
Attacking the Vista Heap
Hawkes

g p

Theologue (inverted)
Copyright Alex Grey, 1984

v1

Intro-clusion

• Heap exploits are harder than ever
• Application specific attacks are the future

• But complex heap implementation attacks
should still be consideredshould still be considered

The Heap

• “Heap” == dynamic memory allocation
• Runtime memory management
• Using APIg

– HeapCreate
– HeapAllocHeapAlloc
– HeapFree

Heap API

HANDLE hHeap HeapCreate(…);

LPVOID HeapAlloc(HANDLE hHeap, …, p (p, ,
SIZE_T dwSize)

BOOL HeapFree(HANDLE hHeap, …,
LPVOID lpMem)LPVOID lpMem)

Heap API

HANDLE hHeap HeapCreate(…);

LPVOID HeapAlloc(HANDLE hHeap, …, p (p, ,
SIZE_T dwSize)

BOOL HeapFree(HANDLE hHeap, …,
LPVOID lpMem)LPVOID lpMem)

Heap API

Heap API

HANDLE hHeap

Heap API

HANDLE hHeap

LPVOID h kLPVOID chunk

Vista Internals

• Every chunk has a header
• 8 bytes, called HEAP_ENTRY

SIZE FLAGS CHECK
SUM

0 2 3 4 6 7

DATA

8 …

Vista Changes

• Encoded heap entry headers
• Checksum in headers
• Randomized heap basep
• List integrity checks
• Opt in for failing on corruption• Opt-in for failing on corruption

“Generic heap exploitation approaches are obsolete…Generic heap exploitation approaches are obsolete…
Application specific techniques are needed”

- Nico Waisman, ImmunitySec

Applications

• Overflow the target applications heap data
• Target important structures
• Ensure that they are allocated after y

overflow chunk

Arbitrary Free

• Overflow into a HeapAlloc pointer X
• Application will HeapFree X at some point
• So…

Arbitrary Free

1. Attacker sets X to point to chunk Y, where
Y i i t t h k f th li tiY is an important chunk for the application

2. Attacker triggers HeapFree on X
3. Chunk Y is freed, application still using it
4 Attacker triggers allocation of size(Y)4. Attacker triggers allocation of size(Y)
5. Allocator returns Y (say into variable Z)
6 Att k k li ti Z t6. Attacker makes application use Z to

overwrite Y

Arbitrary Free

Arbitrary Free requirements:
• Control the X pointer
• Know the address of the Y chunk (partial (p

overwrite, info leak, heap spray)
• Contain any deallocation corruption to YContain any deallocation corruption to Y
• Sufficient control of Z usage

Abilit t l t l f Y• Ability to leverage control of Y

Adjusted Double Free

• Application specific double free attacks
• As opposed to UNLINK double free
• Order of free/allocation pattern changesp g
• Traditionally: free free alloc write alloc
• Adjusted: free alloc free alloc write• Adjusted: free alloc free alloc write

(Which is not always possible)

Adjusted Double Free

free alloc free alloc write

1. Free chunk X
2. Before second free, allocate X for

application into Yapplication, into Y
3. Free chunk X… which now releases Y
4 All t X f li ti i t Z4. Allocate X for application, into Z

Adjusted Double Free

• At this point: Application has Y and Z, both
ith l dd Xwith equal address X

• But used for different purposes, so…
• Make either Y or Z hold some important

structure
• And ensure the other is attacker controlled
• Writing into this chunk changes important• Writing into this chunk changes important

structure

Adjusted Double Free

• Devil is in the application specific details

• Local vs global double free, only a subset g , y
is ever exploitable

• Important structure usually must beImportant structure usually must be
initialized before being overwritten

Adjusted Double Free

Adjusted Double Free requirements:
• Double free with interleaved allocation
• While also giving a meaningful allocationg g g
• Sufficient control of one chunks usage
• Ability to leverage control of the other• Ability to leverage control of the other

Bonus:
• ASLR doesn’t matter

“Methods for bypassing the [XP SP2] heap protection exist,Methods for bypassing the [XP SP2] heap protection exist,
but they require a great degree of control over the
allocation patterns of the vulnerable application”

Al d S ti D t i- Alexander Sotirov, Determina

“I can make strawberry pudding with so manyI can make strawberry pudding with so many
prerequisites”

