
Alternative Medicine:
The Malware Analyst’s Blue Pill

Paul Royal
Damballa, Inc

Black Hat USA 2008
August 6th, 2008

Agenda

•  About
•  Malware Analysis

–  Approaches, Challenges
•  Malware Analysis Using Intel VT

–  Virtual Machine Introspection
–  Fine- and Coarse- Grained Tracing

•  Design/Implemention
–  Azure, a PoC Malware Analysis Tool

•  Experimentation/Evaluation
–  Automated Unpacking

•  Conclusion/Future Work
•  Q&A

About

• Damballa
– Botnet detection and remediation in large

enterprise networks

• Paul Royal
– Principal Researcher at Damballa

•  Focus on sandboxes, sensors and analyzers used for
the discovery and identification of bot behavior

– BS/MS CS from Georgia Tech
• Studied automated malware processing and

transformation

Malware Analysis

• Static Analysis
– Attempts to understand what a program

would do if executed
– Requires: An unobstructed view of program

code

• Dynamic Analysis
– Attempts to understand what a program does

when executed
– Requires: Ability to trace the actions of the

binary (with fine- or coarse- granularity)

Analysis Challenges

• Dynamic Analysis
– Must handle anti-debugging, anti-

instrumentation, anti-VM

• Static Analysis
– Must overcome code obfuscations (e.g.,

packing)
– Solutions transitively dependent on

dynamic analysis

Dynamic Analysis Approaches

• In-Guest
– Implemented using Win Debugging API, API

hooking, Custom Handlers (e.g., pagefault,
debug exception)

– Examples: CWSandbox, Saffron, VAMPiRE

• Whole-System Emulation
– Often created by modifying/extending

existing system emulator (e.g., QEMU)
– Examples: Anubis, Renovo

• Often vulnerable to detection

Detecting In-Guest Tools

• CWSandbox
– Hooks WinAPI calls; does not hide hooks

#include <windows.h>

#include <stdio.h>

int main(int argc, char* argv[]){

 HMODULE kernel32 = NULL;

 void *createfile_function_pointer = NULL;

 unsigned char opcodes[2];

 kernel32 = LoadLibrary("kernel32");

 createfile_function_pointer =

 (void*)GetProcAddress(kernel32, "CreateFileA");

 memcpy(opcodes, createfile_function_pointer, sizeof(opcodes));

 if(opcodes[0] == 0xFF && opcodes[1] == 0x25){

 fopen("in_cwsandbox", "w");

 exit(-1);

 }

 return 0;

}
 Credit: Artem Dinaburg

Detecting System Emulators

• QEMU
• Vulnerable to attacks that exploit inaccurate/

incomplete system emulation
#include <stdio.h>

#include <windows.h>

int seh handler(struct EXCEPTION RECORD ∗exception record,

 void ∗established frame,

 struct CONTEXT ∗context recorcd,

 void ∗dispatcher context){

 printf("Not QEMU\n");

 exit(0);

}

int main(int argc, char ∗argv[]){

 uint32 t handler = (uint32 t)seh handler;

 printf("Attempting detection\n");

 asm("movl %0, %%eax\n\t"

 "pushl %%eax\n\t"::"r" (handler): "%eax");

 asm("pushl %fs:0\n\t"

 "movl %esp, %fs:0\n\t");

 asm(".byte 0xf3,0xf3,0xf3,0xf3,0xf3,0xf3,"

 "0xf3,0xf3,0xf3,0xf3,0xf3,0xf3,"

 "0xf3,0xf3,0xf3,0x90");

 asm("movl %esp, %eax");

 asm("movl %eax, %fs:0");

 asm("addl $8, %esp");

 printf("QEMU Detected\n");

 return -1;

}
 Credit: Peter Ferrie, Artem Dinaburg

An Alternative Approach

• Current Approaches
– In-Guest

•  Always some instrumentation/side effect to detect

– Whole-System Emulation
•  Always some inconsistency to exploit

– Detection/Detection-Prevention Arms Race

• Need external, baremetal-like
platform for malware analysis
– What about using hardware virtualization

extensions (e.g., Intel VT)?

