
Alternative Medicine:
The Malware Analyst’s Blue Pill

Paul Royal
Damballa, Inc

paul@damballa.com

ABSTRACT
Malware has become the centerpiece of many security threats on the

Internet. Malware analysis is important for information security practi-
tioners because it is the basis for understanding the intentions of ma-
licious programs. Current malware analysis approaches reside in the
guest OS or emulate part of its underlying hardware, which leaves them
vulnerable to detection and attack by modern malware.

This paper presents an alternative, external approach to malware anal-
ysis. The resulting malware analysis tool, called Azure, operates outside
of the guest through the use of hardware virtualization extensions such
as Intel VT. Experiments with packers used to create the majority of
modern malware show that Azure is an effective, transparent tool for
malware analysis.

1. INTRODUCTION
Malware has become an artifact whose use intersects multiple

major security threats faced by information security practition-
ers. Given the financially motivated nature of these threats,
methods of recovery now mandate more than just remediation–
knowing what occurred after a system became compromised is
as valuable as knowing it was compromised. Concisely, inde-
pendent of simple detection, there exists a pronounced need to
understand the intentions of modern malware.

Before advances in malware analysis can be used to determine
what a malware instance does or might do, the runtime behavior
of that instance and/or an unobstructed view of its code must
be obtained. However, modern malware contain a myriad of
anti-debugging, anti-instrumentation, and anti-VM techniques
to stymie attempts at runtime observation [6, 8, 9, 13]. Given
that almost all analysis approaches reside in the guest OS or
emulate its underlying hardware, little effort is required by a
knowledgeable adversary to detect their existence and evade.

This paper presents an alternative, external approach to mal-
ware analysis. Its creation required diverging from existing ap-
proaches that employ in-guest components, API virtualization or
full system emulation, as these implementations are often vulner-
able to detection techniques used by malware. Based on novel
application of hardware virtualization extensions such as Intel
VT [2], the resulting prototype analyzer–called Azure–resides
completely outside of the target OS environment. The results
of testing (presented in Section 3) show that Azure is able to
identify, instrument and trace the vast majority of modern mal-
ware.

The remainder of this paper is organized as follows. Section 2
provides an in-depth explanation of how hardware virtualization
extensions are leveraged and describes Azure’s implementation.
Section 3 details how experimentation was performed and pro-
vides an analysis of the results. Section 4 briefly provides some
concluding remarks.

2. DESIGN AND IMPLEMENTATION
This section describes how hardware virtualization extensions

can serve as means to perform transparent, external malware
analysis. It provides a brief overview of Intel VT, then describes
how its features and attributes can be used to implement virtual
machine introspection, fine- and coarse-granularity tracing. It
concludes with a presentation of Azure, a proof-of-concept imple-
mentation that uses Intel VT to externally identify, instrument,
and perform fine-grained tracing on a malware instance.

2.1 Intel VT
Introduced at the Intel Developer’s Forum in 2005, Intel VT

is a hardware-assisted means of facilitating virtualization of the
x86 instruction set. Its operation is supported through a com-
bination of hardware elements (e.g., the virtual machine control
structure), virtualization instructions (e.g., VMXON, VMRE-
SUME), and a supporting administrative software component.
These extensions are one way for allowing the execution of un-
modified guest operating systems inside a host operating system.

Under Intel VT, both the host and guests can freely execute
in rings 0-3. The difference is that the host operates in a special
mode, called VMX root mode, while guests operate in VMX
non-root mode. VMX root mode allows the host to read from,
write to, and receive notification for (then handle, forward or
discard) a subset of events that otherwise occur in or would be
delivered to the guest. As the guest operates in VMX non-root
mode, when an event occurs that will instead be delivered to the
host, the guest is frozen, and a transition from VMX non-root
mode to VMX root mode (called a VMExit) takes place. The
administrative software component on the host uses VMX root
mode privileges to provide a number of support services to the
guests (e.g., memory management services).