- Sinan Eren, ImmunitySec

“It is for this reason, a small suggestion of impossibility, thatIt is for this reason, a small suggestion of impossibility, that
I present the Malloc Maleficarum”

- Phantasmal Phantasmagoria

ASLR

HeapCreate:
randPad = (RtlpHeapGenerateRandomValue64() & 0x1F) << 16;

totalSize = dwMaximumSize + randPad;
…

1

NtAllocateVirtualMemory(INVALID_HANDLE_VALUE, &allocAddr, 0,
&totalSize, MEM_RESERVE, rwProt);

…

2

RtlpSecMemFreeVirtualMemory(INVALID_HANDLE_VALUE, &allocAddr,
&randPad, MEM_RELEASE);

…
hHeap = (HANDLE) allocAddr + randPad;

3

hHeap = (HANDLE) allocAddr + randPad;4

Segment Allocation

RtlpExtendHeap:
NtAllocateVirtualMemory(INVALID_HANDLE_VALUE, &allocAddr, 0,

&hHeap->segmentReserve, MEM_RESERVE, rwProt);
…

1

NtAllocateVirtualMemory(INVALID_HANDLE_VALUE, &allocAddr, 0,
&segmentCommit, MEM_COMMIT, rwProt);

…

2

return allocAddr;3

Large Chunk Allocation

RtlpAllocateHeap (large chunk):
dwSize += BASE_STRUCT_SIZE;

…
NtAllocateVirtualMemory(INVALID HANDLE VALUE, &baseAddr, 0,

1

2 t ocate tua e o y(_ _ , base dd , ,
&dwSize, MEM_COMMIT, rwProt);

…
hHeap->largeTotal += dwSize;

2

…
chunk = (LPVOID) baseAddr + BASE_STRUCT_SIZE + HEAP_ENTRY_SIZE;
…
return chunk;

3

return chunk;

Heap Spray I

• Heap base randomized, segments and
l h k tlarge chunks not

• Linearly allocated in first available region
• But still affected by random heap base

• Heap spray used to position data statically
S ll h k ithi i l h– Spray small chunks within a single heap

– Or allocate large chunk(s)

Heap Spray II – the stats

• Say NtAllocateVirtualMemory gives
ti ll ti Xconsecutive allocations X

• Every heap base can lie anywhere from X
to X + 0x1F0000 (~2MB range)

• Segment reserve size ~ 16MBg
• Large chunk >= 512KB

Heap Spray III – the theory

• For target application, find average Y of
l t d ll hlast reserved page across all heaps

• Y = function of the amount of committed
and reserved heap pages, with variability
approaching 2MB (more when early)

• Spray amount Z (segments or large
chunk), with Z > ~16MB),

• Y + (Z/2) => your data w/ probability ~= 1

(who cares really)

Guarding hHeap

• Notice lack of guard pages
• Consider a heap spray filling the entire

32-bit address space (<2GB)
• Segments will readjust size to fill smaller

holes
• Left with: reserved holes in early heap

space followed by large contiguousspace, followed by large contiguous
writable block of committed memory

hHeap overflows I

• Overflow in contiguous space can
it t ti ll thioverwrite… potentially everything

– Application data from different heaps
– Segment and chunk headers
– hHeap HANDLEs

hHeap overflows I

• Overflow in contiguous space can
it t ti ll thioverwrite… potentially everything

– Application data from different heaps
– Segment and chunk headers
– hHeap HANDLEs

hHeap overflows II

• hHeap HANDLE is ridiculously important
• Central management structure for each

individual heap
– Free lists
– Heap canaryy
– Flags and tunable options
– Etc…

• Returned from HeapCreate

hHeap overflows III

• Assume can overflow hHeap at location X
• Crafted payload of 212 bytes relative to X
• Results in arbitrary code execution on next y

HeapAlloc from this heap

• Not WRITE4 primitive, direct control of EIP

hHeap overflows IV

• Goal: get overflow chunk positioned before
hH HANDLEsome hHeap HANDLE

• Align and repeat payload on each page,
padding where necessary

hHeap overflows V

• Pattern 1:
– Spray some fixed amount X
– Trigger creation of new heap in application
– Spray remaining address space
– Overflow from initial heap spray area X (may

need to free some of X first, to make room for
overflow chunk)