Intel VT

• Hardware-assisted means to
virtualize x86 instruction set

• Operation
– Hardware elements (e.g., VMCS)
– Virtualization instructions (e.g., VMXON,

VMLAUNCH, VMRESUME)
– Administrative software component

•  Host can read from, write to, preempt receipt of
notification for certain guest events

•  Preemption causes a VMExit (guest is frozen)

• Allows for the execution of
unmodified guests

Intel VT Cont’d

• Operation

Intel VT for Malware Analysis

• Positives
– External

•  No in-guest components to detect
– Capable

•  Functionality suggests potential use in analysis
– “Equivalent”

•  Hardware-assisted nature offers transparency

• Negatives
– Not made for analyzing malware

•  Any functionality (e.g., coarse-grained tracing) must be
derived

– Intel VT/administrative software component
vulnerable to detection

Discussion Preface

• Next sets of slides discuss three
malware analysis requirements
– Virtual Machine Introspection
– Fine-Grained Tracing
– Coarse-Grained Tracing

• Format
– Requirement’s description
– x86 background
– Leveraging Intel VT to fulfill requirement

Virtual Machine Introspection

• Garfinkel and Rosenblum
– Inspecting a guest process externally for the

purpose of analysis
• Example use of VMI

– External identification of a target process in
the guest

– In malware analysis, target process must be
identified after loading but before execution

• VMI through Intel VT?
– Possible by leveraging host’s MMU

responsibilities

x86 Memory Management

• Virtual Memory in x86
– Uses paging to provide processes with the

appearance of an exclusive address space
– Each process has its own page directory

pointer
– Page directory pointer of active process

stored in CR3
• Context Switches

– Process switched in or out by the OS
– Page directory must be changed to the

upcoming process
– Change occurs as a MOV to CR3

VMI through Intel VT

• Exploit host’s MMU duties
– During guest context switch, guest

attempts MOV to CR3
– Causes VMExit; guest is frozen until

resumed by host

• Guest reads can be used to
identify the upcoming process
– Requires a bit of reverse-engineering

kernel data structures
– More on this later

Fine-Grained Tracing

• Monitoring the behavior of a
process at the instruction-level

• In malware analysis, fine-
grained is used for
– Dynamic taint analysis

• Example: Panorama

– Multi-path exploration
– Precision automated unpacking

• Examples: PolyUnpack, Renovo

x86 Debugging

• FLAGS register
– Contains set of processor status, control,

and system flags
– Read from/written to using PUSHF/POPF

• FLAGS: trap flag
– System flag use to enable “single-

stepping” or debug mode
– When set, a debug exception is thrown

immediately after execution of the next
instruction

Fine-Grained via Intel VT

• Previous in-guest analysis tools
have used the trap flag
– VAMPiRE

•  Installs its own debug exception handler
•  Repeatedly sets the trap flag and preempts the

resulting exception

• Intel VT can do the same
externally
– Host sets the guest’s trap flag in FLAGS
– Host uses Intel VT to preempt receipt of the

corresponding exception
•  No in-guest debug exception handler

Coarse-Grained Tracing

• Monitoring the behavior of a
process at the API or system call
level
– Discrete events are often easily recognizable

actions
•  Examples: File or registry access, process or thread

creation, network activity

• In malware analysis, use for
– Behavioral Antivirus

•  Examples: ThreatFire, Norton AntiBot
– Malware Analysis Services

•  Examples: Anubis, CWSandbox

x86 Fast System Call Facility

• SYSENTER instruction
– Executed when a process makes a Native

API or system call
– Used to transition from ring 3 (user

space) to ring 0 (kernel space)

• SYSENTER_EIP_MSR
– Used by SYSENTER to set the instruction

pointer to the address of the system call
handler’s entrypoint

Coarse-Grained via Intel VT

• Idea: Combine fast system call
facility with host’s MMU duties
– Proposed by Dinaburg

• External coarse-grained tracing
– Host sets SYSENTER_EIP_MSR to

unallocated kernel memory address
– Guest makes system call

• After SYSENTER is executed, a page fault occurs
that is preempted by the host

• Host then restores guest’s instruction pointer to the
original value and resumes guest