The administrative powers provided to the host by Intel VT
(e.g., privilege to read from, write to, and in some cases pre-
empt the guest) suggests the possibility of its use in malware
analysis. However, given that Intel VT offers (for the most part)
only what is necessary to support guest operation, mechanisms
for introspection, instrumentation and tracing must be derived
from existing functionality. With this challenge as a pretext, the
next several subsections describe the (sometimes) unobvious use
of Intel VT to externally identify, instrument, and observe the
behavior of programs.

2.2 Virtual Machine Introspection
Under Intel VT, the host must act as the guest’s memory man-

agement unit (MMU). To support the role of guest MMU, Intel
VT provides the host with the ability to receive preemptive no-
tification of certain memory-related events, such as page faults.
Notification is provided in the form of a VMExit, where (as de-

1



scribed previously) the guest is frozen and a transition to VMX
root mode occurs. When combined with the operational partic-
ulars of virtual memory on the x86 architecture, the MMU job
function of the host can be leveraged to facilitate virtual machine

introspection.
Defined in [10], virtual machine introspection is the approach

of inspecting a guest process externally for the purposes of anal-
ysis. As an example of Intel VT’s ability to support virtual
machine introspection, consider the requirement of a malware
analysis tool to monitor a target process from the start of its ex-
ecution. A prerequisite to this requirement is the identification

of the process during or after loading but before the beginning
of execution. In Intel VT the host’s MMU responsibilities can
be used to perform this identification, as notification is provided
to the host each time the guest performs a context switch.

In x86, the CR3 register contains the page directory pointer of
the current process. During a context switch, a MOV to CR3 is
used to set the upcoming process’ page directory pointer. When
the guest OS performs a context switch and attempts to change
to the value of its CR3 register, a VMExit occurs that the host (as
the guest’s MMU) resolves accordingly. Since the guest remains
frozen until the host issues a VMRESUME, a series of guest
reads can be used to identify the upcoming process before it
begins execution.

2.3 Fine-Grained Tracing
In malware analysis, numerous approaches require monitoring

a program’s behavior with instruction-level granularity. Tech-
niques that use low-level or fine-grained tracing include dynamic
taint analysis, multi-path exploration and precision automated
unpacking [11,14,17]. While not as straightforward to implement
as virtual machine introspection, external fine-grained tracing
can also be performed using Intel VT.

In x86, the FLAGS register contains the set of processor sta-
tus, control, and system flags. One of the system flags, called
the trap flag, can be used to enable single-stepping mode. When
the trap flag is set, a debug exception (which clears the flag) is
thrown immediately after execution of the next instruction. Pre-
vious malware analysis frameworks such as [15] have used this
functionality to perform fine-grained tracing by installing a cus-
tom exception handler in the guest’s kernel and then repeatedly
setting the trap flag during execution of a target process.

By leveraging functionality offered by Intel VT that is not ex-
plicitly required to support normal guest operation, a similar
approach can be used to perform fine-grained tracing externally.
First, the host can use its access to the guest’s registers to set the
trap flag in the guest’s FLAGS register. Then, as a substitute to
installing an in-guest exception handler, the host can use Intel
VT to preempt receipt of (and then discard instead of deliver-
ing) the debug exception thrown when the guest executes the
next instruction. By repeatedly setting the guest’s trap flag and
preempting the resulting exception, the host can externally trace
a target process in the guest with instruction-level granularity.

2.4 Coarse-Grained Tracing
In contrast to fine-grained tracing, high-level or coarse-grained

tracing involves monitoring the behavior of a process at the API
or system call levels. Discrete events in coarse-grained tracing of-
ten represent easily identifiable actions, such as file or (Windows)
registry access, process and thread creation, and network activ-
ity. Tools and services that use coarse-grained analysis include
automated malware analysis environments [1,16] and behavioral
antivirus [5]. Through novel exploitation of the fast system call
facility present in modern x86 processors, Intel VT can also be

used to perform external coarse-grained tracing.
In the x86 versions of Windows (XP+) and Linux (2.6+), the

SYSENTER instruction is used to transition from ring 3 (user
space) to ring 0 (kernel space) whenever a process makes a Na-
tive API or system call. During execution, SYSENTER reads
from model specific registers to set OS-defined values for the
kernel’s system call handler. Among these registers, SYSEN-
TER EIP MSR is used to set the instruction pointer to the ad-
dress of the handler’s entry point.

