Theologue (inverted)
Copyright Alex Grey, 1984

Attacking the Vista Heap

Hawkes

vl

Intro-clusion

 Heap exploits are harder than ever
» Application specific attacks are the future

 But complex heap implementation attacks
should still be considered

The Heap e 3

e “Heap” == dynamic memory allocation
 Runtime memory management
e Using API

— HeapCreate

— HeapAlloc
— HeapFree

Heap API

HANDLE hHeap HeapCreate(...);

LPVOID HeapAlloc(HANDLE hHeap, ...,
SIZE T dwsSize)

BOOL HeapFree(HANDLE hHeap, ...,
LPVOID IpMem)

Heap API 3

HANDLE hHeap HeapCreate(...);

LPVOID HeapAlloc(HANDLE hHeap, ...,
SIZE T dwSize)

BOOL HeapFree(HANDLE hHeap, ...,
LPVOID IpMem)

Heap API

stdafi.h "~ VistaHeapl.cpp| Start Page
(Global 5cope)

T i e " Nefine 1+
VistaHeapl.cpp : Defines th

#include "stdafx.h"

=

]in

t tmain{int argc, TCHAR*

LEVOID chunk;
HOANDLE hHeap;

hHeap = HeapCreate (0, 0O,
printf {"\n\nhHeap: %pi\n",
chunk = Heaphlloc (hHeap,
printf {"chunk: p\n"”

HeapFree (hHeap, 0, chunk);

return 0;

chunk}) ;

* “Wwmain(int arge, _TCHAR *[] argv)

b

BE¥ Command Prompt

C:sUzersshavkes DocumentsslUisual Studio 20855Projectz“UistaHeapldebug>UH1 .exe

hHeap: O@?580008
chunk: B8%587CH

C:wUzersshavkez DocumentsslUisual Studio 2085Projectz UistaHeapldebug>

» L 4

m

b

Lol

AT

Heap API

stdafi.h "~ VistaHeapl.cpp| Start Page
(Global 5cope)

T i e " Nefine 1+
VistaHeapl.cpp : Defines th

#include "stdafx.h"

=

]in

t tmain{int argc, TCHAR*

LEVOID chunk;
HOANDLE hHeap;

hHeap = HeapCreate (0, 0O,
printf {"\n\nhHeap: %pi\n",
chunk = Heaphlloc (hHeap,
printf {"chunk: p\n"”

HeapFree (hHeap, 0, chunk);

return 0;

chunk}) ;

* “Wwmain(int arge, _TCHAR *[] argv)

b

BE¥ Command Prompt

C:sUzersshavkes DocumentsslUisual Studio 20855Projectz“UistaHeapldebug>UH1 .exe

hHeap: O@?580008
chunk: B8%587CH

C:wUzersshavkez DocumentsslUisual Studio 2085Projectz UistaHeapldebug>

» L 4

m

b

Lol

AT

Heap API

stdafi.h "~ VistaHeapl.cpp| Start Page
(Global 5cope)

T i e " Nefine 1+
VistaHeapl.cpp : Defines th

#include "stdafx.h"

=

]in

t tmain{int argc, TCHAR*

LEVOID chunk;
HOANDLE hHeap;

hHeap = HeapCreate (0, 0O,
printf {"\n\nhHeap: %pi\n",
chunk = Heaphlloc (hHeap,
printf {"chunk: p\n"”

HeapFree (hHeap, 0, chunk);

return 0;

chunk}) ;

* “Wwmain(int arge, _TCHAR *[] argv)

b

BE¥ Command Prompt

C:sUzersshavkes DocumentsslUisual Studio 20855Projectz“UistaHeapldebug>UH1 .exe

hHeap: O@?580008
chunk: B8%587CH

C:wUzersshavkez DocumentsslUisual Studio 20855Projectz UistaHeapl~debug>

» L 4

m

b

Lol

AT

Vista Internals

 Every chunk has a header
* 8 bytes, called HEAP_ENTRY

CHECK

SIZE FLAGS SUM

DATA

Vista Changes

 Encoded heap entry headers
 Checksum in headers

« Randomized heap base
 List integrity checks

* Opt-in for failing on corruption

“Generic heap exploitation approaches are obsolete...
Application specific techniques are needed”

- Nico Waisman, ImmunitySec

Applicatic-

* Overflow the target applications heap data
e Target important structures

 Ensure that they are allocated after
overflow chunk

Arbitrar- -

* Overflow into a HeapAlloc pointer X
« Application will HeapFree X at some point
e SO...

