xenstore tree should be modified properly as well.

If the lurker domain runs the scan rarely (say, once a
second), it will consume negligible (hard to notice) amount
of CPU time. Still, some memory must be allocated for this

9It would be enough to transit through ”popl %eax+ret” sequence residing
in an executable region; but in case of ASLR, it is nontrivial to even scan for
such pattern

10we know VDSO address: saved eip points after the int $0x80 in VDSO

PROCEEDINGS OF BLACK HAT USA 2008, AUGUST 2008 7

domain; it can be just a few megabytes, yet it could be
noticeable.

Instead of running the scan in the separate domain, we can
run it within the hypervisor, by hooking some periodically
invoked function (e.g. in scheduler). Then there would be no
need to hide a lurker domain properly11. Also, in order to
avoid the necessity to map user pages, it would be better to
look at the kernel data structures only. The IP fragments queue
is well-suited for this purpose. In case of Linux, an IP fragment
is stored in the queue for 30 seconds, which gives us plenty of
time to conduct the scan. If the magic string is detected in an IP
fragment, arbitrary commands can be forced to be executed,
as shown in the dr backdoor. Also, as the source of an IP
fragment can be spoofed, this can help bypass firewall rules
in some cases. Unfortunately, there are some implementation
problems:

• the IP fragments hashtable (ipq hash) is not exported in
kallsyms in most cases; if System.map is not available,
some work must be done to determine its location

• there are differences in IP fragments hashtable imple-
mentations between linux-2.6.24 (and later kernels) and
previous kernels.

The implementation of IP fragments backdoor is left as an
exercise for the reader.

VII. OTHER CONSIDERATIONS

As mentioned previously, the current implementation of
the backdoors does not feature hiding the shell commands
spawned by a backdoor. It is a nontrivial task; assuming we
can inspect dom0 kernel data structures, it is very difficult to
hide a process. Consequently, although it is possible to hijack
dom0 syscalls by altering int 0x80 dispatching, it will only
help to hide backdoor activity from the usermode, not from
the kernel, so it is of little use and has not been implemented.

Instead of spawning a shell in a separate, well-visible pro-
cess, backdoors could force execution of arbitrary operations
(say, system calls) in event/x kernel thread; this would be
more difficult to spot. Still, any operation that changes dom0
data structures or filesystems in an anomalous way can be
detected with enough effort. However, if all that attacker
needs is the content of memory (say, cryptographic keys in
some process), then this information can be retrieved really
stealthily.

In order to provide convenient ability to execute code
in ring 0, we have overwritten the do ni hypercall with
”call first argument” assembly instructions. Anyone can call
this hypercall and thus discover the backdoor presence.
The seal module, shipped with the framework, replaces
do ni hypercall body with a function that checks the argu-
ments for the magic values before actually calling a function
provided by the caller.

Currently, the framework and the direct hdd module work
on both x86 32 and x86 64 architectures; the backdoors are

11Note that if we use an already existing, legal domain for lurking purposes
instead of spawning a dedicated lurker domain, then the Xen code can be left
unmodified, which can be significant for some integrity scanner capable of
reading memory occupied by Xen code

for x86 32 only, but it should be straightforward to port them
to x86 64.

We have discussed taking control over hypervisor’s code
by DMA. If there is a programming error in the hypervisor
code (e.g. a buffer overflow in a hypercall), it could allow to
overwrite hypervisor’s code and install the backdoors as well.
Moreover, if the said error was reachable by an unprivileged
domain, it could allow for direct elevation to ring0 from domU.

Other hypervisors that are designed to be the only all-
powerful entities in the system (and thus are able to control
administrative operations), e.g. Hyper-V[15], are attractive
targets for placing a backdoor as well.

This paper addresses the defense methods to the presented
attacks very superficially; they will be discussed in more depth
in other publication.

REFERENCES

[1] Joanna Rutkowska, Subverting VistaTM Kernel for Fun and
Profit, http://www.blackhat.com/presentations/bh-usa-06/BH-US-
06-Rutkowska.pdf

[2] Dino Dai Zovi, Hardware Virtualization Rootkits,
http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Zovi.pdf

[3] Xen 3.2, http://bits.xensource.com/oss-xen/release/3.2.0/xen-3.2.0.tar.gz
[4] VMware Workstation, http://www.vmware.com/products/ws/
[5] CVE-2007-4993, http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-

2007-4993
[6] Multiple integer overflows in e2fsprogs (Xen related),

http://www.mcafee.com/us/local content/misc/threat center/e2fsprogs.pdf
[7] Intel, Intel Trusted Execution Technology,

http://www.intel.com/technology/security/index.htm
[8] AMD, AMD IOMMU specification 1.2 http://www.amd.com/us-

en/assets/content type/white papers and tech docs/34434.pdf
[9] Intel, Intel Virtualization Technology for Directed I/O (Intel VT-d),

http://www.intel.com/technology/magazine/45nm/vtd-
0507.htm?iid=techmag 0507+rhc vtd

[10] The MINIX 3 Operating System, http://www.minix3.org/
[11] Luic Duflot, Programmed I/O accesses: a threat to Virtual

Machines ?, http://www.ssi.gouv.fr/fr/sciences/fichiers/lti/pacsec2007-
duflot-papier.pdf

[12] Luic Duflot, Security Issues Related to Pentium System Management
Mode, http://cansecwest.com/slides06/csw06-duflot.ppt

[13] halfdead@phear.org, Mistifying the debugger, ultimate stealthness,
http://www.phrack.com/issues.html?issue=65&id=8

[14] XenAccess Library, http://code.google.com/p/xenaccess/
[15] Microsoft, Hyper-V, http://en.wikipedia.org/wiki/Hyper-V

PROCEEDINGS OF BLACK HAT USA 2008, AUGUST 2008 8

VIII. APPENDIX A

next

 task_struct

next

 task_struct

next

 task_struct

next

 task_struct

esp0

comm
(sshd)

mm

pgd

mm_struct

 pagetables
 for a sshd process

 current pagetables

syscall_call+7
...

orig_eax
(NR_read)

ebx (fd)
ecx

edx (1)
ssh ident string

a sshd process

userspace kernelspace

init_taskcr3Algorithm to retrieve the ssh identification string

kernel stack for
a sshd process

IX. APPENDIX B
A verbatim copy of the source code of a module that hides a presence of a selected domain from dom0.

#include <xenlib.h>
#include <stdint.h>
#include <public/xen.h>
#include <public/domctl.h>
long (∗orig domctl) (void ∗);

/∗ set by xenload command line ∗/
long hidden domain = 0xaabbccdd;

long my domctl(struct xen domctl ∗p)
{

long ret = orig domctl(p);
if (ret || p >cmd != XEN DOMCTL getdomaininfo

|| p >domain != hidden domain)
return ret;

/∗ p contains info on the hidden domain;
overwrite it with the info on the next domain ∗/

p >domain++;
return orig domctl(p);

}

int init module()
{

orig domctl = hypercall table[HYPERVISOR domctl];

PROCEEDINGS OF BLACK HAT USA 2008, AUGUST 2008 9

hypercall table[HYPERVISOR domctl] = my domctl;
return 0;

}

void cleanup module()
{

hypercall table[HYPERVISOR domctl] = orig domctl;
}