First proposed by Dinaburg [7], the host’s MMU duties can be
combined with the guest’s use of the fast system call facility to
perform external coarse-grained tracing. To enable tracing, the
host first sets the value of the guest’s SYSENTER EIP MSR to
an unallocated address in kernel memory space. At each subse-
quent system call, SYSENTER will set the instruction pointer to
the unallocated address. When the guest attempts to fetch the
first instruction following its transition to kernel space, a page
fault will occur that can be preempted by the host. The host can
then restore the guest’s instruction pointer to the original value
of SYSENTER EIP MSR and resume its execution.

2.5 Azure
Named after the rootkit [3] that relies on similar principles for

its operation, Azure is a proof-of-concept malware analysis tool
for Windows XP-based guests that functions externally through
the use of Intel VT. It was implemented using KVM [4] (a Linux-
based virtualization solution) as a base. Azure uses virtual ma-
chine introspection to identify a target process and fine-grained
tracing to monitor its behavior; coarse-grained tracing is left as
future work.

To identify the target process, Azure performs a series of guest
reads to obtain the upcoming process name whenever a context
switch occurs in the guest. After the host sets the guest’s page
directory pointer, Azure reads at a fixed offset from FS:[0] to
obtain the guest virtual address of ETHREAD, which contains
the address of EPROCESS and the process’ name. If the process
name is a match, Azure records the process’ CR3 and performs
additional reads using members of EPROCESS to obtain infor-
mation from structures such as the process’ PEB.

Upon identifying the target process, Azure performs fine-
grained tracing until the target process is switched out (tracing
resumes whenever the target process is switched back in). To
begin tracing, Azure sets the trap flag in the guest’s FLAGS
register and updates the exception bitmap to provide preemptive
notification to the host whenever the debug exception caused by
the trap flag is raised. The guest is then resumed, and immedi-
ately after execution of the next instruction, a debug exception
occurs that returns control to Azure. This process (setting the
trap flag, preempting receipt of the corresponding exception) is
repeated until the target process terminates or is switched out.

3. EXPERIMENTATION AND EVALUATION
This section examines the effectiveness of using Intel VT to

externally monitor the behavior of modern malware. To per-
form evaluation, Azure’s usefulness as an automated unpacker
was compared against Saffron [12] and Renovo [11], approaches
that employ in-guest components and whole-system emulation,
respectively. The results show that the external malware analysis
techniques used by Azure offer significant transparency.

3.1 Automated Unpacking
While outside the scope of this paper, Azure’s fine-grained

tracing could be used to create a precision automated unpacker.
During tracing the unpacker could read, disassemble, and track

2



memory-write instructions executed by the target process. When-
ever the instruction pointer contains an address in the set of lo-
cations that were previously written, a series of guest reads could
be used to snapshot the dynamically generated code. By clearing
the set of write locations after each snapshot, the unpacker could
also detect and extract the unpacked code of malware instances
that contain multiple packing layers.

To test Azure alongside other approaches for automated un-
packing, the exact set of synthetically packed samples used to
evaluate Renovo was obtained. This set represents packers used
to obfuscate the vast majority of modern malware. The ability
of each approach to successfully unpack a given sample was de-
termined by searching the unpacked code layer(s) for the original
program’s code. If the unpacked code contains a 32 byte string
representing instructions located at a fixed offset from the entry
point of the original (non-packed) program, the corresponding
packed sample is marked as successfully unpacked.

Due to time limitations, an alternative approach was used to
evaluate Azure’s ability to perform automated unpacking. In-
stead of detecting and outputting snapshots of unpacked code,
after each instruction Azure reads 32 bytes starting at the ad-
dress of the guest instruction pointer. This data is then compared
to the aforementioned 32 byte string found in the original, non-
packed sample. A match indicates that Azure successfully traced
the packed sample through execution of the original program’s
code.