Arbitrary Free

1.

o 0k WM

Attacker sets X to point to chunk Y, where
Y Is an important chunk for the application

Attacker triggers HeapFree on X

Chunk Y Is freed, application still using it
Attacker triggers allocation of size(Y)
Allocator returns Y (say into variable 7)

Attacker makes application use Z to
overwrite Y

Arbitrary Free

Arbitrary Free requirements:
e Control the X pointer

 Know the address of the Y chunk (partial
overwrite, info leak, heap spray)

e Contain any deallocation corruptionto Y
« Sufficient control of Z usage
 Ability to leverage control of Y

Adjusted D.ble Free

« Application specific double free attacks

* As opposed to UNLINK double free

* Order of free/allocation pattern changes

o Traditionally: free free alloc write alloc

* Adjusted: free alloc free alloc write
(Which is not always possible)

Adjusted -)Ie Free -

free alloc free alloc write

1. Free chunk X

2. Before second free, allocate X for
application, into Y

3. Free chunk X... which now releases Y
4. Allocate X for application, into Z

Adjusted Double Free

At this point: Application has Y and Z, both
with equal address X

« But used for different purposes, so...

 Make either Y or Z hold some important
structure

e And ensure the other Is attacker controlled

o Writing into this chunk changes important
structure

Adjusted Double Free

* Devilis In the application specific detalils

* Local vs global double free, only a subset
IS ever exploitable

* Important structure usually must be
Initialized before being overwritten

Adjusted Double Free

Adjusted Double Free requirements:

* Double free with interleaved allocation

* While also giving a meaningful allocation
o Sufficient control of one chunks usage
 Abllity to leverage control of the other

Bonus:
e ASLR doesn’t matter

“Methods for bypassing the [XP SP2] heap protection exist,
but they require a great degree of control over the
allocation patterns of the vulnerable application”

- Alexander Sotirov, Determina

“I can make strawberry pudding with so many
prerequisites”

- Sinan Eren, ImmunitySec

“It is for this reason, a small suggestion of impossibility, that
| present the Malloc Maleficarum”

- Phantasmal Phantasmagoria

astR D R 1

HeapCreate:

1 randPad = (RtlpHeapGenerateRandomValue64() & Ox1F) << 16;
totalSize = dwMaximumSize + randPad;

2 NtAllocateVirtualMemory(INVALID_HANDLE VALUE, &allocAddr, O,
&totalSize, MEM_RESERVE, rwProt);

3 RtlpSecMemFreeVirtualMemory (INVALID HANDLE_VALUE, &allocAddr,
&randPad, MEM_RELEASE);

4 hHeap = (HANDLE) allocAddr + randPad;

Segmen-tion

RtlpExtendHeap:

1 NtAllocateVirtualMemory(INVALID_HANDLE VALUE, &allocAddr, O,
&hHeap->segmentReserve, MEM_RESERVE, rwProt);

2 NtAllocateVirtualMemory(INVALID_HANDLE VALUE, &allocAddr, O,
&segmentCommit, MEM_COMMIT, rwProt);

3 return allocAddr;

Large Cl-llocation -

RtlpAllocateHeap (large chunk):

1 dwSize += BASE_STRUCT SIZE;

2 NtAllocateVirtualMemory(INVALID_HANDLE VALUE, &baseAddr, O,
&dwSize, MEM_COMMIT, rwProt);

hHeap->largeTotal += dwSize;
3 chunk = (LPVOID) baseAddr + BASE_STRUCT_SIZE + HEAP_ENTRY_SIZE;

return chunk;

Heap Spray |

 Heap base randomized, segments and
large chunks not

* Linearly allocated in first available region
e But still affected by random heap base