– Trigger allocation on new heap

hHeap overflows VI

• Pattern 2:
– Trigger creation of new heaps continuously

until failure
– Overflow into one or many of the new heaps
– Trigger allocation on all newly created heaps

hHeap overflows VII

• Pattern 3:
– Spray the entire range
– 3rd to last segment allocated is directly before

hHeap of heap being sprayed
– Last 3 segments are size 0x10000, so take

h k f 150kb b k f f ilchunk from ~150kb back from failure
– Free it, and use as overflow chunk
– Trigger allocation

hHeap payload
()hHeap (X)

… A …

0 68

• heapOptions, set the two bits in
0x10000001 (others don’t matter):

A

0x10000001 (others don t matter):
avoid interceptor1, trigger
RtlpAllocateHeap2, avoid debug
heap3, remove serialization4p ,

Offsets relative from .text segment base of ntdll.dll 6.0.6001.18000 (i.e. Vista SP1):
1. 6F3E7 2. 648DC 3. 8CC70 4. 677E5

hHeap payload
()hHeap (X)

… A … B …

0 68 80

• heapCanary, set to pass checksum
inegrity test on freeEntry element1

B

inegrity test on freeEntry element1
(more later)
S t t 0 41414141Set to 0x41414141

1. 678E5

hHeap payload
()hHeap (X)

… A … B … C …

0 68 80 88

• encodeHook, used to encode
function pointer later in payload

C

function pointer later in payload
i.e. becomes half of EIP by XOR

hHeap payload
()hHeap (X)

… A … B … C … D E …

0 68 80 88 184

• freeEntry, must point to readable
memory such that:

D

memory such that:
- freeEntry->ent_0 == NULL; (Next pointer)

f E t t 18 i t t d bl Y- freeEntry->ent_18 points to readable memory Y
- Y has known constant value at offset -8
(i.e. *(Y-8) constant)

hHeap payload
()hHeap (X)

… A … B … C … D E …

0 68 80 88 184

• freeEntry, one good candidate is
0x7F6F5FC8

D

0x7F6F5FC8
Mysteriously static read-only mapping
Y-8 value of sprayed/overflowed heap

hHeap payload
()hHeap (X)

… A … B … C … ED …

0 68 80 88 184

• ucrEntry, must point to readable
memory such that:

E

memory such that:
- ucrEntry->ent_0 == NULL; (Next pointer)

E t t 18 i t t d bl Y- ucrEntry->ent_18 points to readable memory Y
- Y->Blink readable, with Y->Blink->ent_14 small

hHeap payload
()hHeap (X)

… A … B … C … D E …

0 68 80 88 184

• ucrEntry, one good candidate is
0x7F6F0148

E

0x7F6F0148

hHeap payload
()hHeap (X)

… … … …B C D E F …

80 88 184 208

• commitHook, function pointer used
by RtlpFindAndCommitPages1 XOR

F

by RtlpFindAndCommitPages1, XOR
with encodeHook to set arbitrary EIP

hHeap payload II

hHeap overflows IIX

hHeap overflow requirements:
• Control the application to get contiguous

layout with overflow before heap
• Suffer through a large heap spray (time!)
• Know (roughly) the position of the overflowKnow (roughly) the position of the overflow

chunk for alignment of payload
• Large enough overflow Small overflows• Large enough overflow. Small overflows

may need to be repeated to hit heap.

hHeap overflows IX

hHeap overflow requirements cont:
• Enough control of overflow character set

to craft payload
• Must be 32-bit target

moving on…

Heap termination I
BOOL SetHeapOptions() {

HMODULE hLib = LoadLibrary(L"kernel32.dll");
if (hLib == NULL) return FALSE;

typedef BOOL (WINAPI *HSI)
(HANDLE, HEAP_INFORMATION_CLASS ,PVOID, SIZE_T);

HSI pHsi = (HSI)GetProcAddress(hLib,"HeapSetInformation");
if (!pHsi) {if (!pHsi) {

FreeLibrary(hLib);
return FALSE;

}

#i i i i#ifndef HeapEnableTerminationOnCorruption
define HeapEnableTerminationOnCorruption (HEAP_INFORMATION_CLASS)1
#endif