3.2 Unpacking Results

Packing Tool Azure Renovo Saffron

Armadillo yes no no
Aspack yes yes yes
Asprotect yes yes yes
FSG yes yes yes
MEW yes yes yes
Molebox yes yes part
Morphine yes yes yes
Obsidium yes no part
PECompact yes yes yes
Themida yes yes part
Themida VM yes part part
UPX yes yes yes
UPX S yes yes yes
WinUPack yes yes yes
yoda’s Prot. yes yes yes

Table 1: Effectiveness of Automated Unpackers

The results of experimentation are shown in Table 1. A label of
yes indicates that the approach successfully unpacked the sample
produced by the corresponding packer. The part label was given
when an approach produced unpacked code, but none of the
unpacked layer(s) contained the 32 byte string of the original
program. A label of no indicates that the approach produced no
unpacked code.

An analysis of the results indicates that Renovo was unable to
produce unpacked code for Armadillo and Obsidium due to incor-
rect system emulation; the reason behind its Themida VM result
is unclear. The results for Saffron suggest that some packers de-
tected its in-guest presence and evaded before execution of the
original program code. In contrast, Azure successfully identified
the original program’s code for all samples, which demonstrates
its use as an effective malware analysis tool.

4. CONCLUSION
In order to be effective, malware analysis tools must remain

transparent to an increasing number of malicious programs that
employ anti-debugging, anti-instrumentation, and anti-VM tech-
niques. Most malware analysis approaches reside in the guest OS
or emulate part of its underlying hardware, which often makes
them vulnerable to detection and attack. This paper has pre-
sented an alternative, external approach to malware analysis that
uses hardware virtualization extensions to identify, instrument,
and trace a malware instance. The results of experiments with
packers used to create a large percentage of modern malware
show that this approach offers significant transparency.

Acknowledgements. The author would like to thank Artem
Dinaburg, Monirul Sharif, Wenke Lee, and Danny Quist for their
advice and feedback.

5. REFERENCES
[1] Anubis: Analyzing Unknown Binaries.

http://anubis.seclab.tuwien.ac.at.

[2] Intel Virtualization Technology.
http://www.intel.com/technology/virtualization.

[3] Introducing Blue Pill.
http://theinvisiblethings.blogspot.com/
2006/06/introducing-blue-pill.html.

[4] Kernel Based Virtual Machine.
http://kvm.qumranet.com/kvmwiki.

[5] ThreatFire AntiVirus. http://www.threatfire.com.

[6] P. Bacher, T. Holz, M. Kotter, and G. Wicherski. Know
your enemy: Tracking Botnets.
http://www.honeynet.org/papers/bots, 2005.

[7] A. Dinaburg. Personal Correspondence. January 2008.

[8] P. Ferrie. Attacks on Virtual Machine Emulators.
Symantec Advanced Threat Research, 2006.

[9] P. Ferrie. Anti-Unpacker Tricks. In Proc. of the 2nd

International CARO Workshop, 2008.

[10] T. Garfinkel and M. Rosenblum. A Virtual Machine
Introspection Based Architecture for Intrusion Detection.
In Proc. of the 10th Network and Distributed Systems

Security Symposium, 2003.

[11] M. G. Kang, P. Poosankam, and H. Yin. Renovo: A
Hidden Code Extractor for Packed Executables. In Proc.

of the 5th ACM Workshop on Recurring Malcode, 2007.

[12] D. Quist and Valsmith. Covert Debugging: Circumventing
Software Armoring. In Proc. of Black Hat USA 2007, 2007.

[13] T. Raffetseder, C. Kruegel, and E. Kirda. Detecting
system emulators. In ISC, pages 1–18, 2007.

[14] P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee.
PolyUnpack: Automating the Hidden-Code Extraction of
Unpack-Executing Malware. In Proc. of the 23rd the

Annual Computer Security Applications Conference, 2006.

[15] A. Vasudevan and R. Yerraballi. Stealth Breakpoints. In
Proc. of the 21st the Annual Computer Security

Applications Conference, 2005.

[16] C. Willems, T. Holz, and F. Freiling. Toward Automated
Dynamic Malware Analysis Using CWSandbox. IEEE

Security and Privacy, 5(2), 2007.

[17] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda.
Panorama: Capturing System-wide Information Flow for
Malware Detection and Analysis. In Proc. of the ACM

Conference on Computer and Communication Security,
2007.

3