Azure

• Named after the rootkit that relies
on similar principles for operation

• Proof of concept malware analysis
tool for Windows XP-based guests
– Operates through Intel VT
–  Implemented using KVM

• Uses
–  VMI to identify target process
–  Fine-grained tracing to monitor its behavior

• Coarse-grained tracing left for
future work

Azure: VMI

• Starting with guest context
switch
– Fixed offset from FS:[0] contains guest

address of ETHREAD kernel structure
– Fixed offset into ETHREAD contains address

of EPROCESS kernel structure
– EPROCESS contains process name, other

useful pointers
• On match, records

– CR3 of target process
– Information from structures such as the PEB

(process entrypoint, imagebase, etc.)

Azure: Fine-Grained

• Upon identifying target process
– Sets guest’s trap flag
– Updates exception bitmap to receive

preemptive notification of corresponding
debug exception

• When guest is resumed
– Debug exception thrown immediately

after execution of next instruction
– Preempted by host, which repeats the

above process until next context switch

Azure: Fine-Grained Cont’d

• Implementation Corner Cases
– Interrupt-disabling instructions (e.g.,

MOV:SS and HLT)
• Prevent interruptions during execution of next

instruction
• Must modify guest interruptability state

– Target process’ use of PUSHF, POPF and
the trap flag

• Trap flag may need to be filtered out when FLAGS is
read by the target (Azure does naïve filtering)

• Debug exception should be forwarded when target
process has set the trap flag

Experimentation

• Azure could be extended into a
precision automated unpacker
– While performing fine-grained tracing

read, disassemble each instruction
• Track memory-write instructions

– If the instruction pointer contains an
address in the set of written locations

• Use guest reads to snapshot the unpacked code
• Clear the set of write locations but continue

execution to see if multiple packing layers are
present

Experiment Setup

• Azure’s ability to act as an
automated unpacker evaluated
alongside other approaches
– Saffron (in-guest)
– Renovo (whole-system emulation)

• Acquired synthetically packed
sample set used to test Renovo
– Represents 15 packers used to obfuscate

vast majority of modern malware

Test Criteria

•  Determined whether a sample was
successfully unpacked by searching for the
original program’s code
–  Used a 32 byte string representing instructions at a fixed

offset from the original program’s entry point
–  Offset used due to avoid instruction and API virtualization

•  Saffron/Renovo
–  Searched unpacked layer(s) for the presence of the 32

byte string
•  Azure

–  Due to time limitations, Azure was instead modified to read
32 bytes starting at the address of the guest instruction
pointer following execution of each instruction

–  Data read is then compared to the 32 byte string found in
the original program

–  A match indicates Azure traced the target through
execution of the original program’s code

Results

Packer Azure Renovo Saffron

Armadillo Yes No No

Aspack Yes Yes Yes

Asprotect Yes Yes Yes

FSG Yes Yes Yes

MEW Yes Yes Yes

Molebox Yes Yes Part

Morphine Yes Yes Yes

Obsidium Yes No Part

PECompact Yes Yes Yes

Themida Yes Yes Part

Themida VM Yes Part Part

UPX Yes Yes Yes

UPX S Yes Yes Yes

WinUPack Yes Yes Yes

Yoda’s Prot Yes Yes Yes

Label Meaning

Yes String
found in
unpacked
code

No No
unpacked
code found

Part Unpacked
code
found, but
string not
present

Conclusion

• Analyzing modern malware can
be difficult

• Intel VT can be used to perform
external, transparent malware
analysis
– Virtual Machine Introspection
– Fine-Grained Tracing
– Coarse-Grained Tracing

• Experiments with Azure show
that this approach offers
significant transparency

Future Work

•  Ether
–  In-development malware analyzer based on Xen

(with Intel VT)
• Includes complete automated unpacker and

system call tracer
–  Based off joint research between GTISC and

Damballa
•  Upcoming paper on Ether in ACM CCS

–  Ether: Malware Analysis via Hardware Virtualization
Extensions
• Artem Dinaburg, Paul Royal, Monirul Sharif,

Wenke Lee
–  Publication will coincide with source code release

• See http://ether.gtisc.gatech.edu

Questions?
Azure Source Download

http://code.google.com/p/azurema