 Heap spray used to position data statically
— Spray small chunks within a single heap
— Or allocate large chunk(s)

Heap Spray Il — the stats

o Say NtAllocateVirtualMemory gives
consecutive allocations X

 Every heap base can lie anywhere from X
to X + Ox1FO000 (~2MB range)

e Segment reserve size ~ 16MB
e Large chunk >= 512KB

Heap Spray lll — the theory

* For target application, find average Y of
last reserved page across all heaps

e Y = function of the amount of committed
and reserved heap pages, with variabllity
approaching 2MB (more when early)

e Spray amount Z (segments or large
chunk), with Z > ~16MB

* Y + (Z/2) => your data w/ probability ~= 1

(who cares really)

Guarding hHeap

* Notice lack of guard pages

e Consider a heap spray filling the entire
32-bit address space (<2GB)

o Segments will readjust size to fill smaller
holes

o Left with: reserved holes in early heap
space, followed by large contiguous
writable block of committed memory

hHeap overflows |

e Overflow In contiguous space can
overwrite... potentially everything
— Application data from different heaps
— Segment and chunk headers
— hHeap HANDLES

hHeap overflows | R

e Overflow In contiguous space can
overwrite... potentially everything
— Application data from different heaps
— Segment and chunk headers
— hHeap HANDLES

hHeap overflows I

« hHeap HANDLE is ridiculously important

e Central management structure for each
iIndividual heap
— Free lists
— Heap canary
— Flags and tunable options
— Etc...

 Returned from HeapCreate

hHeap overflows Il|

 Assume can overflow hHeap at location X
e Crafted payload of 212 bytes relative to X

* Results in arbitrary code execution on next
HeapAlloc from this heap

 Not WRITE4 primitive, direct control of EIP

hHeap overflows |V

o Goal: get overflow chunk positioned before
some hHeap HANDLE

 Align and repeat payload on each page,
padding where necessary

hHeap overflows V

e Pattern 1.
— Spray some fixed amount X
— Trigger creation of new heap in application
— Spray remaining address space

— Overflow from initial heap spray area X (may
need to free some of X first, to make room for
overflow chunk)

— Trigger allocation on new heap

hHeap overflows VI

e Pattern 2:

— Trigger creation of new heaps continuously
until failure

— Overflow into one or many of the new heaps
— Trigger allocation on all newly created heaps

hHeap overflows VI

e Pattern 3:
— Spray the entire range

— 3" to last segment allocated is directly before
hHeap of heap being sprayed

— Last 3 segments are size 0x10000, so take
chunk from ~150kb back from failure

— Free 1t, and use as overflow chunk
— Trigger allocation

Heap payload e 3

hHeap (X)

0 68

. . heapOptions, set the two bits In
0x10000001 (others don’t matter):
avoid interceptor?, trigger
RtlpAllocateHeap?, avoid debug
heap3, remove serialization*

Offsets relative from .text segment base of ntdll.dll 6.0.6001.18000 (i.e. Vista SP1):
1. 6F3E7 2. 648DC 3. 8CC70 4. 677ES5

Heap payloac

hHeap (X)

68 80

0

. . heapCanary, set to pass checksum

inegrity test on freeEntry element?
(more later)

Set to 0x41414141

1. 678E5

Heap payloac

hHeap (X)

68 80 88

0

. . encodeHook, used to encode
function pointer later in payload
l.e. becomes half of EIP by XOR

Heap payloac

hHeap (X)

68 80 88 184

. . freeEntry, must point to readable
memory such that:

0

- freeEntry->ent_0 == NULL; (Next pointer)
- freeEntry->ent_18 points to readable memory Y
- Y has known constant value at offset -8

(i.e. *(Y-8) constant)

Heap payloac

hHeap (X)

68 80 88 184

. . freeEntry, one good candidate is
Ox7F6F5FCS8
Mysteriously static read-only mapping
Y-8 value of sprayed/overflowed heap

0

Heap payloac

hHeap (X)

68 80 88 184

. . ucrkEntry, must point to readable
memory such that:

0

- ucrEntry->ent_0 == NULL,; (Next pointer)
- ucrEntry->ent_18 points to readable memory Y
- Y->Blink readable, with Y->Blink->ent_14 small

hHeap payload E

hHeap (X)

68 80 88 184

. . ucrentry, one good candidate Is
Ox7F6F0148

0

Heap payloac

hHeap (X)

B . B . B - B F B
80 88 184 2

08

| F | commitHooKk, function pointer used
by RtlpFindAndCommitPages?!, XOR
with encodeHook to set arbitrary EIP

(Global Scope)

. “wwmain(int arge, _TCHAR *[] argv)

for [i = 0;
*[set +
a4
& (=2t +
*{get +

H

22 —= 0=D4%;

*(=zet + Sz +

*fset 4+ 82 +

*(set + Sz +

*{3et + 52 +

*(=zet + Sz +

*iset + 852 +

*{get + 52 +

*[zet +-832 +

*l3et + 5+

*[get + 52 +

* (et + Sz +

*lget 4+ 837 4+

*iget: + 82 +

*lget -+ g2+

L - D el SR -

*lget 488 4

*lgeC + 82+

*lget 4+ 82 +

®iset + 82 +

*|set + sz +

i< 323
i}

i +1)
i+
i+ 3) =

Ox44)
Ox44 +
Ox44 +
ox4d +

0x58)
Ox58 +
Ox58 +
Ox58 +

0xBE)
OxBE +
OXBE +
OxBE +

OxBC)
OXBC +
OxBC +
OxBC +

OxD0)

oxD0 +
OxDO +
OxD0 +

i+= 4) {
= 0Ox41;
Ox41;
041 =
0Ox41;
= 0xB3;
1y = 0O=82;
2y = 0x82;
3) = 0O=82;
= 0x3B;
1)y = 0x3B;
2) = Ox3B;
3) = 0=3B:;
= 0xC8;
1) = O=5F;
2) = Ox&F;:
3) = OxTE;
= 0x48;
1) = 0=x01;
2} = Ox6F;
3) = O=x7F;
= 0xTh;
1y = OxTh;
2) = OxTA:
3) = OxTh;

i

oy

i

s

£

i

includes some padding before the paylcad too

set.+ 32 is start. of hHeap payload

heapCptions, with MSB and LSB set

encodeHook

freeEntry, OxTFeFSFCB

ucrEntry, O0x7F&F0148

commnitHook, such that encodeHook = commitHook ==

03147147491

hHeap overflows [1X

hHeap overflow requirements:

Control the application to get contiguous
layout with overflow before heap

Suffer through a large heap spray (time!)

Know (roughly) the position of the overflow
chunk for alignment of payload

Large enough overflow. Small overflows
may need to be repeated to hit heap.

hHeap O\/-NS |X -

hHeap overflow requirements cont:

 Enough control of overflow character set
to craft payload

 Must be 32-bit target

moving on...

Heap terr-on |

BOOL SetHeapOptions() {
HMODULE hLib = LoadLibrary(L"kernel32.dI1");
if (hLib == NULL) return FALSE;

typedef BOOL (WINAPI *HSI)
(HANDLE, HEAP_INFORMATION_CLASS ,PVOID, SIZE T);
HSI pHsi = (HSI)GetProcAddress(hLib, " "HeapSetInformation™™);
iIf (IpHsi) {
FreeLibrary(hLib);
return FALSE;

}

#i1fndef HeapEnableTerminationOnCorruption
define HeapEnableTerminationOnCorruption (HEAP_INFORMATION_CLASS)1
#endif

BOOL fRet = (pHsi1)(NULL,HeapEnableTerminationOnCorruption,NULL,0)
? TRUE
- FALSE;

it (hLib) FreeLibrary(hLib);

return fRet;

/2 Windows Vista ISV Security - Windows Internet Explorer

C ol v |a http://msdn.microsoft.com/en-us/lbrary/bb430720.aspx v|5¢,. x| |-;.-_ gle

ﬁ B ‘amndows\."slaISVSecurity

[‘ - B) @B - |5 rage~ Ok Took v

Importance and Priority of Defenses

The following table outlines the relative importance of these defenses and the priority with which I1SVs should support
each defense.