BOOL fRet = (pHsi)(NULL,HeapEnableTerminationOnCorruption,NULL,0) (p)(, p p , ,)
? TRUE
: FALSE;

if (hLib) FreeLibrary(hLib);

return fRet;return fRet;
}

Heap termination II

Heap termination III

• Must opt-in to heap termination on
ti ith H S tI f ticorruption with HeapSetInformation

• Windows executables basically always do
– ntdll!RtlpDisableBreakOnFailureCookie == 0

• So just quickly, for all the 3rd party stuff
that doesn’t…that doesn t…

Off-by-one I

• Say you have off-by-one or small overflow
h N t l it bl ?on some heap. Not exploitable?

off-by-one chunk free chunk interesting data

FLAGS CHECK
SUM … DATASIZE

Off-by-one II

• Modify free chunk’s size value to
thi lsomething larger

off-by-one chunk free chunk interesting data

E l i t ti d t i f h k

FLAGS CHECK
SUM … DATASIZE

• Envelope interesting data in free chunk
• Must be precise with new size value

Off-by-one III

• Trigger allocations of the new size,
H All ill t ll t f h kHeapAlloc will eventually return free chunk

off-by-one chunk free chunk interesting data

Ch k ill f il b t h ti

FLAGS CHECK
SUM … DATASIZE

• Checksum will fail, but heap continues…
• Application still using interesting data, but

can be overwritten using new allocation

Off-by-one IV

Off-by-one overflow requirements:
• Not opted-in for termination on heap

corruption
• Position off-by-one chunk next to an

appropriate envelope chunkpp p p
• Know exact sizes of free and interesting

chunkschunks
• Sufficient control of returned chunk to

control interesting datacontrol interesting data

Checksum collisions

• For small overflows, the same technique
b li d l l hcan be applied on a large scale even when

heap termination is enabled
• Overflow 3 bytes of adjacent header with

constant value
• 3-Byte XOR against random value collides

with probability ~= 0.004p y
• Approximately 250 attacks per success
• Good enough for worms repeatable vulns• Good enough for worms, repeatable vulns

Canary leak

• Leak of a chunk header of known size and
t t i l k f h id lstate gives leak of heap wide canary value

C1 = L1 ^ K1
C2 = L2 ^ K2
C3 = L3 ^ K3C3 L3 K3
C4 = L4 ^ K1 ^ K2 ^ K3

• Can then use overflow to change size,
allocated/free, flags, FWD/BCK links etc

UCR overflow I

• UCR structure used to link and describe
tsegments

• Stored at beginning and end of each heap
segment

UCR heap segment UCR

• So end UCR structure always accessible
b fl i h tby overflow in a heap segment

UCR overflow II

• UCR overflow techniques

LFH bucket overflow I

• LFH bucket allocated internally using
RtlAll t H h LFH t dRtlAllocateHeap when LFH created

RtlpAllocateHeap
RtlpPerformHeapMaintenance

RtlpActivateLowFragmentationHeap
RtlpExtendListLookup

RtlAllocateHeap (sz 0x3D14)RtlAllocateHeap (sz 0x3D14)

LFH bucket overflow II

• LFH bucket overflow technique

Future Techniques

• Attack on HeapFree
• Attack on LFH

Securing the Heap I - Specific

• Add guard pages, remove functions
i t f hH HANDLEpointers from hHeap HANDLE

• Remove internal use of RtlpAllocateHeap,
replace with guarded mappings

• Similarly remove UCR from end of y
segments

• Ensure checksum is always validatedEnsure checksum is always validated
before any use of chunk headers

Securing the Heap II - Generic

• Add randomization to segments and large
h kchunks

• Increase the amount of address entropy
• Increase the size of the checksum
• Encode all of the chunkEncode all of the chunk
• Reduce use of list operations

Securing the Heap III - Theory

• Remove all meta-data structures from
h ti t d tanywhere contiguous to any data

• Still have canaries between chunks, but
not encoding anything (just for integrity)

• Smaller segments, more guard pagesg , g p g
• Introduce true non-determinism to

allocator patterns (i e internally randomizeallocator patterns (i.e. internally randomize
where a chunk can go, while still ensuring
locality)locality)

Questions