Defense Priority
Address space layout randomization opt-in | Critical
DEP opt-in Critical

/GS stack-based buffer overrun detection | High

/SafeSEH exception handler protection High
Stack randomization testing Moderate
Heap randomization testing Moderate

Heap corruption detection
How to Test “ Q_\ k..

Once any code and design changes have been made, it is important to verify that the operating system is configured
correctly, and the application has the appropriate code changes.

C++ Compiler Use

Verify that the version of the compiler is 13.10 or later. Version 14.00 or later is highly recommended, as this is the

United Stztes - English | Micrescft.com | Welcome | Sign In
Search MSEN with Live Seard, L
& Printer Friendly Version <+ Add To Favorites (1 Send Click to Rate and Give Feedback <ririririz
MSDN Library

% |

£

Done

& Internet ®100% -~

Heap termination [l|

e Must opt-in to heap termination on
corruption with HeapSetinformation

* Windows executables basically always do
— ntdll!RtlpDisableBreakOnFailureCookie ==

e So just quickly, for all the 3" party stuff
that doesn't...

Off-by-one |

e Say you have off-by-one or small overflow
on some heap. Not exploitable?

e mm—

Off-by-one Il

 Modify free chunk’s size value to
something larger

o mm—

 Envelope interesting data in free chunk
* Must be precise with new size value

Off-by-one.

 Trigger allocations of the new size,
HeapAlloc will eventually return free chunk

»
>

e Checksum will fail, but heap continues...

« Application still using interesting data, but
can be overwritten using new allocation

Off-by-one |V

Off-by-one overflow requirements:

* Not opted-in for termination on heap
corruption

* Position off-by-one chunk next to an
appropriate envelope chunk

 Know exact sizes of free and interesting
chunks

o Sufficient control of returned chunk to
control interesting data

Checksum collisions

* For small overflows, the same technique
can be applied on a large scale even when
heap termination is enabled

* Overflow 3 bytes of adjacent header with
constant value

« 3-Byte XOR against random value collides
with probability ~= 0.004

o Approximately 250 attacks per success
« Good enough for worms, repeatable vulns

Canary leak

e Leak of a chunk header of known size and
state gives leak of heap wide canary value

Cl=L1"K1
C2=L2"K2
C3=L3"K3

C4 =14 " K1"K2"K3

 Can then use overflow to change size,
allocated/free, flags, FWD/BCK links etc

UCR overf. | -

e UCR structure used to link and describe
segments

o Stored at beginning and end of each heap
segment

e S0 end UCR structure always accessible
by overflow in a heap segment

UCR overflow Il

 UCR overflow techniques

LFH bucket overflow |

* LFH bucket allocated internally using
RtlAllocateHeap when LFH created

RtlpAllocateHeap
RtlpPerformHeapMaintenance
RtlpActivateLowFragmentationHeap
RtlpExtendListLookup
RtlAllocateHeap (sz 0x3D14)

LFH bucketoverflow Il

* LFH bucket overflow technique

Future Techhiques

o Attack on HeapFree
o Attack on LFH

Securing the Heap | - Specific

e Add guard pages, remove functions
pointers from hHeap HANDLE

 Remove Iinternal use of RtlpAllocateHeap,
replace with guarded mappings

o Similarly remove UCR from end of
segments

 Ensure checksum is always validated
before any use of chunk headers

Securing the Heap Il - Generic

 Add randomization to segments and large
chunks

* Increase the amount of address entropy
* Increase the size of the checksum
 Encode all of the chunk

* Reduce use of list operations

Securing the Heap Ill - Theory

e Remove all meta-data structures from
anywhere contiguous to any data

e Still have canaries between chunks, but
not encoding anything (just for integrity)

e Smaller segments, more guard pages

 Introduce true non-determinism to
allocator patterns (I.e. internally randomize
where a chunk can go, while still ensuring
locality)

Questions

